Insights emerged while comparing three models
for global computing

Ivan Lanese and Ugo Montanari*

University of Pisa, Computer Science Department
Largo B. Pontecorvo,3 56127 Pisa Italy
{lanese,ugo}@di.unipi.it

Abstract. In this paper we outline the main ideas emerged while study-
ing a chain of mappings from Fusion Calculus to logic programming, us-
ing Synchronized Hyperedge Replacement (with both Hoare and Milner
synchronizations) as intermediate step. We aim more at discussing the
ideas behind the mappings than at presenting their technical details.

Keywords. Fusion Calculus, graph transformation, Synchronized Hy-
peredge Replacement, logic programming, synchronization, mobility.

1 Introduction

These years have seen many efforts toward the goal of finding a formal model
able to deal with all the challenges posed by global computing (GC) systems.
We recall here some aspects of GC systems we are particularly interested in:

— size of the system: GC systems are usually composed by a large number of
different components, thus special care is required in order to make their
models tractable;

— distribution: locations are an important aspect of system structure, which
must be modeled explicitly;

— mobility: hardware and software entities can change their location at run-
time, thus mobility primitives are required in the model;

— open-endness: usually models deal with partial systems, which are supposed
to interact with an environment, thus models of different systems must be
composable;

— reconfigurability: changes in the structure of the system are one of the main
effects of the behaviour of GC components, which must be reflected by models.

Thus we want to find models for the coordination (computation is usually
abstracted away) of different interacting entities, deployed on huge scales and
with evolving structure.

Until now, no model for GC systems has emerged as the best one, thus we
think it is useful to compare the different existing ones, in order to understand

* 1. Lanese has been supported by EU-FET project AGILE IST-2001-32747. U. Mon-
tanari has been supported by EU-FET project PROFUNDIS IST-2001-33100.

Dagstuhl Seminar Proceedings 05081
Foundations of Global Computing
http://drops.dagstuhl.de/opus/volltexte/2006 /295

2 I. Lanese, U. Montanari

their relationships, their strengths and their weaknesses and find useful insights
on how to build new ones. Since a comparison of all the proposals in the literature
is far beyond our possibilities, we concentrate on three of them:

— Fusion Calculus [1,2]: it is a process calculus similar to the m-calculus [3],
with the additional ability of merging names;

— Synchronized Hyperedge Replacement (SHR) [4,5]: it is a graph transforma-
tion framework, where transitions are obtained by synchronizing productions
that describe how single hyperedges evolve. Notably, SHR productions can
be synchronized using different synchronization models;

— logic programming [6]: while widely known as problem-solving language,
logic programming is also an interesting goal-rewriting engine, and it is used
here with this aim.

Structure of the paper. Section 2 introduces the three formalisms to be compared,
namely Fusion Calculus (2.1), Synchronized Hyperedge Replacement (2.2) and
logic programming (2.3). Section 3 presents the mappings: from Fusion Calculus
to Milner SHR (3.1), from Milner SHR to Hoare SHR (3.2) and finally from
Hoare SHR to logic programming (3.3). Conclusions and traces for future work
are collected in Section 4. A more technical but probably less insightful presen-
tation of a large part of this work (but without Milner SHR, and restriction for
hypergraphs) can be found in [7].

2 The three formalisms

We present here the main features of the three formalisms, while referring to the
literature for a detailed presentation of them.

2.1 Fusion Calculus

We consider the calculus as presented in [1].

In our work we deal with a subcalculus of the Fusion Calculus, which has
no match and no mismatch operators, and has only guarded summation and
recursion. In our discussion we distinguish between sequential processes (which
have a guarded summation as topmost operator) and general processes.

We assume to have an infinite set A/ of names ranged over by u,v, ...,z and
an infinite set of agent variables (disjoint w.r.t. the set of names) with meta-
variable X. Names represent communication channels. We use ¢ to denote an
equivalence relation on NV, called fusion. Function n(¢) returns all names which
are fused, i.e. those contained in an equivalence class of ¢ which is not a singleton.

Definition 1. The prefizes « are defined by:
ai=ux (Input)
ur (Output)
0] (Fusion)

where x is a tuple of names.

Insights emerged while comparing three models for global computing 3

Definition 2. The sequential agents S and the general agents P are defined by:

P::= 0 (Inaction)
S (Sequential agent)
Py|Py (Composition)
()P (Scope)
rec X.P (Recursion)
X (Agent variable)

S::=>".0;.P (Guarded sum)

The scope restriction operator is the only binder for names. Similarly rec
is the binder for agent variables. We will only consider agents which are closed
w.r.t. agent variables and with guarded-recursion. We use infix + for binary sum
(which thus is associative and commutative).

Given an agent P, functions fn, bn and n compute the sets fn(P), bn(P) and
n(P) of its free, bound and all names respectively.

Processes are agents considered up to structural axioms defined as follows.

Definition 3 (Structural congruence). The structural congruence = between
agents is the least congruence satisfying the a-conversion law (both for names
and for agent variables), the abelian monoid laws for composition (associativity,
commutativity and 0 as identity), the scope laws ()0 =0, (x)(y)P = (y)(x)P,
the scope extrusion law P|(2)Q = (2)(P|Q) where z ¢ fn(P) and the recursion
law rec X.P = P{rec X.P/X}.

Note that fn is also well-defined on processes. A process is sequential iff in
the equivalence class it stands for there is at least a sequential agent.
In order to deal with fusions we need the following definition.

Definition 4 (Substitutive effect). A substitutive effect of a fusion ¢ is any
idempotent substitution o : N — N such that xo = yo iff zoy.

Note that o sends all members of each equivalence class of ¢ to one represen-
tative in the class, and it is a most general unifier of ¢, when this is considered
as a set of equations.

