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Abstract. Global computing involves the interplay of a vast variety
of languages, but practially useful foundations for language specifica-
tion and prototyping at the semantic level are lacking. In this paper we
present a systematic approach consisting of three techniques:

1. A generic calculus of explicit substitutions with names (called CINNI)
that allows us to give a first-order representation of syntax to uni-
formly deal with all binding aspects.

2. An executable representation of Felleisen-style operational semantics
in terms of first-order rewrite rules.

3. Alogical framework, namely rewriting logic, that allows us to express
(1) and (2) and, in addition, language aspects such as concurrency
and non-determinism.

We illustrate the use of these techniques in two applications:

1. A formal specification and analysis of PLAN, a Packet Language for
Active Networks, that has been developed in the Switchware project
at UPenn. This work was conducted in the scope of the DARPA
Active Network Program.

2. The development of CTAO, a Calculus of Imperative Active Objects,
a core language for concurrent object-oriented programming. It is
especially designed to allow the representation of practically relevant
sublanguages of common object-oriented languages such as Java,
C+#, and C++. This second application is subject of ongoing work.

1 Introduction

Global computing poses many challenges for language design and semantics. The
agreement on a single language for global computing application seems neither
realistic nor desirable. Instead, global computing applications typically consist
of interacting distributed components involving a variety of different languages.
Such languages can be either general-purpose or domain-specific, they can be
imperative or declarative, they can support a particular programming paradigm
such as functional, logic-based, object-oriented, or agent-oriented programming,
and in addition may support specialized or general paradigms to deal with con-
currency, coordination, communication, and mobility.
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As a consequence, language designers often face a complex multi-dimensional
design space, and the understanding of the dynamics of systems critically de-
pends on the semantics of the languages used in their development. Language
design is influenced by many practical software engineering requirements and
on the other side by theoretical considerations of simplicity or mathematical
elegance. Hence, language design is largely an experimental and evolutionary
activity that explores tradeoffs between diffferent design decisions that are not
apparent without conducting at least prototype implementations of languages
and case studies of systems developed using the prototypes. In this paper we
propose a formal approach based on a combination of established techniques to
support language design and prototyping, which should not only speed up the
design cycle but at the same time provide a sound mathematical foundation for
the semantics of the language being designed.

To this end, we combine the well-known Felleisen-style operational semantics,
also known as evaluation-context or reduction-context semantics, with CINNI, a
calulus of explicit substitutions that is parametric in the syntax of the object
language, to obtain a formal description of the semantics of the object language
as a set of first-order rewrite rules that operate modulo an underlying equa-
tional theory. The concrete logical framework that we are using in this paper is
rewriting logic [38], more precisely the version that is based on an underlying
membership equational logic [6] and implemented in the Maude engine [10, 11].
The executable semantics specification in rewriting logic then serves as a proto-
type implementation of the language and can be used not only to execute object
programs in the traditional way, but it can also be used to perform several other
forms of analysis such as symbolic execution, state space exploarion, and model
checking.

The paper is organized as follows: We first introduce explicit substitutions
and the CINNI calculus in Section 2, which will then be used in Section 3 to
obtain an executable first-order representation of Felleisen-style semantics. In
both sections we use a version of call-by-value A-calculus to illustrate our ap-
proach. We will refer to this version of A-calculus as our base language, because
Sections 4 and 5 will deal with two very different applications which can both
be regarded as extensions of this base language. The first application of our
techniques is PLAN a domain-specific language for active networks. The second
application is concerned with the design of CIAO, a general-purpose language
for object-oriented concurrent programming.

2 CINNI - A Generic Calculus of Explicit Substitutions

For a uniform way to deal with binding we use the CINNI calulus of [46, 45].
CINNI is a generic first-order calculus of explicit substitutions that is parametric
in the object language and that does not abstract away the names of variables.
This is in contrast to representations of syntax modulo a-conversion, i.e. consis-
tent renaming of bound variables, or representations based on de Bruijn indices
[15]. In both of these representations the information about names is lost. In fact,



by employing a notation based on indexed names that goes back to Berkling [5],
CINNT generalizes de Buijn’s notation and also the corresponding explicit substi-
tution calculus Av of [34], in two dimensions, namely in the choice of the object
language and in the notation for variables.

