Injecting Distribution in Casl

Matteo Dell’Amico and Maura Cerioli?

DISI-Dipartimento di Informatica e Scienze dell’Informazione
Universita di Genova, Via Dodecaneso, 35, 16146 Genova, Italy
cerioli@disi.unige.it,dellamico@disi.unige.it

Abstract. In this paper we present a first attempt at the development
of a library in the CASL-LTL specification language providing primitives
to represent connectivity and communication in a distributed system.
The focus, in particular, is on peer-to-peer, which presents more chal-
langes than the client-server paradigm, because of the higher degree of
anarchy and the large amount of middleware providing similar, though
quite different, features in support of it.

From our experience on the definition of this library, we draw some
methodological lessons on how to deal with the capture of complex soft-
ware systems, as opposite to classical libraries representing standard or
mathematical datatypes.

Introduction

The mechanism of libraries 1s a powerful way of providing extensions of a lan-
guage, when 1t 18 not required to add new concepts to the language semantics,
but only to have a richer interface to the same semantics. In particular, 1t is
largely used in programming languages to support the programmer productivity
by providing solutions to the most common tasks and abstractions of low-level
operations, often going by the collective name of middleware.

We advocate the very same approach to specifications. That 1s, specification
languages to be effective in the process of software development should provide
libraries not only for the standard datatypes like integers, lists and sets, but
also for middleware primitives. Indeed, the development of systems nowadays
relies on (and is influenced by) the middleware they will run on. Thus, on one
side the developers must accommodate the other subsystems around those given
by the platform, and hence the middleware or, better, some abstraction of the
middleware has to be taken into account from the very beginning of the devel-
opment process. But, on the other side, the middleware has to be used, not to
be developed, and hence it is not responsibility of the developers, who should not
be burdened with its axiomatization in the first steps of development. There-
fore, specification languages should provide the abstraction of middleware, and,
mimicking the programming language world, the most natural approach to the
representation of middleware is the definition of a library.

One of the most widely used middleware is that for distribution. Indeed,
most applications nowadays are distributed and the management of low-level

Dagstuhl Seminar Proceedings 05081
Foundations of Global Computing
http://drops.dagstuhl.de/opus/volltexte/2006,/298

2 M. Dell’Amico, M. Cerioli

protocols is usually left to the run-time environment. Thus, in this paper we will
focalize on the building of a library for distribution in CASL.

While the client/server paradigm is well established, the newly emerging
peer-to-peer (P2P) one is less stable. There are several platforms designed to
support 1t, each one offering somewhat different sets of operations. On the other
side, client/server is just a special case of P2P. Thus, it seems more productive
to focus on P2P and derive other paradigm of distribution by specialization.

From the careful analysis of many middleware for the P2P, we have produced
a hierarchy of specifications providing an abstract description of peers and nets
at different levels of connection. Such specifications form a first kernel of a li-
brary for P2P middleware. It is worth to note that the process of definition of
this library is quite different from that for standard data types. Indeed, in the
standard cases, like for instance integers, reals or several kinds of collections, the
type to be described is well known and formally defined in some mathematical
language. Thus, the task of the specifier is to translate the given definition, or at
least its most relevant properties, in terms of the specification language. There-
fore, in the standard cases, building a specification library follows a, so to speak,
platonic approach: the object to be described is an idea in the hyperuranium
and the specifier just has to capture its shadow as precisely as possible.

In the P2P case, on the contrary, the first step is understanding what has to
be described. Indeed, there is not just one idea of P2P middleware, nor there is
a formal definition of any proposal. Thus, one of the lessons learned from this
attempt at a P2P library, is a method to be followed in order to define libraries for
technological entities. The naive approach of analyzing the existing middlewares
and giving a specification including all features does not work, because not only
different middlewares may approach the same problem in contradictory ways,
but especially as the class of software supporting P2P is quite large (from low-
level protocol implementation to applications), and including all the possible
features in one library would create an unusable monster. We found most useful
a problem-driven approach. That is, we started from the features needed by some
applications based on a P2P architecture. Then, we analyzed the middlewares
providing them, the exact form in which they were realized and if they were
usually associated to other services. Finally, from this collection of concrete
example we abstracted and specified the result of our abstraction.

We also found out during the definition of this library that there are schemas
of specifications which present themselves in several cases. Thus, we also propose
a bit of syntactic sugar to simplify this kind of specifications.

Paper structure Sec. 1 introduces the preliminaries about CasL and P2P,
Sec. 2 describes the style of specifications adopted and some syntactic sugar,
and finally Sec. 3 sketches the part of the specification library used for a toy
application; the other specifications of the library are collected in an Appendix.

1 The Context of the Work

1.1 Casl and Casl-Ltl

The algebraic specification language CASL has been developed as central part
of the CoFI initiativel. It provides constructs for declaring basic and structured
specifications, whose semantics is a class of partial first-order models, and ar-
chitectural specifications, whose semantics is, roughly speaking, a (higher-order)
function over the semantics of basic specifications. Thus, the natural semantics
of CAasL specifications is the loose one: all the partial first-order structures sat-
1sfying its axioms are models of a basic specification. However, the models may
be restricted to the initial (free) ones, by means of a structuring construct, so
that methods based on initial semantics may be accommodate as well.

The building blocks of basic specifications are declarations of (sub)sorts,
operations and predicates, giving a signature, and axioms on that signature.
Operations may be total or partial, denoted by a question mark in the arity.
CAsL also accommodates subsorting; but, here we do not explicitely use it.

The structuring operators are the usual in algebraic specification languages,
like union, (free) extension, renaming and hiding. We will use mostly union,
extension and generic specifications. The latter being less standard, let us discuss
a bit 1ts semantics and usage. A generic specification is named and consists of

— a list of formal parameters, which are place holder specifications to be re-
placed, in the instantiation phase, by more detailed specifications, the actual
parameter, possibly using a fitting morphism to connect the symbols used
in the formal parameters to those in the actual parameters;

— a list of smports, which are specifications to be used as they are, for instance
that of integer numbers;

— a body specification, describing the features to be added to the parameters
and the imports by the specification.

The result of an instantion is, roughly speaking, the enrichment of the (union
of) the actual parameters and the imports by (the translation of) the body (by
the fitting morphisms).

For a complete description of CasL, we refer to [5].

Casl-Ltl and Generalized Labeled Transition Systems It is important
to note that CASL is one of a family of languages, sharing common constructs
and their semantics. For instance, there are restrictions of CasL without partial
functions, and/or subsorting, and/or predicates, so that the resulting language
may be translated in other less rich languages in order to use tools built for
such languages. On the converse, there are extensions of CASL by constructs
and corresponding semantics to deal with specific problem. For instance, there
is higher-order CAsL (see e.g. [11]) and state-based CAsL (see e.g. [1]).

! See the site http://www.brics.dk/Projects/CoFI.

4 M. Dell’Amico, M. Cerioli

In the sequel we will use CAsL-LTL (see [8]), which is designed to describe
generalized labeled transition systems (glts from now on).

A glts may be used to represent the evolution of a dynamic system; it consists
of a set of states of the system, one of labels, one of information and finally the
transition relation, representing the evolution capabilities of the system. Any
element of the transition relation is a tuple consisting of the starting and the
final states, a label, capturing all the data about the transition which are relevant
to the external world, and an information, capturing all the data about the
transition which are relevant only to the system itself. For instance, if a system
is keeping track of the number of sent messages, the transition corresponding
to sending all the messages in a queue will have the message list coded in the
label and the number of sent messages in the info part, to be used to update the
internal counter. Any state of the system corresponds to the process having an
evolution tree determined by the transition system itself, where each branch is
given by a transition of the system and represents a capability of moving of the
parent state.

A glts may be specified by using CASL-LTL. Indeed, CasL-LTL allows to
declare dynamic sorts, by dsort ds label [.ds info i_ds. This CasL-LTL
construct semantically corresponds to the declaration of the sorts ds, [_ds, and
1_ds for the states, the labels and the information of the glts, and of the transition
predicate preds __: __ — __:i_ds x ds x {_ds x ds, as well.

Thus, each element s of sort ds in a model M (an algebra or first-order struc-
ture) of the above specification corresponds to a process modelled by a transition
tree with initial state s determined by the glts (i_ds™ , ds™ [_ds™ __:__ = M2

The most important extension of CASL-LTL w.r.t. CASL is the enrichment of
the logic by constructs from a branching-time CTL-style temporal logic, which
effectively increase the expressive power of the language.

In the sequel we will use an obvious shortcut for dynamic specifications with
an irrelevant information or label part, that is we will drop any reference to the
immaterial aspect. The general case is computed from the shorter version, by
adding a sort with just one element for the missing component and decorating
all the transitions by that element too.