Definition 5. A bound action is of the form (z)ax where |z| > 0 and all ele-
ments in z are also in . Names in z are bound names. The actions consist of
the free actions and the bound actions.

For convenience we define ¢ \ z to mean ¢ N (N \ {z})2U{(z,2)}.

Definition 6 (SOS semantics for Fusion Calculus). The SOS semantics for
Fusion Calculus is the least labelled transition system generated by the inference
rules in Table 1.

4 I. Lanese, U. Montanari

« pP=p
(PREF) a.P — P (SUM) ———————
P+QS P
PP PP QI Q x| =yl
(PAR) ————5——— (CoM) —
PlQ = P'IQ P|lQ == pQ
PLP 2 24w P(y)—am>P/z€w\y a ¢ {z,z}
(SCOPE) v (OPEN) wVas
vz P —= P'{z/z} vz P22, pr
P P oz2¢n(a) PLP P=Q P =q
(PASS) — (STRUCT) —
vz P S vz P Q= qQ

Table 1. Inference rules for Fusion Calculus.

2.2 Synchronized Hyperedge Replacement

Synchronized Hyperedge Replacement (SHR) [4,5] is a framework for hypergraph
transformations developed in order to be able to define complex reconfigurations
using productions with a local effect (which can thus be easily implemented also
in a distributed setting) and a synchronization mechanism with also built-in
node mobility.

Definition 7 (Hypergraph). A (hyper)graph is composed by a set of labelled
(hyper)edges, a set of nodes and a connection function that associates to each
edge a tuple of nodes whose cardinality is determined by the rank rank(L) of its
label L. These are called the attachment nodes of the edge. We consider graphs
with an interface composed by a subset of the nodes, identified by their names.

We use for graphs a textual representation, that makes easier to define tran-
sitions.

Definition 8 (Textual representation for graphs). Let N be a fized infinite
set of names and LE a ranked alphabet of labels. We represent a graph as I' - G
where:

1. I' C N is the (finite) set of names of nodes in the interface of graph.

2. G is a term generated by the grammar
G::=nil | L(x) | G1|G2 | vy G
where x is a vector of names, L is an edge label with rank(L) = |x| and y is
a name.

Here v is a binder for names, thus we can define as usual functions fn(—),
bn(—) and n(—) that compute the sets of free, bound and all the names respec-
tively.

In the following, when no confusion will arise, we will use the terms names
and nodes as synonyms in the setting of SHR.

Insights emerged while comparing three models for global computing)

(ax1) G1|(G2|Gs) = (G1]|G2)|G3 (ax2) G1|G2 = G2|G1 (ax3) Glnil = G
(axd) vevy G=vyve G (axb) vz G =G if x ¢ n(G)
(ax6) v G = vy G{y/z} if y ¢ In(G)
(ax7) v (G1|G2) = (vz G1)|G2 if = ¢ In(G2)

Table 2. Structural congruence for graph terms.

Definition 9 (Structural congruence and well-formed judgements).
The structural congruence = on terms G obeys the axioms in Table 2. The well-
formed judgements I' = G over LE and N are those where fn(G) = I".

Well-formed judgements up to structural axioms are isomorphic to graphs
up to isomorphisms. For a formal statement of the correspondence see [8].
We present now the steps of an SHR computation.

Definition 10 (SHR transition). Let Act be a set of actions. For each action
a € Act, let ar(a) be its arity. A SHR transition is of the form:

r'rGA% o+ @

where I' - G and @ = G’ are graphs, A: I' — (Act x N*) is a total function and
w: ' — I is an idempotent substitution. Function A assigns to each node x the
action a and the vector y of nodes sent to x by the transition. If A(z) = (a,y)
we require that ar(a) = |y| and we define acta(x) = a and ny(z) = y.

We also define:

— n(A) = {z|3z.2 € nx(z)}

set of communicated names;
— Tpy=nM)\T

set of communicated fresh names;
— n(r) = {z|3' #z.aor =a'w}

set of fused names.

Substitution m allows to merge nodes. Since 7™ is idempotent, it maps every
node into a standard representative of its equivalence class. We require that
Vo € n(A).am = z, i.e. only names of representatives can be communicated.
Furthermore we require @ = I'm U 'y, namely nodes are never erased and new
nodes are bound unless transmitted.

Note that the set of nodes @ of the resulting graph is fully determined by I,
A and 7. Notice also that we can write a SHR transition as

G225 ra Iy kG

We derive SHR transitions from basic productions that define the behaviour
of single edges.

6 I. Lanese, U. Montanari

Definition 11 (Production). A production is an SHR transition of the form:

xl,...,xnl—L(xl,...,xn)Aiwﬁl—G

where all x;, i =1...n are distinct.
Productions are to be considered as schemas and so they are a-convertible w.r.t.
names in {x1,...,2,} UP.

Note that productions specify the behaviour of a single edge, attached to
distinct nodes. Transitions are created by composing productions for edges with
distinct attachment nodes and then merging nodes. When nodes are merged,
the actions on them must be synchronized. This is done according to a chosen
synchronization model. For a general definition of synchronization models see [9].
In this work we concentrate on two particular synchronization models, the Hoare
one and the Milner one. In the former, all the edges attached to a node are
required to perform the same action, and this is forced by specifying that x and
y can be merged only if act4(z) = act(y), and in that case the action performed
on the resulting node is again act4(z). In the latter, a pair of edges performs
complementary actions (such as an input and an output) while the other edges
attached to the same node perform a special idle action € of arity O which stands
for “no synchronization”. The result of a Milner synchronization between two
complementary actions is denoted with 7, while € acts as neutral element for the
synchronization.

In Milner model, just 7 and e are allowed on restricted nodes, while any
action is allowed in the Hoare model.