We say that the syntax of an object language is a CINNI syntax if there is
a distinguished sort of identifiers and all variables, i.e. referencing occurrences
of identifiers, are of the form X; for an identifier X and an index ¢ € IN. The
idea is that X; refers to the X-binder that can be reached on the way towards
the outermost position after skipping ¢ X-binders. Hence, X refers to the inner-
most encompasing X-binder. Given the CINNI syntax £ of a language we use
CIN NI, to denote the instantiation of CINNI to the syntax of £. The language
of CINNI; extends £ by simple substitutions [X:=M], shift substitutions 1x;
and lift substitutions ftx S, and a notion of substitution application, written
S M, assuming that S ranges over substitutions and M ranges over terms. The
equations of CINN I, given below define the semantics of these substitutions
and have been shown to be strongly normalizing in [46, 45].

(X:=M] Xo = M
[(X:=M] Xpi1 = Xnm
[(X:=M]Y, = Y, if X#Y

TX Xm = X7n+1
xYy = Vuif X£AY

xS Xo = Xo

xS Xmp1 = Tx (S Xi)
IxSY, =Tx (SY,)if X#Y

Furthermore, for each syntactic constructor f of L there is a syntax-specific
equation

S FPY, ., P") = (M pina M pimy S)) Py, (M pins oo (M pinima S)) P™)

where j; 1, ..., jim; are all the arguments (necessarily of the sort of identifiers)
that f binds in argument ¢ (necessarily of the sort of expressions). If argument
i of f is a binder, we define (ff.... (... S)) P* as P! in the above equation. In
this case P’ is of the form X for some identifier X and represents an X-binder
(as opposed to a variable X;), which is not subject to substitutions. This abuse
of notation allows us to write the syntax-specific equations in the compact form
given above.

The syntax-specific equations are the only equations that depend on the syn-
tax of L. For instance, CIN NI, has the following two syntax-specific equations,
assuming we write [X] M for A-abstractions.

S (MN) = (SM)(SN) S ((X] M) = [X](hxS M)



Since substitutions can always be eliminated using these equations, each
CINNI; term reduces to a unique £ term.

The base laguage that we use in this paper is an applied call-by-value -
calculus, similar to what forms the basis of Scheme and ML (although we do
not consider types in this paper). The abstract syntax, which we now introduce,
uses CINNI notation for bound variables. Presupposing a sort Nat of natural
numbers, and a sort of identifiers Id (which we assume contains quoted identifiers
for the examples in this paper), variables (sort Var) are formalized as a subsort
of expressions (sort Ex) as follows.

sort Var .
subsort Var < Ex .
op _{_} : Id Nat -> Var .

The elements of basic data types are modeled by injecting the corresponding
Maude sort into the sort of constants (sort Const), which again is a subsort of
expressions.

sort Const .

subsort Const < Ex .

op Bool_ : Bool -> Const .

op Int_ : Int -> Const .

op String_ : String -> Const .
op Dummy : -> Comnst .

ops Nil : -> Comnst .

The functions associated with these built-in data types are classified into con-
structors (sort Cstr) and non-constructors (sort NonCstr). Some standard fuc-
tions such as logical and arithmetic operators have been omitted here for the
sake of brevity.

sorts Cstr NonCstr .

subsorts Cstr NonCstr < Const .
ops Pair : -> Cstr .

ops Cons : -> Cstr .

ops Hd T1 : -> NonCstr .

Expressions (sort Ex) are built from constants and variables using typical
functional and imperative language constructs shown below.

sort Ex .

op _(.) : Ex ExList -> Ex .

op If_Then_Else_ : Ex Ex Ex -> Ex .

op Lam‘[_:_‘]_ : IdList PlanTypelList Ex -> Ex .
op Let‘[_=_¢]_ : IdList ExList Ex -> Ex .

op LetRec‘[_=_‘]_ : IdList ExList Ex -> Ex .

op Skip : -> Ex .

op _;_ : Ex Ex -> Ex .

op Try_Catch‘[_‘]_ : Ex Id Ex -> Ex .

op Throw_ : Ex -> Ex .