1.2 Distributed Systems and P2P: State of the Art

The “peer-to-peer” term is widely used with quite a fuzzy meaning. [7] pro-
vides, along with a survey of many P2P applications, some informal definitions
of the term. At the core of it we can anyway find the common concept of decen-
tralization. We can break it down in three independent — yet anyway related —
components: decentralization of overlay network architecture, of location of valu-
able resources and of content production. There is a certain degree of sinergy
between these aspects, and many application embrace more than one of them.
In this paper, we focus on software with a decentralized network topology. We

2 Qiven a ¥ algebra A, and a sort s of X, s* denotes the interpretation of s in A;
similarly for the operation and predicates of 1.

argue that a project choice of this kind can favour a good implementation of the
other two objectives.

Decentralization in Network Architecture As opposed to the client-server
paradigm, in which there is a clear distinction of roles between the actors
and complexity is reduced by offering all services only in a central node (the
server), peers can (and do) both offer to and use services provided by other
nodes. A sensibly projected application can benefit from decentralization by
having a notably good fault-tolerance (P2P applications normally have no
single point of failure). On the flip side, applications become more complex.
Moreover, security becomes more difficult to handle due to the fact that a
peer has to communicate with many untrusted nodes. The use of middle-
ware can be a good choice because i1t can solve various common problems,
effectively hiding complexity to the application developer.

Decentralization in Location of Resources Using distributed resources such
as processing power, bandwidth or storage space can prove itself to be a
cost-effective strategy, since facilities located at the edge of the network are
usually cheap and often unused. Of course, use of decentralized resources
arises naturally in applications with a decentralized architecture. Efficiently
scheduling the use of resources is an important issue, which again can be
effectively tackled by middleware.

Decentralization of Content Production An important social implication
of decentralized applications is that the distinction between publishers and
recipients of information tends to fade away, since it often happens that
publishing new information becomes just as easy as accessing information
submitted by others. This is often not the case with other, more traditional,
kinds of distributed applications (the WWW is a prominent example). An-
other side-effect of decentralized applications is that it becomes more and
more technically unfeasible to impose a central control or filter on the pro-
duced content. Moreover, various applications provide a degree of anonimity
to the user, protecting him from the menace of retaliation.

Characteristics of P2P applications have been successful in various different
areas. In the following, we will highlight some examples.

— Scalability and efficience make P2P a good choice for content-distribution
networks where performance is an issue: file-sharing is obviously the killer
application. Other interesting fields are tools for sharing bandwith, lowering
cost and increasing efficience for big uploads, with [2] or without [6] realtime
constraints that can be useful for multimedia streaming.

— Decentralization on the network makes anonimity more feasible, due to the
absence of a privileged observing position. Freenet[4] is a general-purpose
network created on top of the Internet with the task of preserving anonimity
and avoiding censorship.

6 M. Dell’Amico, M. Cerioli

— Regardless of their actual underlying network connections®, Instant Messag-
ing applications (such as Jabber [10]) implement the concept of peers directly
communicating with each other.

— The problem of finding information in a great decentralized network can be
addressed by using solutions such as distributed hash tables (Chord [12] is
a notably simple, yet efficient, one).

2 Specification Style for the P2P Library

We aim at the definition of a library for the abstract description of P2P mid-
dleware, in an extremely loose style, expecting each specification to have several
interesting and concrete models: the implementations by different middlewares.
Thus, we adopt an observational style, in the sense that we introduce the sorts we
need to categorize the objects we will be working with and functions and pred-
icates to extract from the elements the values of some of their aspects, which
we regard as relevant for the applications to be built upon our infrastructure.
However, we are not relying on the observers to distinguish elements, as in most
observational approaches. Indeed, by the nature of our library, the observer set
is continuously extended as new aspects of the nodes and nets are introduced
by the library specifiers and end-users. Thus, the fact that the current set of ob-
servers cannot distinguish between two elements is not a clue of their equality,
it could as well be an indication of some aspect still to be taken into account.
Therefore, our approach has in common with more traditional observational ap-
proaches (e.g., the pioneering [9], we defer to [3] for further references) only the
intuition of the black-box approach and the use of the word observer.

For instance let us consider the case of the most basic specification in our
library, the one of peer. A peer is the abstraction of any node in a net. It has a
persistent identity, the capability to connect to a net using a given address and
to disconnet from the net. Thus, we leave underspecified how elements of the
sort peer are made and introduce functions extracting the identity, address, and
online status from such elements, as in the following signature?
sort Peerld
dsort Peer label Peerl
ops online: Address =7 Peerl

offline :— Peerl

id: Peer —7 Peerld

addr : Peer —7 Address
preds isOnline: Peer
where we have (static) sorts, describing data types, like for instance the (totally
unspecified) sort for peer identifiers, Peerld, or that for the labels of their transi-
tions, PeerL. But, we also have the dynamic sort Peer, representing the states of

? Since the burden of communication in such applications is usually small, the over-
lay network is often built on a simpler client-server architecture. Nevertheless, the
presence of a server is made transparent both to the user and at a given abstraction
level in the application.

* Notice the obvious adaptation to the case with silent information.

the nodes. Analogously, we have operations building some sort, like for instance
online and offline, which denote particular labels, and we have observers, both
operations like id and addr, and predicates like 1sOnline, used to extract, or
observe, aspects of the peer states.

Now, we need to state two different kinds of axioms. First of all, we have
the standard axioms, describing the effects of operations and transitions, such
as asserting that after going online with an address a, the peer is actually online
and 1its address is a. But, we also have to state that no transition is affecting
the value of id, as the identity is persistent, that the only transitions affecting
1sOnline are those actually taking the peer on and off line, and that the address
is persistent for each connection, so that it can change only if some connection or
disconnection has taken place. In other words, we have to state a sort of frame
assumption for some observers®. These are quite different from the previous
ones, from a logical point of view, because they express a property that the users
usually implicitly assume: each aspects of the status of the system changes only if
forced to, by a transition explicitly modifying it. But, there is no such a thing as an
tmplicit assumption in specifications. Unless some axiom is imposed to guarantee
it, there are models which do not satisfy it. Moreover, from a technical viewpoint,

they require the end user to add lots of trivial axioms of the form ¢ : d BLING (N
p(d) = p(d’') to state that the transition (s)he is introducing does not affect
the result of most observers. This 1s mostly inconvenient, because usually a
very restricted number of transitions may affect the result of an observer and,
methodologically, the user 1s more encouraged to focus on the pairs “transition
+ observer” where the transition is relevant to that observer than on those
where, being no relationship between the two components, things are not going
to change and hence the corresponding axiom has to be issued.

In the following section, we will introduce some syntactic sugar intended to
help with this issue, which presented itself in most specifications in our library.

2.1 A Spoonful of Sugar

The most natural description of what we want to specify would involve higher-
order logic. Indeed, it suffices to decide which operations on dynamic sorts are
observers, by a predicate on the operations, and axiomatize the capability of the
transitions, represented by their information and label components, of affecting
the observer result. Such capability would be naturally described by a predicate
on observers, label and information sorts. Unfortunately, the higher-order fea-
tures and the dynamic features are added to CASL by two distict extensions:
HOCAasL and Casrn-LTL. Thus, we cannot have both (without defining a super-
extension of both languages). In order to avoid the need for second-order logic,
we have implemented an analogous mechanism at the first-order level, by adding

5 In our approach, we do not require a full fledged frame assumption. Indeed, we
want to explicitly state that some properties of the system change and some do not,
but leave most of them underspecified, changing or not depending on the individual
models.

8 M. Dell’Amico, M. Cerioli

a predicate for each observer, representing the capability of transitions of affect-
ing that aspect. These predicates are required to be freely constructed over a set
of axioms, so that their minimal truth is guaranteed. For instance in the case of
the peer specification, we will have an _aff-isOnline predicate and axioms stating
that the labels online and offline do affect it. Then, the predicate is required to
be free, so that it is false on all other labels.

However, this approach, would prevent us to introduce later on other labels
affecting the predicate. Following our observational approach, instead of stating
that some individual label is affecting a predicate, we describe abstract properties
on the labels such that the labels satisfying them are those which could affect
the predicate. For instance, in our example, the property of being online may
be influenced by all the labels representing a connection or a disconnection, but
by no others. Thus, we use again predicates on the labels and info to describe
the category of action they are representing and use these predicates in turn to
state the axioms for the definition of the affecting predicates; then the actual
labels become usually superfluous and can be dropped.

This mechanism allows to clearly separate the axioms stating which category
of transitions affects which aspects from those describing the effects; moreover,
the axiomatization of the default behaviour, where the observer values are not
changing unless some transition affecting the corresponding aspect takes place,
may be automatically added.