In both the models, when synchronization is performed, the nodes in the
tuples attached to matched actions are pairwise merged. The resulting fusion is
applied to the label and to the resulting graph. Furthermore, the part dealing
with nodes in I" is recorded in the fusion 7 in the label.

Production composition is usually specified via inference rules. Since here
we are more interested in the idea of SHR than in the technicalities, we refer
to [10] for the inference rules for Hoare synchronization and to [11] for the ones
for Milner synchronization.

As notational shortcut, when the action performed on a node is not specified,
it is assumed to be e.

2.3 Logic programming

In this paper we are not interested in logic computations as refutations of goals
for problem solving or artificial intelligence, but we consider logic programming
[6] as a goal rewriting mechanism. We can consider logic subgoals as concurrent
communicating processes that evolve according to the rules defined by the clauses
and that use unification as the fundamental interaction primitive.

In order to stress the similarities between logic programming and process
calculi we present a semantics of logic programming based on a labelled transition
system.

Insights emerged while comparing three models for global computing 7

Definition 12. We have for clauses (C) and goals (G) the following grammar:

C::=A—(G
G::=G,G|A|O
where A is a logical atom, “7 is the AND conjunction and O is the empty
goal. We can assume “,” to be associative and commutative and with unit 0.

A logic program is a set of clauses. Derivations in logic programming are
called SLD-derivations.

Definition 13 (SLD-derivation). Let P be a logic program. We define a step
of an SLD-resolution computation using the following rules:

H«—DB;,...,B,eP 0 = mgu({A = Hp})
PrAL (By,... By)pb

where p is an injective renaming of variables such that all the variables in the
clause variant (H «— By, ..., By)p are fresh.

atomic goal

PraLF
PrG,Gc L FGe

conjunctive goal

We will omit P I+ if P is clear from the context.
A SLD-derivation is a sequence (possibly empty) of steps of SLD-resolution.

3 Outline of the translation

We present here the different steps of the translation.

3.1 From Fusion Calculus to Milner SHR

The main point here is to translate a process calculus into a graph transformation
framework. In process calculi, there is no clear distinction between the topolog-
ical description of the system and the specification of its behaviour, which are
both defined using term constructors. Some of them such as prefixes and non-
deterministic sum are more “behavioural”, while others such as parallel compo-
sition and restriction are more “topological”.

When moving from process calculi to graphs, this distinction is made more
explicit, since the topological part is represented in the graph structure, while
the behavioural part is specified by productions (or, more in general, rewriting
rules).

The idea of the translation is to map sequential processes (which have in our
understanding no internal topological structure) into edges, which are the basic
“computational” entities in graphs. Names, which represent communication in-
frastructure in process calculi, are mapped to nodes, which have the same role in

8 I. Lanese, U. Montanari

graph-based models. Restriction has the same meaning in both the cases, thus
restricted names can be mapped into restricted nodes.

The label of an edge is computed from the sequential process it represents:
since names are dealt with by nodes, the edge label contains the process, but
with placeholders instead of occurrences of names. The real name corresponding
to placeholder n is represented by the n-th node to which the edge is attached.
This approach has the advantage of requiring a finite number of edge labels and
productions for all the derivatives of a fixed process (this holds also for recursive
processes, which may have an infinite number of derivatives). Note however that
the labels used for edges are chosen just to make the correspondence clear: the
choice of the label is immaterial, provided that this is used consistently and that
the productions for edges with that label are the correct ones. In other terms,
all the labels can be bijectively renamed without any problem, since behaviour
is specified by productions and not by them.

At this point, productions have to be defined. As said, they are deduced from
the process term too. In particular, we have a production for each prefix at the
top level of a sequential process. We use in SHR actions in,, for input with n
arguments and out,, for the output (and these are complementary actions). Thus
an action prefix is executed by a production that produces the corresponding
action on the subject node. Similarly, a fusion prefix ¢ is executed by a pro-
duction that applies to the graph a substitution 7 = mgu(¢). The result of the
production is in both the cases the translation of the part of the process that
follows the executed prefix. Note that this can be any graph (not only a single
edge).

A detailed definition of this mapping (with standard names used as place-
holders) can be found in [12].

Instead of showing the details of the mapping we present here a simple ex-
ample.

Ezxample 1. Let us consider the following process:
(uzyzw)(Q(z,y, 2)[uzy.R(u, x)|uzw.S(z, w))

Even if this part of the translation can deal also with open processes, we will
use here a closed process since we want to use this example as running example
throughout the paper, and next step will work only with closed processes.

We have here three sequential processes, thus the corresponding graph has
three edges. The result of the translation (in the textual representation) is:

= (umyzw)(LQ(LQ,;g)(x,y,z)|L123.R(4,5) (u,x,y,u,x)|L123.5(4,5)(u,z,w,z,w))

As far as productions are concerned, since we have two executable prefixes,
we also have two productions:

(u1,0utz,(z1,y1))
U1, @1, Y1, U2, T2 b Loy g5y (U1, 1,41, U, ¥2) ————

U1, T1, Y1, U2, T2 = Lp(1,2)(uz, v2)

Insights emerged while comparing three models for global computing 9

(u1,in2,(z1,w1))
u1, 21, W1, 22, W2 & Ligg sa,5) (U1, 21, w1, 22, we) —————

uy, 21, W1, 22, w2 F Lg(1,2)(22, wa)

In addition, for each edge, we have a production specifying that it can stay
idle. In particular, in the example we use one such production for edge L1 2,3):

r1,Y1,21 F Lo 2, (21,91, 21) — 21,91, 21 F Lo 2,3) (21,1, 21)

The three productions can be combined to have the following transition be-
cause the two actions on u are complementary and thus can synchronize accord-
ing to the Milner model, while on the other nodes just e actions are executed.