The meaning of these constructs is the standard one of imperative call-by-value
A-calculus, but function application _(_) and A-abstraction Lam‘[_:_‘]_ are
generalized to arbitrary m-ary functions (so that currying is not needed), and
correspondingly a single (recursive) Let construct allows several simultaneous
bindings. Furthermore, our base language has a statement Skip without an ef-
fect, allows sequential composition _;_ and supports standard constructs for
handling and raining exceptions. Sequential composition will only be of use when
expressions can have effects, as it will be the case in both extensions of the base
language that we consider in Sections 4 and 5, respecticely.

Lists of identifiers (sort IdList) are generated by singletons (we identify an
identifier and the corresponding singleton list) and by the concatenation con-
structor _, _ with structural equations for associativity and identity (relative to
the empty list empty-idl). List of other sorts such as expressions (sort ExList)
are specified correspondingly.

sort IdList .

subsort Id < IdList .

op empty-idl : -> IdList .

op _,_ : IdList IdList -> IdList [assoc id: empty-idl]

Below we have generalized the original CINNI substitutions to simultaneous
substitutions by lifting substitutions from Id to IdList (which represents a si-
multaneous binding). There is the basic explicit substitution constructor [_:=_],
two auxiliary operations shift and 1ift, and an operation __ for application
of a substitution to an expression list (expressions being a special case).

sort Subst .

op [_:=_]1 : Id Ex -> Subst .

op [L:=_] : IdList ExList -> Subst .
op [shift_] : Id -> Subst .

op [1ift__] : Id Subst -> Subst .

op [lift__] : IdList Subst -> Subst .

op __ : Subst Ex -> Ex .

op __ : Subst ExList -> ExList .

eq [id := ex] id{0} = ex . (E0)
eq [id := ex] id{suc(m)} = id{m} . (E1)
ceq [id := ex] id’{m} = ex if id =/= id’ . (E2)
eq [shift id] id{m} = id{suc(m)} . (E3)
ceq [shift id] id’{m} = id’{m} if id =/= id’ . (E4)
eq [1ift id s] id{0} = id{o0} . (E5)
eq [1lift id S] id{suc(m)} = [shift id] (S id{m}) . (E6)
eq [1lift id 8] id’{m} = [shift id] (S id’{m}) . (ET)
eq S const = const . (E8)
eq S (ex exl’) = (S ex) (S exl’) . (E9)
eq S (Lam [idl] ex) = Lam [id1]([1lift idl S] ex) . (E10)



eq [empty-idl := empty-exl] ex’ = ex’ . (E11)
ceq [(id,idl) := (ex,ex1l)] ex’ = (E12)
[id := ex][idl := [shift id] exl] ex’ if idl =/= empty-idl .

eq [lift empty-idl S] ex’ = (S ex’) . (E13)
ceq [lift (id,idl) S] ex’ = (E14)
[1ift idl [1ift id S]] ex’ if idl =/= empty-idl .

Here and throughout the paper we have omitted variable declarations. If not
explicitly stated, the sort of variables should be clear from the context or from
the name of the variable. Note also that in addition to E8, E9, and E10, there
are further syntax-specific equations which we have omitted here.

To give a flavor of how CINNI handles substitutions we show the reduction
of a A-application using the above equations and the following beta rule of \-
calculus.

rl (Lam [idl] ex) exl) => [idl := exl] ex . (beta)
We assume identifiers x and y for the following examples.

((Lam [x] (Lam [x] (x{0} x{1}))) x{0o})
=> [x := x{0}] (Lam [x] (x{0} x{1})) beta
= (Lam [x] [1lift x [x := x{0}]1 {0} x{1})) E10
(Lam [x] ([1ift x [x := x{0}]] x{0}
[1lift x [x := x{0}1]1 x{1}))
(Lam [x] (x{0} [shift x1x{03})) EO0,E1,E5,E7
(Lam [x] (x{0} x{1})) E3

Here we can see that the original x{0} has become x{1} to maintain its reference
to an external binding.