Therefore, let us introduce a syntactic short-cut, which does not require any
change in the semantics of CASL, because the terms introduced by this new
construct reduces to terms in standard CASL-LTL. In the choice of the restrictions
for such a construct, we have been guided by pragmatic considerations, choosing
a generality sufficient to deal with all the cases in our library and, at the same
time, not so extreme to make the translation in standard CasL difficult.

Let us introduce the notion of observer block. The idea is to collect together
the definition of observers and the decisions about which category of transition
may affect the observer result. Then, by requiring the freeness of the predicate
for observer modifiers, we automatically get that all the transition labels and
information not explicitely listed as possibly affecting an observer are not allowed
to affect it.

Definition 1. Given the declaration dsort ds label [_.ds info i_ds of a
dynamic sort, an observer block for ds is bracketed between the keywords obs
and end_obs, and it consists of three parts:

— a declaration of operations and or predicates, having ds as (unique) source,
called observers on ds;
— a declaration of predicates, having [_ds x 1_ds as source, called categories on
l_ds x i_ds, prefired by the keyword cats;
— a list of avioms (and variable declarations), of the form p(l, i) = (, i) affects o,
or of the form (I, 1) affects o = (1, i) affects o', where
e o and o' are observers on ds, declared in the current block;
e 1 1s a variable of sort 1_ds, and analogously | is a variable of sort [_ds;
e p is a category on [_ds x i1_ds, declared in the current block.

In each basic specification at most one observer block may appear.

Let us consider as an example the peer specification, using the syntactic sugar
introduced so far to represent the observers. Notice that the operations online
and offline have been dropped, because their role is filled by the corresponding
predicates. Moreover, we give here the full specification, with also the axioms
external to the block. Finally, note that the specification is parametric over the
definition of the addresses (e.g., IPv4, IPv6, JXTA or Chord identifiers, etc.)

spec PEER[sort Address]=
sort Peerld
dsort Peer label Peerl
preds isinitial: Peer
obs
ops id: Peer =7 Peerld
addr : Peer —7 Address
preds isOnline: Peer
cats goesOnline: Peerl
goesOffline . PeerL | : PeerlL
axioms V[: Peerl
o goesOnline(l) = [affects isOnline
o goesOffline(l) = 1 affects isOnline
o | affects isOnline = | affects addr
end_obs
axioms Y [: Peerl; ¥ p,p’ : Peer
o —islnitial(p’)ifp LN P
o —isOnline(p)if isInitial p)
o isOnline(p’)ifp LN p' A goesOnline(l)
o —isOnline(p')if p LN p' A goesOfftine(l)
o def(addr(p))if isOnline(p)
end
Now, let us define the semantics of our constructs, by reduction to CasL-LTL

Definition 2. A correctSobserver block

obs
ops fr:ds =7 s5; ... fn i ds =7 sy
preds pi,...,pm : ds;
cats pty,...,pl; 2 l_ds x i_ds
axioms ¢y ...pn

end_obs

expands to

ops fr:ds =7 85 ... fu i ds =7 sn;

preds pi,...,pm :ds; pty,...,pte: l_ds x t_ds
_aff fe, ..o, caffofa, —affpr, ..., caff pm 2 l_ds X i_ds

axioms %% transitions not affecting f;...f,,ps...pn leave the observer result un-
changed

(mafffi (L)) A d = d' = f,(d) = fi(d")

5 We are using only partial functions for simplicity, but total functions are allowed as
well, of course.

10 M. Dell’Amico, M. Cerioli

(maffpu(li)) Ai:d = d' = (pn(d) & pu(d)))
Moreover, at the end of the largest basic spec enclosing the block, the following
fragment is added, where trans transforms each occurence of (I, 1) affects o into
_affio(l, 0):
and {
sorts l.ds,i_ds
preds pty,...,pty : l_ds x i1 _ds
then free {preds _aff-f:,...,-aff-fu,-aff-ps,..., aff-pm : l_ds x i_ds
axioms trans(p;). .. trans(on)}}

It is worth pointing out that some inconsistency may arise if at the same time

— the same sort for label and info is used for different dynamic sorts and
— observers by the same name are defined for two or more of such dynamic
sorts.

But, in our experience we never encountered such a case. Thus, we prefer to keep
the syntactic sugar simple, even if it is not working for general (but uncommon)
cases.

Let us see what is the expansion of our running example.

spec PEER[sort Address]=
sort Peerld
dsort Peer label Peerl
ops id: Peer =7 Peerld
addr : Peer =7 Address
preds isOnline, isInitial : Peer
goesOnline, goesOffline . Peerl
_aff_ed, _aff_addr, _aff isOnline : l_ds x i_ds
axioms Y [: Peerl; ¥ p,p’ : Peer

o maffid(l, i) Ap 5 p' = id(p) = id(p’)
o —_affraddr(l, i) A p LN p' = addr(p) = addr(p')
o —_affiisOnline(l, i) A p LN p' = (isO0nline(p) & isOnline(p'))

o —islnitial(p’)ifp LN P
o —isOnline(p)if isInitial p)
o sOnline(p’)ifp LN p' A goesOnline(l)
o —isOnline(p')if p LN p' A goesOfftine(l)
o def(addr(p))if isOnline(p)
end
and {
sorts Peerl
preds goesOnline, goesOffline : Peerl
then free { preds _aff-id, _aff-addr, _aff-isOnline: Peerl
axioms Y [: Peerl; ¥ p,p’ : Peer
o goesOnline(l) = _aff-isOnline(l)
o goesOffline(l) = _aff-isOnline(l)
o _aff-isOnline(l) = _aff-addn(l) } }

Note that atoms of the form (I, i) affects o are well-formed only inside the ob-
server block where o is introduced. Thus, the information about which category
of actions may change the value of an observer must be collected all together in
that block. In particular, it is useless to redeclare the same observer in a different
block, because the corresponding affect predicate is already completely defined
by the free statement; thus, any further axiom cannot change it.

On the contrary, it is possible to change the definition of the category predi-
cates. Thus, labels and info introduced further on in the specification can affect
an observer already defined.

3 A Hierarchy of Specifications for Distributed Systems

We have developed a set of specifications with the goal of reflecting the essential
facilities of most deployed P2P applications. In this section we will have a glance
at the work, explaining our design choices and giving some examples.

3.1 Goal

The purpose of this work is to create an infrastructure that can be used to de-
scribe the characteristics of middleware software used for constructing P2P apps.
Features of existing peer-to-peer middleware vary broadly. Thus, we have tried
to create a structure that can be successfully used to represent characteristics of
a broad majority among them.

Mirroring middleware, we aim at creating specifications that can be used at
an intermediate level. On one hand, our specifications build on lower-level ones.
Indeed, we use standard CAasL libraries for things such as basic and structured
datatypes, and we assume a specification for basic networking aspects, such as
addresses or messages. On the other hand, we expect specifications of applica-
tions to be built using (part of) our infrastructure.

3.2 Design Guidelines

Generality: our specifications reflect a common base of many different archi-
tectures. We expect that real-world application specifications will be more
detailed and will fit in as specializations of our abstract ones.

Modular structure: to reflect the fact that P2P applications have very differ-
ent requirements and implementations, we have broken down functionalities
in different specifications that depend on each other, similarly to what hap-
pens in software libraries.

Loose specifications: we want our specifications to be useful in the broadest
possible field, so our goal i1s not to give strict specifications that will rule
out all implementations that don’t satisfy some goal (that will be the library
user’s duty). Our ultimate goal is that any distributed system should easily
be modeled using our infrastructure, providing an effective “shortcut” to
the library implementor. Thus, we give high-level specifications that can be
specialized to reflect real-world applications.

12 M. Dell’Amico, M. Cerioli

Incremental philosophy: P2P middleware varies heavily. Many applications
have very low requirements (for instance, message reception by the recipient
may not be guaranteed). For this reason, we start with simple specifications
with little, if any, guarantees, and extend them for the cases in which these
guarantees are needed.

Problem-driven approach: to guide ourselves in designing an infrastructure
that can be useful for real applications, we have constructed the specification
in a problem-driven way: we have chosen a set of application domains’,
seeking to reflect some of the areas in which P2P applications can be useful,

and we have designed the specifications to meet them?®.

We think that the good amount of reuse we obtained in the specification
proves that these desires are substantially met: very different kind of applications
(such as instant messaging and distributed file systems), thanks to the abstract
nature of the specification, share much of the specification infrastructure.

3.3 Library Modules

Our resulting specification lies at a very high-level, where many things - such as
the nature of the underlying network, or the time needed for delivery of messages
to offline nodes - are left unspecified. Moreover, we have not specified anything
about the nature of messages or addresses in the network: they have dotted
borders in the graph, meaning that we have not specified any characteristics
about them in our library.