F (uxyzw) (LQ(I,Z,B) (J), Y, Z)|LT23‘R(4,5) (u7 z,y,u, J)) |L123~S(4,5) (u7 Z, W, z, w)) -

= (ch)(LQ(l,z,:s)(ﬂ%ya$)|LR(1,2) (Ua$)|LS(1,2) (90721))

This corresponds to the Fusion transition:

(uzyzw)(Q(z,y, z)|uzy.R(u, z)|uzw.S(z, w)) —
(uzy)(Q(z,y, ©)| R(u, 2)|S (2, y))

Here no label is visible since all the nodes are restricted. If, e.g., u would be
free, then the label on it would be (u,7,()). Note that in that case also other
actions would be allowed on u, e.g. the output, while they are forbidden here
because of restriction.

In general, a full correspondence can be found between the labelled transition
system of Fusion Calculus and the interleaving part of the labelled transition
system of Milner SHR, when translations of Fusion processes are used as starting
graphs. Notice that in Fusion Calculus the semantics is interleaving, i.e., at
each step we have just one action, which can be either an asynchronous action
or a synchronization of two communication actions, yielding a fusion. In SHR,
instead, the system is distributed, and there is no central control, thus different
actions can be performed independently at the same time (i.e., in the same
transition) but in different places (i.e., on different channels).

We conclude this part with some general considerations on the mapping.
First of all, note that the mapping is extremely simple and, in particular, it is
a uniform encoding (i.e., it preserves parallel composition and commutes with
name substitutions) according to [13]. In addition to that, the semantic corre-
spondence is very strong.

All that allows to consider Milner SHR as a generalization of Fusion Cal-
culus with different allowed actions and with multiple synchronization, since a
production can enforce many synchronization constraints at the same time, one
for each adjacent node. Using Fusion-like syntax, the first extension corresponds
to have prefixes of the form xay where a is an arbitrary action, instead of just
inputs and outputs. The second one instead corresponds to have parallel prefixes
of the form, e.g., (xy|gz).P. In that case both the prefixes must be executed at

10 I. Lanese, U. Montanari

the same time. Note that this form of multiple synchronization is quite powerful
since it allows synchronization among any number of processes in a synchronous
way (double prefix is enough since then synchronizations can be concatenated).
We think that this kind of synchronization is an useful abstraction for modelling
complex protocols/transactions in a simple way.

3.2 Changing the synchronization model

This step of the translation is internal to the SHR framework: we want to change
the synchronization policy used from the Milner one to the Hoare one, since this
last corresponds to logic programming unification.

The main differences between the Hoare and the Milner models are the fol-
lowing:

— in the Milner model, one pair of edges interacts at each step, while other
edges possibly attached to the same node must stay idle whereas in the
Hoare model all the edges connected to a node must interact;

— in the Milner model there is an asymmetry in the synchronization: there are
one sender and one receiver, while Hoare synchronization is symmetric.

The first attempt to build a translation aims at changing just the SHR “pro-
gram” | i.e. the productions, while preserving the data, i.e. the graph. However
it is easy to see that no translation of this kind can preserve the behaviour. Fur-
thermore, no uniform encoding [13] can exist. Notice in fact that Hoare synchro-
nization preserves symmetries in the graph, while Milner synchronization does
not. For instance, let us consider « - C(z)|C(z) as starting graph. Using Hoare
synchronization, with any set of productions, if we have a non idle transition,
then we also have a non idle transition to a graph of the form I" - G|G for some
set of nodes I" and some graph term G. At the contrary, with Milner synchroniza-

tion, the productions x - C(x) LLLONE C(z) and z - C(z) E30), D(x)
allow just one non idle transition which has = = C(x)|D(x) as final graph. In this
case symmetry has clearly been broken. A full proof of the impossibility result
can be produced using the techniques in [14] and in [13].

Thus, in order to implement Milner synchronization in the Hoare model we
have to use a more complex mapping, and in particular we must change also the
graph structure. We choose to substitute Milner nodes with complex networks
implementing them. More in detail, a node which is attached to n tentacles
of edges becomes a net, called amoeboid, with n external nodes, each of them
attached to one of these tentacles.

Amoeboids behave as nodes, and in particular they must satisfy the two
following properties:

1. they must allow synchronization only if two complementary actions are pro-
vided from the outside;
2. they must merge the amoeboids corresponding to transmitted names.

Insights emerged while comparing three models for global computing 11

An easy implementation that satisfies the first condition uses a class of edges
amy, of arity k, with productions:

(z1,inn,Y),(z2,0utn,y)

' amg(I) Iyt amg ()

where I" is a set of nodes such that |I'| = k, x1 and z2 are arbitrary nodes in I’
and y is a vector of fresh names such that |y| = n. Note that such a production
must be provided for each k and n and for each choice of 1 and x5 in I

This realization satisfies the first condition, but it does not allow to satisfy
the second one. In fact, fusions are applied by merging nodes (thus the result
will use Hoare synchronization), not by merging amoeboids.

Since there is no primitive notion of merging of edges, and implementing this
primitive is very difficult (since we have to deal with concurrent merges triggered
by independent processes), we decide to generalize the concept of amoeboid. We
will use as amoeboids any network with a suitable structure. In particular:

— amoeboids are composed by particular kinds of edges (identified by their
labels);

— amoeboids have an interface, that is a set of nodes corresponding to the
tentacles attached to the represented Milner node;

— each internal node in an amoeboid is shared by exactly two edges, each
external node is attached to one edge;

— connecting two amoeboids using a third one corresponds to merge the two
amoeboids into a single one.

In particular, amoeboids can be implemented using two kinds of edges, amy,
edges acting as routers as before, but that create new amoeboids instead of
merging nodes, and null edges of arity 1 which are used to close disconnected
elements in the interface by forbidding any synchronization on them.