In the case of multiple arguments, substitutions consists of simultaenous
bindings and can be applied to lists of expressions, as illustrated by another
example below.

(Lam [x,y] (x{0} y{0o})) (x{0},x{0})

=> [x,y := x{0},x{0}] (x{0} y{o}) beta
= [x := x{0}] [y := [shift x] x{0}] (x{0} y{o}) E12
= [x := x{0}] [y := x{1}] (x{0o} y{o}) El
= [x := x{0}] ([y := x{1}] x{0} [y := x{1}] y{o®) E9
= [x := x{0}] (x{0} x{1}) E2,E0
= ([x := x{0}] x{0} [x := x{0}] x{1}) E9
= (x{0} x{0}) EO,E1

In practice, indices different from 0 appear rarely, but obviously their are
essential for the correct internal operation of CINNI. Therefore, we use the con-
vention of [46,45] that the index 0 can be omitted. This can be easily formalized
using additional equations that treat each referencing occurrence of an identifier
X just like X{0}.



Finally, it is important to note that the beta rule given above will not be part
of the semantics of our base langauge in this form. Using the approach of the
next section it will be replaced by a more controlled version for the call-by-value
A-calculus.

3 Executable Felleisen-style Semantics

A simple and concise formalization of the semantics of a language simplifies our
intuitive unsterstanding and facilitates mathematical reasoning about programs
or about the semantics itself. Just as the CINNI calculus with its explicit names
reduces the gap between the actual syntax and its formal representation, we are
interested in a systematic approach to programming language semantics that
reduces the gap between the actual program behavior and the rules representing
it formally. Simulataneously, we aim at a semantics that is executable, but our
primary concern is simplicity and elegence (as far as this is achievable for the
real-world languages that we are concerned with) rather than effienciency of the
execution.

In this paper we employ a syntaz-based approach often called evaluation-
context or reduction-context semantics 18,35, 49], which simplifies the reduction
machine and gives us a very direct connection between the (partially executed)
program and the machine state. This approach uses extended program syntax to
represent semantic entities. In particular, values are just a subset of expressions,
and the control stack is implicitly represented by expressions with holes, called
reduction contexts. Furthermore, the specification of languages is considerably
simplified by formalizing environments as substitutions, thereby eliminating the
need to treat environments explicitly. This is in contrast to, for instance, SECD
machines, which carry the environment as an explicit component. To specify the
abstract machine we use a general approach suitable for functional languages
with side-effects which is based on [18, 28, 37].

Reduction contexts are a special form of contexts in which the holes corre-
spond to positions where evaluation can take place. In the case of deterministic
languages such as those treated in this paper, reduction contexts have a single
hole and this hole is not in the scope of any binding operators, because poten-
tial binding operators have been eleminated by means of substitutions. Redexes
correspond to machine instructions, they can be immediately reduced. In the
pure call-by-value A-calculus the redexes are A-abstractions applied to values:
(M\id . ex) val. In the richer base language they also include non-constructors ap-
plied to value lists and let expressions in which all bindings are value expressions.
Mathematical descriptions of deterministic evaluation using reduction contexts
are based on a unique decomposition lemma that says that an expression ex is
either a value or it decomposes uniquely into a reduction context R and a redex
r such that ex is the result of filling the hole in R with r (written R[r]) [18].

A typical transition rule in the reduction-context semantics for call-by-value
A-calus looks as follows. Two points are noteworthy: The rule is not a first-order
rewrite rule, because there is an implict quantification of all reduction contexts.



Furthermore, it uses a standard notion of capture-free substitution on the right
hand side.

R[(Xid . ex) val] — Rlex[val/id)]

The substitution can be directly be translated into a CINNI explicit sub-
stitution, but an executable first-order representation of the quantifiaction over
reduction contexts requires more effort. The solution we adopt is to replace the
patterns R[ex] by pairs (cx,ex) where cz is a first-order representation of R.
In this way we make explicit the partitioning of a reducible expression into a
context and a redex. Hence, the reduction state of the abstract machine is a pair,
written RedState(cx, ex), consisting of a reduction context and the expression
that is the current focus of reduction.

op RedState : Cx Ex -> RedState .