We have chosen how to divide functionality, using specification as building
blocks, trying to be as general as possible and dividing functionalities into small
parts. This way, we have isolated some components that can be (and are) reused
in describing different applications.

We make heavy use of parameters. This way, the user of the library can in-
stantiate a specification which has a loose formal parameter by using a stricter
actual parameter. This mechanism can be used to easily require additional fea-
tures or particular behaviour restrictions from the software. Let us, for instance,
see how we can use PEER as a parameter to build the NET specification.

The NET Specification NET (figure 1), alongside with PEER, is a basic build-
ing block for our specifications. It is meant to describe behaviour from a global
point of view, whereas in PEER we see what happens on a single node.

A new dynamic sort, Net, is specified. Its transitions have no label, since
labels specify the interactions of a dynamic system with the outside world, and

" The applications chosen are two different kinds of file-sharing applications, one using
a Gnutella-style broadcasting search, and the other one using a distributed hash
table, an instant messaging application, and a distributed file system.

& They are still abstract, in the sense that most of the implementation details (e.g., the
particular hashing function used or the scheduling politics) and the user interface
are still left unspecified.

spec NET[BASEPEER] =SET[sort Peer], Map[sort Peerld][sort PeerL] then
%% A net can be seen as a set of peers; they join the net via the

%% online transition and disconnect via offfine.

%% A net’s transition is the sum of all the transitions done by its

%% peers.

%% We use info since a net does not give any information to the

%% outside of the net.

sort Netl = Map[Peerld][Peerl]
dsort Net info Net!
preds islnitial . Net
= __in __:__— __: Peer x Peerl x Peer x Netl x Net x Net
op peers: Net — Set[Peer]

axioms V a : Address;i, : Peerld;l 1y : PeerL;p,p’, ps : Peer;n,n': Net;i: Net]
o mislnitial(n) if i :n — n’

%% This predicate is used only as a shortcut.
op—l>p'z'nz':n—>n'<:>
i:n—n' Apepeers(n) Alid(p)/llei A p' e peers(n’) A p LN P

%% peers gives the set of peers currently connected to the net;
%% identifiers and addresses are unique.
o peers(n) = {} if isInitial(n)
o p € peers(n) = isOnline(p)
(n) A p' € peers(n)
(n) A p' € peers(n)

A id(p) = id(p') = p = p’
A addr(p) = addr(p') = p = p’

e D € peers
e D € peers

%% peers(n) evolves conforming to the transitions present in their
%% info part.
%% Peers that “move” evolve according to their actions.
. (Elp,p':Peer op —l>p' z'nz':n—)n'/\ipzz'd(p))
if i:n—n' Alip/l] et A—goesOnline(l) A —goesOfftine(l)

%% Peers that don’t do actions remain in the same state.
o (pepeers(n’) & p e peers(n))if i:n— n' A—id(p) e dom(i)

%% Peers that connect and disconnect get in and out of peers

%% respectively.
o (Tp,p': Peer o id(p) =1y A p N p'Apen)if ilip/l]: n— n' A goesOnline(l)
o (m3p : Peer o id(p) = ip A pepeers(n)) if ilip/l]: n — n' A goesOfftine(l)

%% We don’t allow the empty transition.
o mempty :n — n’

%% sync(n,p,l, pe,l2) means that — in n — p does [if and
%% only if pz simultaneously does Iz, whereas sync_left means
%% p doing [implies ps doing Iz, but not vice versa.
o sync(n,p,Lpe,l2)) & (penAprenni:n—n' = ([idp)/l]eie [idps:)/le]ei))
o syncleft(n,p,l,ps,l2)) & (penApeenni:n—n' = ([idp)/l]ei=[idpz)/l] ci))
end

spec BASENET = NET[BASEPEER]

Fig. 1. The NET specification.

14 M. Dell’Amico, M. Cerioli

things happening in a net have effect only on nodes which are connected to it
and considered to be part of it. The info part of a transition is a mapping that
relates peers to the transactions they do. A peers operation is given, returning
the set of connected nodes, alongside with some shortcuts that make it easier to
express properties more clearly and concisely.

We didn’t use categories and observers with Net, since in our view they
are useful using simple and atomic transactions, and are less suited to possibly
complex and heterogeneous ones like Net’s ones.

The BASENET specification is just a shortcut for NET[BASEPEER], which in
turn is NET[PEER[sort Addr]]. Its purpose is to shorten specification declara-
tions, which could get otherwise quite unwieldy.

[

MsgPeer

(basic messaging)

TimestampPeer
(time constraints)

PersistentAddress
(consistent identity)

Groups
(peer groups)

StoreAndForward
(delayed delivery
to offline nodes)

ConnectedNet
(immediate delivery
to online nodes)

SimpleAuthGroups
(group owners)

Non-given specifications

Given specifications

—— Direct extension

...... > Parametric extension

Roster
(presence
notification)

IM_App
(Simple application)

Fig. 2. Hierarchy of specifications for an instant messaging application. Standard CAsL
libraries are not shown in the graph.

An Example: The Instant Messaging Specification In this section we
will have a glance at a self-contained subset of the full library, the part used by
the Instant Messaging specification, to see how such a work can be structured.

The rest of the specification library is contained in appendix A. This part of the

library can be used to model applications such as ICQ or Jabber [10]. In Figure 2,

the dependencies between specifications are shown. At the top of the graph, we

have more generic features, that are meant to be used in a wide variety of

applications, whereas going towards the bottom, the specification become more

and more relevant to the particular application domain we are referring to.
Here is a quick overview of the used specifications.

— We have already seen PEER and NET as the basis of our specifications.

— MsGPEER and MSGNET add to PEER and NET capabilities for messaging.
To remain as generic as possible, there are very little constraints here: fea-
tures such as guaranteed delivery of messages can (and, in this case, will) be
required in subsequent specifications. Right now, messages may get immedi-
ately received, remain pending for some time, or get lost.

spec MsaG[sort Address] =

%% Messages have an address that is used to recognize the recipient.
sort Msg

op to: Msg— Address

end

spec BASEMsG = Msc[sort Address)

spec MsGPEER[BASEPEER]|[BASEMSsG] = SET[sort Msg] then
%% We enrich peers with the capability of sending and receiving messages.
%% Thus, labels may carry sets of messages sent/received during the transition.

ops sent, recvd : Peerl — Set[Msg]
axioms V [: PeerL; m : Msg; p,p' : Peer
o isOnline(p) if p LN p' A isNonEmpty(recvd(l))

o to(m) = addr(p) if p N p' A m e recvd(l)
end

spec BASEMSGPEER = MsGPEER[BASEPEER]|[BASEMsG]

spec MsGNET[BASEMSGPEER][BASENET] =
%% Messages may be immediately received, get lost or remain pending.

%% Peers will only receive messages that have been sent, and not more
%% than once.

op pending: Net — Set[Msg]
axioms V i : Netl;l: Peerl; m : Msg;n,n’: Net;p, p': Peer
o pending(n) = {} if isInitial(n)
o m € pending(n) V (3 : PeerL o« | € range(i) A m € sent(l))
if i:n— n' Amepending(n')
o m € pending(n)V (Ilz : PeerL o I3 € range(i) A m € sent(l))
z'fp—l>p'z'nz':n—>n'/\merecvd(l)

o —m € pending(n') if p LN plini:in—=n' Amerecvd(l)
end

16 M. Dell’Amico, M. Cerioli

spec BASEMSGNET = MsGNET[BASEMsGPEER]|[BASENET]

— TIMESTAMPPEER and TIMESTAMPNET let us add time constraint to our
specification, adding an underspecified Stamp sort, and a timestamp observer
to peer and net states.

spec TIMESTAMPPEER[BASEPEER] =
STRICTTOTALORDER with sort Timestamp — Elem then
%% Useful to indicate time constraints in our specifications.

sort Timestamp
op stamp : Peer — Timestamp
axioms V p, p’': Peer;l: Peerl

o stamp(p) < stamp(p/) if p —l> '
end

spec BASETIMESTAMPPEER = TIMESTAMP PEER[PEER]

spec TIMESTAMPNET[BASETIMESTAMP PEER][BASENET] =
%% The timestamp of a network is defined to be the one of its last-moved
%% mnode, also counting for peers that have disconnected.

op stamp : Net — Timestamp
axioms V p: Peer;i: Netl;l: PeerL;n,n’': Net

o stamp(n') = stamp(p’) if p LN pliniin—n

o stamp(n') = stamp(p") if i :n — n' A p’ e peers(n’) A [id(p")/1] € i A goesOnline(l)

o stamp(n’) = stamp(p’) if 1:n — n' A pe peers(n) Ap LN p' A lid(p)/l] e i A goesOfftine(l)
end

spec BASETIMESTAMPNET = TIMESTAMPNET[BASETIMESTAMP PEER][BASENET]

— The PERSISTENTADDRESS specification states that nodes always use the
same address to connect to the net, and no two peers have the same ad-
dress. This allows other nodes to use addresses of others to identify them,
as it happens with email. This i1s obviously useful for our Instant Messaging
application.

spec PERSISTENTADDRESS[BASENET] =

%% Peers never change address, and no two different peers may be
%% connected, not even in different times, to the net.