As important invariant, each node in the translated graph is shared by ex-
actly two edges. This is intuitively a useful property since in this case the first
difference between Hoare and Milner synchronization is immaterial.

Productions for amy edges are described below, while no productions are
available for null edges. As notation, we use L. el G; to denote the parallel com-
position of a family of graphs G; indexed by the elements i € I.

Definition 14 (Auxiliary productions). We have auziliary productions of
the form:

F '_ amk(r) (xl7in'n:y1):(172707it7uy2)

Fvyhy? F amk(F)| L’:l...\y

N ama(y1[i], yo[i])

where I" is a chosen tuple of distinct names with k components and y1 and yo are
two vectors of fresh names such that |y1| = |ya2| = n. We need such a production
for each k and n and each pair of nodes x1 and xo in I.

12 I. Lanese, U. Montanari

Fig. 1. Two sample amoeboids.

Note that each edge in the amoeboid flips the polarity of the synchronization
from in,, to out, and viceversa, thus in order to have opposite polarities at the
two ends we require that each path between elements of the interface has odd
length. Figure 1 shows two sample amoeboids with the same interface x, y, w,
z.

Productions for process edges have to be modified in order to preserve these
properties and in order to close nodes which are no more used with null edges.
The technical definition of productions is a bit complex and we refer to [7] for
its presentation.

We just present here the second step of the translation for our running ex-
ample.

Ezample 2. We have as graph in the Milner setting:

F (uzyzw)(Loa,2,3) (%, Y, 2)| L1as.rea,5) (s T Y5 4,) | L12s.5(a,5) (0, 2, w, 2, w0))

We can translate it using for each amoeboid the simplest possible form, i.e.
a single am edge, obtaining:

t (UlU2U3$19€2=’C3y1y2212223w1w2)
(LQ(1,2,3) (551, Y1, Z1)|LT23~R(4,5) (Ul, T2,Y2, U2, $3)|L123.S(4,5) (Us, 22,W1, 23, w2)|
ams(x1, T2, x3)|amsa(y1, y2)|ams (21, 22, 23)|[ams (w1, ug, uz)|amsz (w1, w2))

As far as productions are concerned, we have to translate the following two
productions:

(u1,0utz,(x1,y1))
U1,21,Y1,U2,x2 F LTQ?,_R(475) (Ul, x1,Y1, U2, 1'2)

U1, T1, Y1, U2, T2 = Lpei,2)(u2, 22)

(u1,in2,(z1,w1))
U1, 21, W1, 22, W2 F Lygg g(a,5) (U1, 21, w1, 22, wp) —————

uy, 21, W1, 22, w2 = Lg(1,2)(22, wa)

Insights emerged while comparing three models for global computing 13

The result is:
E 7 (u1,0ut2,(x1,y1))
U1, L1, Y1, U2, T2 123,3(4,5)(%,931,yl,uz,ﬂfz) -

U1, o1, Y1, U2, T2 = Lp(1,2)(u2, v2)[null(u;)

(u1,in2,(z1,w1))
u1, 21, W1, 22, W2 = Ligg sa,5)(u1, 21, w1, 22, we) —————

uy, 21, w1, 22, w2 = Lge 2)(22, w2)[null(u;)

Notice that, in the first production, u; is closed using a null edge since it is
no more used, while x1 and y; are not, since they are communicated and thus
will be used by other edges.

These two productions can be combined with the following auxiliary produc-
tion for the amoeboid for w:

) (u1,out2,<t1,tz)),(ug,in2,<t3,t4))

U1, U2, U3 F am3(u17u27u3

u1,u2,u3,t1,t2,t3,t4 H CL’ITL3(U1,U2,U3)|am2(t1,t3)|am2(t2,t4)

With these productions and the idle productions for other edges we derive
the following transition:

t (UlU2U39€19€2$3y1y2212223w1w2)
(LQ(1,2,3) (1,91, Z1)|L123,R(4,5) (w1, 22, Y2, U2, $3)|L123.5(4,5) (us, 22, w1, 23, W2)|

ams(x1, T2, x3)|lama(y1, y2)lams(z1, 22, z3)|ams (w1, ug, uz)|ams (w1, ws))

_
F (u1ugus®y Tox3y1y221 2223W1W2)
(Lo@,2,3) (1,1, 21)| LRr(1,2) (U2, ®3) [null (u1) [L (1,2) (23, wa) [null (us)|
amz(z1, T2, x3)|ama(y1, y2)|ams(z1, 22, 23)|

amsg(u1, uz, us)|ama(z2, z2)|amsa(yz, w1)|ama(wi, ws))

Note that now the amoeboids ama(y1,y2) and amsa(wy, ws) have been con-
nected through the amoeboid ams(ya, w1), thus there is now just one amoeboid
ama(y1,y2)|ama(y2, w1)|amsa(wy, we), and this corresponds to having merged
nodes y and w. Also note that the final graph satisfies the invariant of hav-
ing each node shared by exactly two edges and that each path between external
nodes of an amoeboid, e.g., the path ama(y1, y2), ama(y2, w1), ama(w1, ws) be-
tween nodes y; and ws, has odd length.

The correspondence between the two models can be found only for closed
processes. This happens because nodes are represented by complex distributed
structures: suppose to add to amoeboids some information recording whether
they are free or not. When they are merged, a restricted amoeboid may become
part of a free one, so it must change its behaviour. But since the merge does not

14 I. Lanese, U. Montanari

involve any synchronization inside the amoeboid, this cannot be done. Adding
a synchronization for that is quite complex since many concurrent merges can
happen.