The sort Cx contains expressions with any number of holes (including possi-
bly none) in any position in which an expression could occur. Thus expression
constructors are overloaded to construct contexts and there is an additional
constant ? to represent the hole:

sort Cx .
subsort Ex < Cx .
op ‘? : > Cx .

op _(.) : Cx CxList -> Cx .
op Lam‘[_‘]_ : IdList Cx -> Cx .

The operation of hole filling is a special case of metavariable substitution
(the hole being the only metavariable) and is generalized to allow filling of holes
with contexts (context composition) and to apply to context lists (sort CxList),
contexts being a special case. Hole filling is pure textual substitution and hence
entirely straightforward, in contrast to the capture-free substitutions of CINNI,
which we need to deal with binding contructs of the object language. The process
of hole filling is formalized by the following operation.

op <‘?¢:=_>_ : Cx Cx -> Cx .

op <‘?¢:=_>_ : Cx CxList -> CxList .

eq < 7?7 :=cx > 7 =cx .

eq < 7?7 := cx > const = const .

eq < 7 :=cx >(cx’ ¢cxl) = (< 7 := cx >cx’)(< ? := cx > cxl)

Recall that in the syntax specification we classified function symbols into
constructors and non-constructors. This was done in order to identify the subset
of the expressions that represent values. Roughly speaking, all constants are
values and constructors applied to lists of values are values. A non-constructor
applied to any list of expressions is a non-value requiring one or more steps
of evaluation. Also, a constructor applied to a list containing a non-value is a



non-value. As shown below, values and non-values are formalized as subsorts
Val < Ex and NonVal < Ex, respectively.

sort Val NonVal ValList .

subsort Val < Ex .

subsort NonVal < Ex .

subsort Const < Val .

subsort EmptyExList < ValList < ExList .

subsort Val < ValList .
op _‘,_ : ValList ValList -> ValList [assoc id: empty-exl]

mb (Lam [idl : typel] ex) : Val .
mb (cstr vall) : Val .

mb (val(exl,nval,exl’)) : NonVal .

mb (nval(exl)) : NonVal .

mb (ncstr(exl)) : NonVal .

mb ((Lam [idl] ex) exl) : NonVal .

mb (ex ; ex) : NonVal .

mb (If ex Then ex’ Else ex’’) : NonVal .
mb (Let [idl = exl] ex’) : NonVal .

mb (LetRec [idl = ex1] ex’) : NonVal .
mb (Try ex Catch [id] ex’) : NomnVal .

Reduction machine rules The reduction machine maintains two invariants on
RedState(cz, ex). (1) The cx component is a reduction context. (2) The entire
program (in its current stage of evaluation) is given by <? := ex> czx, i.e. by
filling the hole in cx with the focus expression ex.

To get some intution for the operation of the reduction machine it is helpful
to note that the inductive definition of the set of reduction contexts corresponds
to peeling off basic reduction contexts one layer at a time until a redex is reached:
ex = Rgl....R,[r]]. These basic reduction contexts correspond to a control stack
with R,, at the top. For example, the first layer of a function application ex =
val(vall, nval, exl), where vall is a value list and nwval is a non-value expression, is
the reduction context R = val(vall, 7, exl) expressing the left to right evaluation
order semantics. Most of the action occurs at the inner basic reduction context
(top of the stack). For example, suppose the above application fills the hole of
an outer reduction context R’ so that ex’ = R'[ex] = R'[R[nval]]. When the
evaluation of nval leads to a value val’ the hole is filled with that value, and
the resulting expression is redecomposed if it still contains a redex. The new
decomposition is parametric in the outer reduction context, that is, it has the
form R'[R"[r']] where R"[r] is the unique decomposition of Rlval’].