%% This allows other peers to treat address as identifiers.

axioms V [: PeerL;n : Net;p,p’ : Peer
o addr(p") = addr(p) if p N P
o in_any_case(n,[n’ o p' € peers(n’) A addr(p) = addr(p') = id(p) = id(p')])
if pe peers(n)
end

spec BASEPERSISTENTADDRESS = PERSISTENTADDRESS[BASEPEER]

— In CONNECTEDNET 1t is requested that messages to online peers are imme-
diately received; there is no intermediate communication with other peers
and no message loss if both sender and recipient are online.

spec CONNECTEDNET[BASEMsSGNET] =
%% Peers are directly connected, and if a node is online it immediately
%% receives messages directed to it.

axioms V ¢ : Netl;l;,l; : PeerL;m : Msg;n,n': Net;ps, py, p2, pe : Peer;
o m e recvd(ls)
. i . ' ls 4, . . ,
ifpr — prini:n—>n Aps —> peint:n—n
A m e sent(ly) A to(m) = addr(pz)
end

spec BASECONNECTEDNET = CONNECTEDNET[BASEMsGNET]

— STOREANDFORWARD states that undelivered messages never get lost and
remain stored somewhere in the net, and uses timestamps to assure that in
a given amount of time a peer that stays online will receive them. Since also
CONNECTEDNET will be included by IM_APP, in the latter this is going to
apply only to messages to offline nodes.

spec STOREANDFORWARD[BASEMSGNET][BASETIMESTAMPNET] =
PERSISTENT ADDRESS[BASEMSGNET]

then

%% A message to a peer which is pending in a moment stamped as ts

%% is guaranteed to be sent before incr(ts) if the peer stays online.

op ncr: Timestamp — Timestamp
axioms V [: PeerL;m : Msg;n,n' : Net;i: Netl:p,p’ : Peer;ts : Timestamp
o ts < incr(ts)

%% Messages do not disappear
op—l>p'z'nz':n—>n'/\mesent(l):>
(3ls : PeerL;pe, py : Peer
o P2 i} pein i n — n' Aaddr(ps) = to(m) A m e recvd(lz))
vV m e pending(n’)
o i:n— n' Amepending(n) A p e peers(n) A addr(p) = to(m) =
m e recvd(lookup(id(p),i)) V m € pending(n’)

%% If a message is pending at time s, we get to a state where it came
%% to destination or the addressee is offline before incr(ts)
o in_any_case(n, eventually [n' o stamp(n') < incr(stamp(n))
A ((—3p’ : Peer o p' € peers(n') A addr(p') = to(m)) vV =m € pending(n’))])
if m e pending(n)
end

18 M. Dell’Amico, M. Cerioli

spec STOREANDFORWARD =
BASESTOREANDFORWARD[BASEMSGNET]|[BASE TIMESTAMPNET]

— GROUPS adds the notion of peer groups: members of a given one group are
specialized in some way, dependent of the nature of the used application.
SIMPLEAUTHGROUPS adds an owner to each group, and any peer wishing
to join a group has to be authorized by its owner. The RosTER? specification
uses groups to model the set of the “friend” peers for each node that are
notified when they change their online/offline status.

spec GROUPS[BASEMsGNET] given SET[sort Groupld] =

%% Peers may join and leave groups. Each peer group has an address
%% of the same kind of peer addresses; whenever a message is sent to a
%% group, it gets forwarded to its connected members.

ops joined,left : Peerl, — Set[Groupld]
addr : Groupld — Address
forward : Msg x Address — Msg
obs
op groups : Peer — Set[Groupld];
cats joins, leaves : Peerl;
vV [: Peerl
o joins(l) = 1 affects groups
o leaves(l) = 1 affects groups
end_obs

axioms V a : Address; g : Groupld;i : Netl;l: PeerL;m : Msg:n,n’ : Net;p,p', ps : Peer
o groups(p') = groups(p) — left(l) + joined(l) if p LN P
o left(l) = {} if —leaves(l)
o joined(l) = {} if —joins(l)
o to(forward(m,a)) = a
o forward(m, addr(pz)) € sent(l)
if p LN plini:n—=n' Amesent(l) A addr(g) = to(m)
A pg € peers(n) A g € groups(ps)
end
spec BASEGROUPS = GROUPS[BASENETMsG]

spec SIMPLEAUTHGROUPS[BASEGROUPS] =

%% Very simple specification for group authorization.

%% Groups have an owner, and peers need a sinchronized permission from
%% its owner to join a group.

op owner : Groupld — Peerld
pred permits : Peerl x Groupld x Peerld
axioms V g : Groupld;i : Netl:l: PeerL;n,n' : Net;p,p': Peer

o permits(lookup(owner(g),t), g,id(p)) if p N pliniin—n' Agejoined(l)
end

9
roster is jargon for contact lists that receive notifications of a node’s presence.

spec BASESIMPLEAUTHGROUPS = SIMPLEAUTHGROUPS[BASEGROUPS]

spec ROSTER[BASESIMPLEAUTHGROUPS] = STRING then

%% Instant messaging basically involves sending simple messages and
%% presence notification to peers in one’s roster. In this case, we use
%% online and offline notification, and simple text messages.

ops roster : Peerld — Groupld
online, offline : Peerld — Msg
plain : String x Addr — Msg

axioms V a : Address;i, : Peerld;i: Netl;n,n': Net;s : String
o owner(roster(i,)) = ip
o to(plain(s,a)) = a
o to(online(iy)) = addr(roster(ip))
o to(offline(ip)) = addr(roster(iy))
o online(iy) € sent(l) if p LN p' A goesOnline(l)
o offline(iy) € sent(l) if p LN p' A goesOfftine(l)
end

spec BASEROSTER = ROSTER[BASESIMPLEAUTH(GROUPS]

— The final specification uses CASL’s extension mechanism to combine the
previous specification in a neat way, with no need for additional “glue”.

spec IM_App =
BaseRosTER and BASESTOREANDFORWARD and BASECONNECTEDNET
%% Simple IM application.
reveal sent, recvd, plain, roster, joined, left,
online, offline, goesOnline, goes Offline
end

The strategy for giving a gradually more detailed specification is to extend
our more generic specifications with others that are stricter. It is to be noted
that our building blocks are already reusable: for instance, the PERSISTENT AD-
DRESS or STOREANDFORWARD specifications aren’t included in our file-sharing
specifications, but if they were, they would have reflected a more reliable kind
of applications.

3.4 Using Libraries in the Real World

The libraries we have given can be refined to an arbitrary extent, and using
parameters the refined specifications can easily be integrated in our already
existing framework. In order to have a complete specification, we will have to
provide more detailed specifications, restricting our building blocks to actual
implementations done in real middleware. These will be used by the user in a
later phase of the design, when the platform choice has been done.

For instance, let us see a specification modeling a simple dial-up peer.

20 M. Dell’Amico, M. Cerioli

from BASIC/STRUCTUREDDATATYPES get STRING

spec 32BITINT =
sort 32Bitint; %% We suppose to have the trivial definition here.
end

spec DIALUP = 32BITINT, STRING, PEER[sort 32BitInt] then
ops call : String — Peerl

hangup, online :— Peerl

providerPhone :— String
obs

pred usingline : Peer;

cats takesLine,releasesLine : Peerl;

YV [: Peerl

o takesLine(l) = | affects usingLine

o releasesLine(l) = 1 affects usingLine
end_obs
axioms V | : PeerL;p,p’ : Peer; s : String
%% Define which labels pertain to which categories.

o goesOnline(online)

o goesOffline(hangup)

o takesLine(call(s))

o releasesLine(hangup)

o usingLine(p') if p LN p' A takesLine(l)

o musingLine(p') if p LN p' A releasesLine(l)
%% A peer can only call the provider’s number.

e s = providerPhone tf p &(s)) P

%% A peer can only connect when it’s using the phone.
online n

o usingLine(p) if p —— p
end

The Address sort parameter is instantiated as an IP address, which 1s in turn
a 32-bit integer. A node goes online or offline by calling a telephone number of
an internet provider and negotiating an address. We introduce a new observer,
usingLine, that monitors whether the node is using the telephone line.