Note also that there is no way of forcing atomicity inside amoeboids (this
can be proved by considering a situation with two symmetric synchronizations
on a symmetric amoeboid), in the sense that a distributed amoeboid may allow
two distinct, disjoint synchronizations at the same time. While this is a problem
for a general translation from Milner SHR into Hoare SHR, when considering
just translations of Fusion Calculus processes the same interleaving condition
required to have a faithful correspondence with Fusion Calculus also guarantees
that there are never more than two available synchronizations, thus atomicity
comes for free. When looking for a more concurrent semantics, in the Milner
model we just have to drop the interleaving condition and consider the semantics
induced by the SHR framework, which forces interleaving on each channel, while
allowing concurrency among channels. In the Hoare model instead, different
amoeboids for the same set of nodes which are equivalent in the interleaving
scenario are no more equivalent in a concurrent one. In particular, concurrent
synchronizations are allowed when they can be performed using disjoint paths
inside the amoeboid to connect the corresponding actions. For instance, in the
second amoeboid of Figure 1, we can have at the same time a synchronization
between x and w and another one between y and z, while in the first amoeboid
this is not allowed.

The mapping not only has those limitations, but it is also quite complex. We
argue that this is due to the fact that the two selected synchronization mod-
els, even if quite simple, are far away one from the other. This observation,
together with the observation that in real systems one can have complex syn-
chronization models, or may want to abstract whole protocols as synchronization
primitives, triggered the idea of modeling the synchronization model as a sepa-
rate entity, which can be modified independently w.r.t. the used framework. This
idea was formalized using an extension of synchronization algebras [15], called
synchronization algebras with mobility, and was successfully applied both in the
framework of SHR [9,16] and in the framework of process calculi [17].

As final remark, we can notice that in the Hoare model restriction is just
“observational”, in the sense that no transition can be added or forbidden by
restrictions, but just labels are changed. Since here we are not interested in the
labels but just in the graph, restrictions can be dropped.

3.3 From Hoare SHR to logic programming

The final step of our translation is from Hoare SHR to logic programming. The
idea of the mapping is to map graphs into a particular kind of goals and to
use clauses to rewrite them. The mapping is essentially an isomorphism (apart
from the I' part, which is dropped) with edges attached to nodes mapped into
predicates applied to variables, and parallel composition matched by AND com-
position.

Insights emerged while comparing three models for global computing 15

A main difference between the two models is that while in SHR productions
are synchronized to form transitions, in logic programming clauses are applied
in sequence instead of at the same time, and in no particular order. To solve
this mismatch we have to introduce a transaction mechanism also in logic pro-
gramming. We call Synchronized Logic Programming the resulting paradigm.
For more details on it see [10]. Transactions are introduced by using a standard
technique used, e.g., in zero-safe nets [18].

We define a subset of the states (i.e. of the goals) as stable and we force
transactions to go from a stable state to another stable state. More in particular,
a goal is stable iff it does not contain function (or constant) symbols. We call
such a goal goal-graph since it can be obtained as result of the translation of a
graph. We call big-step a transaction, i.e. a sequence of logic programming steps
from a goal-graph to another goal-graph.

Function symbols are used to model synchronization: when unification makes
a function symbol f to appear in the goal, the big-step cannot end until another
step makes f to disappear. Suppose that an atom p(z) is unified with the head of
a clause of the form p(f(...)). This corresponds to execute action f at . When
the mgu is applied to the goal, each occurrence of x is substituted by f(...). In
order to get rid of it, the predicate containing it must be unified with f(...),
and this must happen for all the occurrences of x in the starting goal. Thus all
the predicates containing x must be unified with f(...), and this corresponds
in the SHR setting to the constraint that each edge attached to node x must
execute action f on it, i.e. to Hoare synchronization.

The transaction mechanism as described so far is quite general, but we have
to introduce some particular conditions in order to capture the specific kind of
transactions that are used in SHR. There we have that in each transition an
edge performs one action on each channel (we have no structured actions), that
newly created edges cannot act before the next transition and that an edge is
rewritten into a graph with no pending synchronization constraints.

This amounts to say that in logic clauses we have no nested function symbols,
that predicates introduced in a big-step cannot be rewritten in the same big-step
and that the body of each clause is a goal-graph.

In order to complete the translation we have still one issue to consider: name
handling. First, fusions are performed by unification, with the nodes attached to
each action modeled as arguments of the function symbol modeling it. Note how-
ever that, in SHR, when we execute an action f on node z, we do not “consume”
node z. Remember that in logic programming this is performed by unifying =
with a term of the form f(...). Thus, since substitutions are idempotent, x will
disappear from the goal. We have thus to find another representation for z. We
decide to add a new argument to f (in the first position by convention), which
will be the new name for z. Thus the translation of a SHR node in the logic
programming setting is a chain of variables, linked since each variable in the
chain is the first argument of the term unified with its predecessor.

A final consideration is necessary for action e. In [7,10], the translation
dropped action e by using simply z instead of e(z). This was done to have a

16 I. Lanese, U. Montanari

less synchronous semantics (since this avoids chains of € synchronizations among
independent part of the same transition) and to avoid to translate idle produc-
tions which become unnecessary. However in some cases (when a variable with
no synchronizations on it in the head of a clause does not appear in the body
of the same clause) € has to be reintroduced in order to avoid wrong transac-
tions. Since this case is also quite frequent when translating Fusion processes
(e.g., it occurs in our running example) and since using explicit € makes the
correspondence more straightforward, we have decided to treat it as a normal
action.

As usual we skip the technicalities of the translation and present just its
application to our running example.

Ezample 3. We continue here the running example, but for simplicity (and to
make synchronization visible) we discard restrictions. This can be done since, as
already said, restriction just hides labels. We also drop the I" part since it is not
translated (this amounts to work up to isolated nodes).