Conclusions and Further Work

We have presented a first attempt to a specification library for the representation
of middleware for distributed system. We believe that our infrastructure can be
useful to model real applications. Indeed, on one hand, 1t is made of sufficiently
generic building blocks to be used in a wide field. and on the other hand, it’s
easy to extend specifications giving constraints allowing us to reflect more closely
a given middleware. Obviously, some specifications given in our infrastructure
reflect features that are present in some software and not in others. The designer

using our library will be guided by his/her choice of specifications to understand
the features needed by the application, and hence helped to chose the appropriate
middleware to realize it. We believe that the use of this kind of libraries could
help the designer as much as the middleware aids the developer.

Moreover, we have introduced a specification style and some syntactic sugar
supporting it in the Casr language, which we think useful when dealing with
the definition of loose dynamic specifictions.

In order to make our library fully accessible, we still have to polish and
complete 1t and formally define the CASL variation we are using in it. In partic-
ular the tool support (the preprocessor translating our specification in standard
CAsL) is missing.

Acknowledgements

We thank Gianna Reggio for spending her valuable time in stimulating discus-
sions on the subject of specification of dynamic system and for her kind support.

References

1. Hubert Baumeister and Alexandre V. Zamulin. State-based extension of CASL. In
W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated Formal Methods,
Second International Conference, IFM 2000, Dagstuhl Castle, Germany, Proceed-
ings, Lecture Notes in Computer Science 1945, pages 3—24. Springer Verlag, 2000.

2. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. SplitStream: high-bandwidth multicast in cooperative
environments. In Proceedings of the nineteenth ACM symposium on Operating
systems principles, volume 37, 5 of Operating Systems Review, pages 298-313, New
York, October 19-22 2003. ACM Press.

3. M. Cerioli. Basic concepts. In Algebraic System Specification and Development:
Survey and Annotated Bibliography. 2nd edition, 1997, number 3 in Monographs
of the Bremen Institute of Safe Systems, chapter 1. Shaker, 1998. [ISBN 3-8265-
4067-0.

4. lan Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hongang. Freenet:
A distributed anonymous information storage and retrieval system in designing
privacy enhancing technologie. In Hannes Federrath, editor, Designing Privacy En-
hancing Technologies, volume 2009 of Lecture Notes in Computer Science, Berkeley,
CA, USA, July 2000. Springer-Verlag, Berlin Germany.

5. CoFI (The Common Framework Initiative). CAsL Reference Manual. Lecture
Notes in Computer Science 2960 (IFIP Series). Springer Verlag, 2004.

6. B. Cohen. Incentives build robustness in bittorrent. In Proceedings of the Workshop
on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, 2003.

7. Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, and Zhichen Xu Sami Rollins. Peer-to-peer computing. Technical
report, HP Laboratories Palo Alto, March 2003.

8. Gianna Reggio, Egidio Astesiano, and Christine Choppy. CASL-LTL: A CASL ex-
tension for dynamic reactive systems — version 1.0 — summary. technical report
DISI-TR-03-36, Univ. of Genova, 2003.

22

9.

10.

11.

12.

A

M. Dell’Amico, M. Cerioli

H. Reichel. Behavioural equivalence — a unifying concept for initial and final
specification methods. In Proc. 3rd. Hungarian Comp. Sci. Conference, pages 27—
39, 1981.

P. Saint-Andre. Extensible messaging and presence protocol (xmpp): Core.
http://www.jabber.org/ietf/draft-ietf-xmpp-core-22.html, January 2004.

Lutz Schroder and Till Mossakowski. HAsCAsL: Towards integrated specification
and development of Haskell programs. In H. Kirchner and C. Ringeissen, edi-
tors, Algebraic Methods and Software Technology, 9th International Conference,
AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France, Proceedings, Lec-
ture Notes in Computer Science 2422, pages 99-116. Springer Verlag, 2002.

lon Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for Internet applications. TEEE/ACM Transactions on Network-
ing, 11(1):17-32, February 2003.

Others Specification

This section contains specifications that have not been described in the paper.

from Basic/RELATIONSANDORDERS get STRICTTOTALORDER
from BAsIC/STRUCTUREDDATATYPES get LisT, MaP, SET, PAIR, STRING

spec SPARSEPEER[BASEPEER] = SET[sort Address] then

%% Peers have a number of direct connections, observed by neighbors
%% to other nodes. Note that connected nodes may abruptly and

%% unilaterally disconnect without the peer noticing; that means

%% neighbors is a superset of the effectively connected nodes.

%% On a higher level, a keep-alive protocol may be implemented, having

%% the duty of noticing closed connections on peers.

ops newNeighbors, oldNeighbors : Peerl, — Set[Address]
obs

op neighbors : Peer — Set[Address];

cats connecting, disconnecting : Peerl;

YV [: Peerl

o connects(l) = l(n, e) affects ighbors

o disconnects(l) = l(n, e) affects ighbors
end_obs

axioms V | : PeerL;p, p’ : Peer

o neighbors(p) = {} if isInitial(p)

o neighbors(p') = neighbors(p) — oldNeighbors(l) + newNeighbors(l)
if p— p'

o newNeighbors(l) = {} if -connects(l)

o oldNeighbors(l) = {} if —disconnects(l)

o neighbors(p) = {} if —isOnline(p)

end

spec BASESPARSEPEER = SPARSEPEER[BASEPEER]

spec SPARSENET[BASESPARSEPEER][BASEMSGNET] =
%% The neighbors predicate for nets tells us which pair of peers
%% are really connected.

pred neighbors . Peer x Peer
axioms V py, ps : Peer
o neighbors(ps, p2) < p1 € neighbors(ps) A ps € neighbors(p;)
o addr(p;) € newNeighbors(ls)
if ps l—1>p§ z'nz':n—)n'/\pgi)péinz’:n%n'
A addr(pz) € newNeighbors(ly)
o m e recvd(ls)
if ps l—1>p§ z'nz':n—)n'/\pgi)péinz’:n%n'
A neighbors(ps, pe) A m € sent(ly) A to(m) = addr(pz)
end

spec BASESPARSENET = SPARSENET[SPARSEPEER]|[MsGNET]

spec QUERIES =
%% This specification is meant to be extended to describe queries,
%% resources identifiers, and the way they match.

sorts Query, Resld
pred match . Query X Resld
end

spec RESOURCES[BASEPEER][QUERIES] =SET[sort Resld] then
%% A peer publishing a resource makes it available to other peers.
%% The vault observer indicates which resources have been published.

ops published, removed : Peerl, — Set[Resld]
obs

op vault : Peer — Set[Resld];

cats publishes, removes : Peerl;

¥V l: Peerl

o publishes(l) = l(v, a) affects ult

o removes(l) = (v, a) affects ult
end_obs

axioms V | : PeerL;p, p’ : Peer
o vault(p) = {} if isInitial(p)
o vault(p') = vault(p) — removed(
o published(l) = {} if ~publishes(
o removed(l) = {} if —removes(l)
end

)+ published(l) if p — p’

!
1)

spec BASERESOURCES = RESOURCES[BASEPEER][(QQUERIES]

spec SCHEDULERPOLICY[BASENET] =SET[sort TASK]

24 M. Dell’Amico, M. Cerioli

%% A scheduler policy tells us which transitions introduce new duties to
%% be satisfied by the scheduler, and which transitions satisfy them.
%% The satisfied and generated operations depend on the

%% state of the peer, because in complex cases the scheduler may opt to
%% do different things based on the state of the node (e.g. dropping
%% duties when it’s overloaded).

ops satisfied, generated : Net x Peer x Peerl — Set[Task]
end

spec BASESCHEDULERPOLICY = SCHEDULERPOLICY[BASEPEER]

spec SCHEDULER[BASESCHEDULERPoOLICY] given SET[sort Tusk] =
%% The tasks needed to be satisfied are kept track with the todo
%% observer.

obs
ops tasks, done, todo : Peer — Set[Task];
cats satisfies, generates : Peerl;
YV [: Peerl
o satisfies(l) = I(t, 0) affects do
o generates(l) = I(t, 0) affects do
end_obs

axioms V | : PeerL;p, p’ : Peer
o todo(p) = {} if isInitial(p)
o todo(p') = todo(p) — satisfied(n,p, 1) + generated(n,p,l) if p LN plini:n—=n'
o satisfied(n,p,l) = {} if —satisfies(l)
o generated(n,p, 1) ={} if ~generates(l)
end

spec BASESCHEDULER = SCHEDULER[BASESCHEDULERPOLICY]

spec BROADCASTSEARCH[BASESPARSEPEER][BASEMSGPEER][BASERESOURCES] =
ScHEDULERPoOLICY and LisT[sort Address =

%% This specification is meant to match a broadcast method of searching

%% of the same type used in Gnutella.

%% propagate, newTTL and reduce TTL can be tailored to mirror

%% real-world applications.

sorts TTL, Route = List[Address]
preds propagate : Peer x Query x TTL x Route x Address
propagate : Address x Set[Resld] x Route
createsQuery : Peerl X Query
receives Results : Peerl x Set[Resld|
ops newTTL : Peer x Query — TTL
reduce T'TL : Peer x Query x TTL — TTL
query : Query X TTL X Route X Address — Msg
query : Query X TTL x Route x Address — Tuask
results : Address x Set[ReslId] x Route =7 Msg

results : Address x Set[Resld] x Route —7 Task
matching : Peer x Query — Set[Resld)]

axioms V a, az : Address;l: Peerl;n : Net;p: Peer;q: Query;r : Resld;rr : Set[ResId];
rt . Route;ttl . TTL

%% matching are published resources on a peer matching a given query.
o 1 € matching(p, q) & match(r,q) A r e vault(p)

%% query and result represent “live” queries; the route they pack
%% is the one they’ve taken so far and will take back to get to the
%% originating node respectively. The task will be satisfied by sending
%% the corresponding message.

o defresults(a,rr, rt) & —isEmpty(rt)

o to(queryMsg(q,ttl, rt,a)) = a

o to(resultsMsg(a,rr, as :: rt)) = az

o query(q, ttl, rt, a) € satisfied(n,p, 1) if query(q, ttl,rt, a) e sent(l)

o results(a,rr, rt) e satisfied(n,p,l) if results(a,rr,rt) e sent(l)

%% New and propagated queries will be sent to each neighbor propagate
%% allows us to.
o query(q, newTTL(p, q), addr(p) :: [], a) € generated(n,p,)
if propagate(p,q, newTTL(p, q), addr(p) : [], a) A a € neighbors(p)
A createsQuery(l, q)
o query(q, reduce TTL(p, q, ttl), addr(p) :: rt, a) € generated(n,p, 1)
if propagate(p,q, ttl, rt, a) A a € neighbors(p) A query(q, ttl, rt) e recvd(l)

%% Whenever a node receives a query, it sends back the results it has
%% that match with it.
o results(addr(p), matching(p, q), rt) € generated(n,p, 1)
if isNonEmpty(matching(p,q)) A propagate(addr(p), matching(p, q), rt)
A query(q, ttl, rt) e recvd (1)

%% Result sets get passed back doing backwards the same route.
o results(a,rr, rt) e generated(n,p, 1)
if propagate(a,rr,rt) A results(a,rr,addr(p) :: rt) € recvd(l)

%% A result set with an empty return route is addressed to the peer who
%% receives it.

o recetvesResults(l,rr) if results(a,rr,az) e recvd(l)
end

spec BASEBROADCASTSEARCH =
BROADCASTSEARCH[BASESPARSEPEER][BASEMSGPEER][BASERESOURCES]
end

spec FILEMANAGER[BASERESOURCES][sort File] =

%% A subset of the resources available in a net are files.

%% Peers modifying the file are not necessarily the ones who are
%% storing it.

26 M. Dell’Amico, M. Cerioli

pred 1sFile . Resld
sendsFile : Peerl x Resld x File x Address
getsFile : Peerl x Resld x File
writes : Peerl x Resld x File
ops requestFile : Resld x Address x Address — Msg
file : Net x Resld —7 File
empty :— File

axioms V a, as, ag : Address;f,fi,fo : File;i: Netl;ip, ip1, ip2 : Peerld,;
Il lg : PeerL;n,n' : Net;p, ps,pe : Peer;r : Resource

o to(requestFile(r,ay, az) = as

%% When a peer sends a file to another, that one is receiving it.
o getsFile(ls, r, f)
. Iy o n g .. n
ifpr — prini:n—=n Aps —psini:n—n
A sendsFile(l;, r, f, addr(ps))

%% A peer can only request files for itself.
o a; = addr(p) if p LN p' A requestFile(r,a;, as) € sent(l)

%% A file is on the net when some node is storing it.
o def file(n,r) if isFile(r) A3p: Peer « Apen At evault(p)

%% We only send the correct version of a file.

o file(n,r)y=1Ff1ifp LN plini:in— n' A sendsFile(l,r,f,a)

%% No two nodes may modify the same file in the same time.
o ilips /i][ipe/le] : n — n' A writes(l;, v, f1) A writes(le, v, f2) = tps = ip2

%% A new file is created as empty, and is modified via a transition
%% writing from a node.
o file(n',r) = empty if i[ip/1] : n — n' A r e published(l) A isFile(r)
o file(n', vy = f if i[ip/l]: n — n' Awrites(L,r, f) A isFile(r)
o file(n',r) = file(n,r) if i :n —n’
A =3l PeerL; f : File o writes(l,r,f) Al e range(i)
end

spec BASEFILEMANAGER = FILEMANAGER[BASERESOURCES][sort File]

spec BROADCASTSEARCH_APP =
%% Simple Gnutella-style file-sharing application.
SCHEDULER[BROADCASTSEARCH
[BASESPARSENET][BASESPARSENET][BASEFILEMANAGER]]
reveal goesOnline, goesOffline, publishes, removes, recetvesResults, sends,
requestFile, getsFile
end

spec DHT[BASEMsGPEER][BASERESOURCES] =

PaIr[sort Address][sort ResId] and SET[sort Hash] and SET[sort Address]
and SET[sort Pair[sort Address][sort Resld]] and SCHEDULERPOLICY then
%% We give the same functionalities as in BROADCASTSEARCH,
%% requiring a DHT implementation this time.

sort ResLoc = Pair[Address][Resld]
pred createsQuery : Peerl X Query
receivesResults : Peerl, x Set[ResLoc]
ops lookup : Net x Hash — Set[Address]
hash : Query — Set[Hash)]
hash : Resld — Set[Hash)]
pack : Address x Query x Address — Msg
pack : Set[ResLoc] x Address — Msg
send : Msg — Task
resCache : Peer — Set[ResLoc]
matching : Peer x Query — Set[ResLoc]

axioms V a : Address;ar : ResLoc;l : PeerL;m : Msg;n : Net;p : Peer;q: Query;r : Resld,;
rr : Set[ResLoc]

%% matching are the resources on a peer’s cache that match a query.
o pair(a,r) e matching(p, q) & ar € resCache(p) A match(q,r)

%% We use hash both on queries and resources. We need a non-empty
%% intersection for matching queries and resources.

o isNonEmpty(hash(q) N hash(r)) if match(q,r)

%% The send task is satisfied by sending the appropriate message.
o send(m) e satisfied(n,p,l) if m e sent(l)

%% Nodes keep a cache containing Reslds and their location, mantaining
%% info about the resources they heard of. The policy for deleting old
%% entries is not specified here.

o rr C resCache(p’) if p LN p' A pack(rr, addr(p)) € recvd(l)
%% A node’s cache consists of old entries and just received ones.
o ar € resCache(p) Vv (3rr : Set[ResLoc] o pack(rr, addr(p)) € recvd(l) A ar € rr)

if p LN p' A ar e resCache(p”)

%% lookup tells us the nodes which are responsible for an hash.
%% When a resource is created, an advertising for it is sent to all
%% nodes responsible for its hash.
o send(pack(pair(addr(p),r), a)) € generated(n,p, 1)
if p N pini:n— n' Arepublished(l)
A 3h : Hash « h € hash(r) A a e lookup(n, h)
%% Queries get sent to responsible nodes.
o send(pack(addr(p), q, a)) € generated(n,p, 1)
if 3h : Hash « h e hash(q) A a € lookup(q) A createsQuery(l, q)
%% Nodes respond to queries with the relevant results.
o send(pack(matching(p,q), a)) € generated(n,p, 1) if pack(a,q, addr(p)) e recvd(l)

28 M. Dell’Amico, M. Cerioli

o recetvesResults(l,rr) if pack(rr,a) e recvd(l)
end

spec BASEDHT = DHT[BASEMsGPEER][BASERESOURCES]

spec DHTFILESHARING_APP =
ScHEDULER[DHT[BASECONNECTEDNET][BASEFILEM ANAGER]]
%% We expose the same operations as in BROADCASTSEARCHAPP,
%% but we require a different implementation.
reveal goesOnline, goesOffline, publishes, removes, createsQuery,
recetvesResults, sent, requestsFile, getsFile
end

spec FAIRSCHEDULING[BASESCHEDULER] =
%% Assure that each pending task gets eventually accomplished.