Remember that the starting graph is:

Lo,2,3) (@1, Y1, 21)| Loz ga,5) (U1, T2, Y2, U2, ¥3) | L123 5(4,5) (U3, 22, w1, 23, W)
ams(x1, 2, x3)|ama(y1, y2)|ams(z1, 22, z3)|ams (u1, us, us)|amse (w, we)
which is translated into the goal:
Loa,2,3) (@1, 1, 21), Liog a5y (U1, T2, Y2, u2, 23), L123 5(4,5) (us, 22, w1, 23, w2),
amg(x1, T2, T3), ama(y1, y2), ams (21, 22, 23), ams(u1, uz, u3), ama(wr, w2)
We also have to translate the three productions:

(u1,0ut2,(z1,y1))
- 77

LTQB‘R(4,5) (u1, 21, Y1, U2, T2) LR1,2)(uz2, v2)|[null(u)

) (u1,ing,{z1,w1)
LA R AN

)
L193.5(4,5)(u1, 21, w1, 22, w2 Ls(1,2) (22, wa) |null(uy)

(u1,0uta,(t1,t2)),(us,in2,(t3,t4))

ams(u1, uz, uz)

ams (ul, Uusg, U3) |am2 (tl, t3)|am2 (tQ, t4)
into the corresponding clauses:
LT23.R(4,5)(0W2(U17$17y1)a6(351),6(?/1)76@2)»6(552)) -

Lra 2 (u2, z2), null(u)

Li93.5(4,5)(1n2(u1, 21, w1), €(21), €(w1), €(22), €(wz)) —

Ls(1,2) (22, w2), null(uy)

Insights emerged while comparing three models for global computing 17

Lo1,2,3) (21,91, 21)s Lag p(a,5) (U1, T2, Y2, U2, T3), L2z s(a,5) (U3, 22, wi, 23, w2),
ama(x1, T2, T3), ama(y1, ya2), ama(z1, 22, 23), ama(u1, uz, uz), ama (w1, wa)

outz(ul,xh,ys)/u,e(x5)/w2,e(y5)/y2,e(uy) /uz,e(xy) /a3

Loi,2,3) (1, Y1, 21), Lr(1,2) (uh, 25), null(u)), L12s 54,5 (us, 22, w1, 23, w2),
amg (1, €(xh), e(xs)), ama(ys, €(ys)), ams(z1, 22, 23),
am3(0’U‘t2(u/17 '1",27 yé)7 6(“’2)7 U3)7 am2(U}1, U]Q)

wy fuy @h [t1,y5 /ta,uh /ul ying (u,t3,t4) /us

LQ(I,Q,S) (1’1, Y1, Z1)7 LR(1,2) (u/27 xé)7 nu”(ull)a L1234S(4,5) (7:77,2(7/42;7 t37 t4)7 22, W1, 23, ’(,UQ),
ams(z1, e(x), €(w3)), ama(y1, €(y2)), ams (21, 22, 23),
! ! / / /
am3(u17 Uz, ’U,3)7 amQ(x27 t3)7 amQ(y2; t4)7 amQ(wh w2)

ug/ug,zh /tz,e(25) /22,0 [ta,e(wy) /wi,e(25)/ z3,e(wh) /w2

Lo@,2,3) (21,91, 21), Lr(1,2) (U, 23), null(u}), Ls1,2) (23, wa), null (u3),
am3(x1, 6(1,/2)’ E(xé))a ams (y17 e(yé)), a’m3(zla 6(Zé)7 6(22,3))7
am3(u/l7 u’27 ’U/é), amQ(x/Qy Zé)y amsz (yé7 w/1)7 am2(€(w/1), 6(Ujé))

-

LQ(1,2,3) ('T/la yia 21)7 LR(I,Q) (ul27 m/S)v nu”(u/1)7 LS(1,2) (Z’TLQ(Z:/),, ’l.l]/2)7 null(ué)7
am3($/17 .T/g, .Té), am?(yi7 yé)7 am3(zi7 257 Zé)7

am(uy, us, uz), ama (s, 22), ama(ya, wr), ama (wi, ws)

Table 3. The big-step of the running example.

amg(outg(ul,tl, tg), E(UQ), inQ(U3, t3, t4)) —

amg(ul, Uz, Ug), amg(tl, tg), amz(tg, t4)

Using their suitably renamed variants and all the translations of the idle
productions we can have the SLD-computation in Table 3. Note that the last
clauses just perform e synchronizations. The final goal is the translation of the
final graph of the SHR transition, but now we have new variables, e.g. z} instead
of x1. Note also that by considering the composition of the mgus, restricted to
the variables in the starting goal, we have exactly A. For instance, the substitu-
tion outa(uf, !, y])/u1 proves that action outs has been performed on u; with
arguments x; and y; (represented by their successors) and y}) and that the
successor of uy is u}.

As for the translation from Fusion Calculus to Milner SHR, we have here
a simple mapping (even if it is not a uniform encoding since nodes become
sequences of variables) together with a full semantic correspondence, and this

18 I. Lanese, U. Montanari

allows to consider Hoare SHR as a particular case of Synchronized Logic Pro-
gramming.

In fact, it is easy to extend the correspondence by taking into account also
SHR restriction and logic programming constants and nested functions. As far
as restriction is concerned, the same feature can be added to logic programming.
Interestingly, it amounts to perform in a step by step way the classical opera-
tion of restricting the computed answer substitution to the (free) variables of
the starting goal. In the other direction, constants are simply actions that de-
stroy the node where they are performed, while nested functions are structured
synchronization patterns. As natural, to use the full power of these generalized
synchronizations, a more flexible transactional mechanism must be used (i.e.
actions of one edge must be matched by sequences of actions from other edges).