axioms V n : Net;p : Peer;t : Task
o t € todo(p) A p € peers(n) =
in_any_case(n, (31 : PeerL; p® : Peer
o [n7 o pTenT] A (i e [id(p)/l] € i) Ate satisfied(n®, p©, 1))
end

spec BASEFAIRSCHEDULING = FATRSCHEDULING[BASESCHEDULER]

spec RELIABLERESOURCES[BASERESOURCES] =
%% When a resources has been declared as available, it stays so
%% (i.e. there is a peer that can provide it) until it’s made

%% unavailable.

pred avatlable : Net x Resld
makesAvailable, makes Unavailable : Peerl x Resld

axioms V i : Netl;n,n': Net;p: Peer;r : Resld
o available(n,r) = 3p : Peer o p € peers(n) A r € vault(p)
o isInitial(n) = —available(n,r)
o (available(n',r) &
(31 : PeerL o I € range(i) A makesAvailable(l,r))
V (available(n,r) A =(3 : PeerL o | € range(i) A makesUnavailable(l,r)))
ifi:n—n
end

spec BASERELIABLERESOURCES = RELIABLERESOURCES[BASERESOURCES]

spec RELIABLEDHT[BASERELIABLERESOURCES]|[BASEDHT][BASESCHEDULER] =
FATRSCHEDULING[BASESCHEDULER] then
%% We assure that available resources can always be retrieved by the

%% DHT.

axioms V n : Net; q: Query;r : Resld

%% For each query matching an available resource, the hashing routes the
%% query to a peer knowing where that resource is.
o available(n,r) A match(q,r) =
(3p1, p2 : Peer; h : Hash
o p1 € peers(n) A ps e peers(n) A h e hash(q) A addr(p;) € lookup(h)
A pair(addr(ps, r)) € resCache(p) A r € vault(pz))
end

spec BASERELIABLEDHT=
RELIABLEDHT[BASERELIABLERESOURCES|[BASEDHT][BASESCHEDULER)]

spec AUTHGROUPS[BASEGROUPS] =SET[sort Groupld]

%% FEach group has a set of controllers - i.e. peers that can give other
%% ones the authorization to join that group. The first controller of a
%% group is its creator, and each controller can give control privileges
%% to other peers.

%% Note that this specification doesn’t extend

%% SIMPLEAUTHGROUPS.

preds creates : Peerl x Groupld
givesAuth, revokesAuth, givesControl . Peerl, x Peerld x Groupld

ops gotAuth,lostAuth,gotControl : Peerl, — Set[Groupld)]
obs

ops controlled, authorized : Peer — Set[Groupld];

cats getsAuth,losesAuth,getsControl . Peerl;

YV [: Peerl

o getsAuth(l) = l(a, u) affects thorized

o losesAuth(l) = l(a,u) affects thorized

o getsControl(l) = I(c, 0) affects ntrolled
end_obs

axioms V g : Groupld;i : Netl;i, : Peerld;l: PeerL;n,n’: Net;p,p’ : Peer

o gotAuth(l) = {} if —getsAuth(l)

o lostAuth(l) = {} if —losesAuth(l)

o creates(l, g) = getsControl(l)

o creates(l, g) = g e gotControl(l)

o gotControl(l) = {} if —getsControl(l)

%% groups(n) keeps track of which groups are present in n.
o groups(n) = {} if isInitial(n)
o g e groups(n) if p LN plini:n— n' A creates(l,g)
o (g e groups(n') & g e groups(n) v (3 : PeerL o L € range(i) A creates(l, g)))
ifi:n—n

%% controlled(p) stores the ids of groups controlled by p.
o controlled(p) = {} if isInitial(p)

o controlled(p') = controlled(p) + gotControl(l) if p LN P’
%% Only controlling peers can delegate control of a group

o g € controlled(p)if p N p' A givesControl(l,iy, g)

30 M. Dell’Amico, M. Cerioli

%% 1If a peer is becoming a controller, someone else is giving that
%% privilege to it.

. (Ellg : PeerL; ps, pb : Peer o pe N prini:n—=n' A gz’vesControl(l,z’d(p),g))

if p LN plini:in— n' A ge gotControl(l)

%% authorized(p) are the groups in which p is permitted to log in.

o authorized(p) = {} if isInitial(p)

o authorized(p') = authorized(p) — lostAuth(l) + gotAuth(l) if p LN P

o g € controlled(p)
if p LN plini:in— n' A (givesAuth(l,ip, g) V revokesAuth(l, iy, g))

. (Ellg : PeerL; ps, pb : Peer o pe N prini:n—=n' A gz’vesAuth(l,z’d(p),g))
if p LN plini:n— n' A ge gotAuth(l)

. (Ellg : PeerL; ps, pb : Peer o pe N prini:n—=n' A revokesAuth(l,z’d(p),g))

if p LN pliniin—n' AgelostAuth(l)

o g € authorized(p) if p N p' A g e joined(l)
end

spec BASEAUTHGROUPS = AUTHGROUPS[BASEGROUPS]

spec FILEPERMISSIONS[BASEGROUPS|[RELIABLERESOURCES[BASEFILEMANAGER]
with ops makesAvailable — creates, makes Unavailable — deletes]|=
SET[sort Perm] then
% % Permissions (Read, Write, and Delete) are given, for each file, to
%% groups. A single node has a privilege if it belongs to a group who
%% has it.

generated type Perm := R|W|D
sort Perms = Set[Perm)]
pred setsPerms: PeerL x Resld x Group x Perms
ops perms : Net x Resld x Groupld — Perms
perms : Net X Peer x Resld — Perms
owner : Net x Resld —7 Peerld

axioms Y ¢ : Groupld;i: Netl;i,,ip;,1ps : Peerld;l: PeerL;n,n' : Net;p,p': Peer;
pm : Perm; ps: Perms;r: Resld

%% Files may only be created when they don’t exist; no two peers may
%% create the same file at the same time.
o available(n, r) if p N pini:n —=n' Acreates(l, r)
o Ips = ip2 if 1 :n — n' A creates(lookup(ipy, 1), 7) A creates(lookup(ipe, i), r)

%% The owner of a file is its creator. He/she is the only one who can
%% change its permissions.
o defowner(n, r) < available(n, r) A isFile(r)

o owner(n’,r) =d(p) if p BN plini:n— n' A creates(l, g)
o owner(n',r) = owner(n,r) if i :n — n' A defowner(n’,r)

o ouner(n,ry =1, if p N plini:n —n' AsetsPerms(l,r, g, ps)

% % Permissions to a group are given when setsPerms is true; they are
%% reset when the file is deleted.
o perms(n, r,g) = {} if islnitial(n)
o perms(n’,r,g) = psif i : n — n' A setsPerms(lookup(i, owner(n, g)), r, g, ps)
o i:n— n' A-(3ps: Perms o setsPerms(lookup(i, owner(n, g)),r, g, ps)) =
perms(n’, r, g) = {} when creates(lookup(i, owner(n, g)), r)
else {} when deletes(lookup(i, owner(n, g)), r)
else perms(n, r, g)

%% The privileges a single peer has are the union of those granted to
%% the groups he belongs to.
o pm € perms(n, p,r) < (g : Groupld « g € groups(p) A pm € perms(n, r,g))

%% Axioms relating permissions with their respective actions.
o Reperms(n,p,r)if p SN plini:n—n' AgetsFile(l,r,f)
o Weperms(n,p,r) if p LN plini:n —=n' A writesFile(l, r, f)
o D eperms(n,p,r)if p LN pini:n —n' A deletes(r, f)

end

spec BASEFILEPERMISSIONS =
FILEPERMISSIONS[BASEGROUPS|[RELIABLERESOURCES[BASEFILEM ANAGER]]
end

spec FILESCHEDULER[BASESCHEDULER][BASEFILEMANAGER] =

ops sendlile : Resld x Address — File

axioms V a, as, as : Address;f : File;l : PeerL;p : Peerld;r : Resld
o sendFile(r,a;) € generated(n,p,l) if requestFile(r,a;, az) e recvd(l)
o sendFile(r,a) e satisfied(n,p, 1) if sendsFile(l,r, [, a)

end

spec BASEFILESCHEDULER = FILESCHEDULER[BASESCHEDULER][BASEFILEMANAGER]

spec DISTRIBUTED FILESYSTEM_APP =

%% Specification for a distributed filesystem implementation.
BASEPERSISTENTADDRESS and
FILEPERMISSIONS[BASEAUTHGROUPS]

[RELIABLEDHT[BASEFILEMANAGER]|[BASEDHT][BASEFILESCHEDULER]]

reveal creates, deletes,
sends, requestsFile, getsFile, writes,
createsQuery, recetvesResults,
perm, setsPerm, R, W, D,
{}: Perms,__+ _: Perms x Perms — Perms

end