A more interesting but also more challenging extension is to have non Hoare
logic programming. We argue that this requires to have a different unification
algorithm, but also substitutions and goals have to be managed differently. In
fact, the quite strong mathematical properties of Hoare unification makes its
asynchronous version, i.e. standard unification, quite simple. For other synchro-
nizations models, it may be necessary to keep some more information in the
state. In particular, when a variable is substituted with a function symbol, it
may be useful to preserve the name of the variable in the other predicates where
it occurs for later use.

4 Conclusions

We have presented here a chain of mappings that allows to link different for-
malisms for modeling interactive distributed systems such as the ones used in
GC. We can now give a new description of them that is the result of what we
learned from the mappings.

— Fusion Calculus is a process calculus with an interleaving semantics based
on the Milner synchronization model.

— SHR is a distributed model, which thus has a concurrent semantics, in the
sense that different actions can happen in different places inside the same
transition. It can be seen as a generalization of Fusion Calculus.

— Logic programming is an asynchronous goal-rewriting framework which is
based on “Hoare” unification. A transaction mechanism must be added to it
in order to enforce real synchronization.

Many insights on the analyzed models and proposals for further extensions
have been suggested at the end of the various sections. We collect however here
the main ones.

A main point comes out by comparing the three mappings: the one between
Hoare SHR and Milner SHR is by far the most complex. This suggests that in
general it is not easy to implement a synchronization model, even if it is quite
simple like Hoare and Milner ones are, with the primitives provided by another
one. This observation, together with the fact that more complex synchronization

Insights emerged while comparing three models for global computing 19

models may be desirable, maybe as abstractions of complex protocols of real
systems, triggered the idea of having the synchronization model as a parameter
of the modeling framework. We have already worked on that part, both in the
setting of SHR [9,16] and in the setting of process calculi [17], but a lot of work
is still to do. In particular, the expressive power of the parametric models thus
obtained must be analyzed, but this is not an easy task since the expressiveness
depends on the choice of the synchronization model.

The synchronization model can be changed also in logic programming, but
here there is the problem of finding a different unification algorithm which is the
asynchronous counterpart of a general synchronization model, in the same way
as usual unification is the counterpart of Hoare synchronization.

Furthermore, Synchronized Logic Programming, which has been used here
mainly to have a counterpart of SHR synchronization in the logic programming
framework, deserves further analysis. In particular, it should be compared with
other models with transactions in order to fully understand its expressivity.

As final word, we think that our comparisons have provided many insights on
the analyzed models and many suggestions concerning how to extend them. For
this reason, it would be useful to complete the work in order to have a coherent
picture of all the existing proposals for models for GC systems. Naturally, seen
the abundance of proposals in the literature, this is a long and hard work.

References

1. Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Pro-
cesses. PhD thesis, Dept. of Computer Systems, Uppsala University, Sweden (1998)

2. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile
processes. In: Proc. of LICS ’98, IEEE, Computer Society Press (1998)

3. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Inform.
and Comput. 100 (1992) 1-40,41-77

4. Degano, P., Montanari, U.: A model for distributed systems based on graph rewrit-
ing. Journal of the ACM 34 (1987) 411-449

5. Hirsch, D., Montanari, U.: Synchronized hyperedge replacement with name mo-
bility. In: Proc. of CONCUR’01. Volume 2154 of Lect. Notes in Comput. Sci.,
Springer (2001) 121-136

6. Lloyd, J.: Foundations of Logic Programming. Springer (1987)

7. Lanese, I., Montanari, U.: Mapping fusion and synchronized hyperedge replacement
into logic programming. Theory and Practice of Logic Programming, Special Issue
on Multiparadigm Languages and Constraint Programming (2004) To appear.

8. Hirsch, D.: Graph Transformation Models for Software Architecture Styles. PhD
thesis, Departamento de Computacién, Facultad de Ciencias Exactas y Naturales,
U.B.A. (2003)

9. Lanese, 1., Montanari, U.: Synchronization algebras with mobility for graph trans-
formations. In: Proc. of FGUC’04. Elect. Notes in Th. Comput. Sci. (2004) To
appear.

10. Lanese, I.: Process synchronization in distributed systems via Horn clauses. Mas-
ter’s thesis, University of Pisa, Computer Science Department (2002) Download-
able from http://www.di.unipi.it/ lanese/work/tesi.ps.

20

11.

12.

13.

14.

15.

16.

17.

18.

I. Lanese, U. Montanari

Ferrari, G., Montanari, U., Tuosto, E.: A LTS semantics of ambients via graph
synchronization with mobility. In: Proc. of ICTCS’01. Volume 2202 of Lect. Notes
in Comput. Sci., Springer (2001) 1-16

Lanese, 1., Montanari, U.: A graphical fusion calculus. In: Proceedings of the
Workshop of the COMETA Project on Computational Metamodels. Volume 104
of Elect. Notes in Th. Comput. Sci., Elsevier (2004) 199-215

Palamidessi, C.: Comparing the expressive power of the synchronous and the
asynchronous pi-calculus. In: Proc. of POPL’97, ACM Press (1997) 256-265
Lynch, N.A.: A hundred impossibility proofs for distributed computing. In: Proc.
of PODC’89, ACM Press (1989) 1-28

Winskel, G.: Synchronization trees. Theoret. Comput. Sci. 34 (1984) 33-82
Lanese, 1., Tuosto, E.: Synchronized hyperedge replacement for heterogeneous
systems. In: Proc. of COORDINATION 2005. Volume 3454 of Lect. Notes in
Comput. Sci., Springer (2005) 220-235 To appear.

Bruni, R., Lanese, I.: PRISMA: A parametric calculus based on synchronization
algebras with mobility. In: Proc. of CONCUR’05, Springer (2005) Submitted.
Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual
token approaches. Inform. and Comput. 156 (2000) 46-89

	Insights emerged while comparing three models for global computing
	Ivan Lanese and Ugo Montanari