There are two kinds of reduction machine rules: control rules that move the
focus to the next relevant redex; and reduction rules that perform the actual
reductions. The control rules are derived from the notion of redex, and the
reduction machine rules directly correspond to the original rules of the reduction



context semantics. For function application, we have the following three control
rules and the @-reduction rule.

rl RedState(cx, nval(exl’))
=>
RedState(< ? := ?(exl’) > cx, nval)

rl RedState(cx, val(vall’, nval’, exl’))
=>
RedState(< ? := val(vall’, ?, exl’) > cx, nval’)

crl RedState(cx, val)
=>
RedState(?, < ? := val > cx) if cx =/=7 .

rl RedState(cx, (Lam [idl] ex) (vall))
=>
RedState(cx, [idl := vall] ex)

Starting from the focus on the entire program RedState (7,ex), the first two
control rules iteratively focusses on the next non-value expression till they reach
the redex. After reducing the redex with the (-reduction rule, the focus moves
back to the top of the entire program using the third control rule, and the process
is repeated.

Optimized Reduction machine rules The naive version of the reduction machine
involves many operations of hole filling and decomposition. A more efficient
version uses the observation that the reduction context layers correspond to a
stack and represents this stack using a lazy hole filling operator (without any
equations).

op <<f?¢:=>>_: Cx Cx -> Cx .
op <<f?¢:=_>>_ : Cx CxList -> CxList .

The optimized control rules can now be written as follows:

rl RedState(cx, nval(exl’))
=>
RedState(<< ? := ?(exl’) >> cx, nval)

rl RedState(cx, val(vall’, nval’, exl’))

=>

RedState(<< ? := val(vall’, 7, exl’) >> cx, nval’)
rl RedState(<< ? := cx >> cx’, val)

=>

RedState(cx’, < ? := val > cx)

10



As before the first two control rules move the focus to the next unevaluated
argument in a function application. The third rule moves the current focus to-
wards the top (viewing the program as a tree) if the current focus is a value,
but not necessarily to the root as in the naive version. It is the only rule that
uses the eager version of context hole filling. A very similar optimization has
been proposed under the name “refocusing” in the functional implementation of
interpreters [12]. We will continue to work with this optimized style throughout
the remainder of this paper.

Further Reduction Machine Rules A representative selection of the remaining
reduction machine rules for our base language is given in the remaining part
of this section. First, the semantics of function application needs to be com-
pleted. There are reduction rules for the application of all built-in functions, the
following just being one example.

rl RedState(cx, Fst(Pair(val,val’)))
=>
RedState(cx, val)

In addition we have the straightforward control and reduction rules for the
conditional construct.

rl RedState(cx, (If nval Then ex’ Else ex’’))
=>
RedState(<< ? := (If ? Then ex’ Else ex’’) >> cx, nval)

rl RedState(cx, (If (Bool true) Then ex’ Else ex’’))
=>
RedState(cx, ex’)

rl RedState(cx, (If (Bool false) Then ex’ Else ex’’))
=>
RedState(cx, ex’’)

Sequential composition of statements is specified by the following rules:

rl RedState(cx, (nval ; ex’))
=>
RedState(<< ? := (7 ; ex’)>> cx, nval)

rl RedState(cx, (val ; ex’))
=>
RedState(cx, ex’)

rl RedState(cx, (Skip ; ex’))
=>
RedState(cx, ex’)

There are control and reduction rules for the Let construct, which exactly
as in the case of f-reduction is simply turned into an explicit substitution.

11



rl RedState(cx, Let [idl = (vall’, nval’, exl’)] ex’’)
=>
RedState(<< ? := Let [idl = (vall’, ?, exl’)] ex’’ >> cx, nval’)

rl RedState(cx, Let [idl = vall’] ex’’)
=>
RedState(cx, [idl := vall’] ex’’)

Then there are control and reduction rules for LetRec, where it is important
to note that the scope of the expressions on the right hand side of = includes all
variables introduces by the construct itself. For an elegant formulation we use a
version of LetRec lifted to lists of expressions.

rl RedState(cx, LetRec [idl = (vall’, nval’, exl’)] ex’’)
=>
RedState(<< ? := LetRec [idl = (vall’, ?, exl’)] ex’’ >> cx, nval’)

op LetRec‘[_=_¢]_ : IdList ExList ExList -> Ex .

eq (LetRec[idl = exl] empty-exl) = empty-exl .

ceq (LetRec[idl = exl] (ex’,exl’)) =
((LetRec[idl = exl] ex’),(LetRec[idl = exl] ex1’))
if exl’ =/= empty-exl .

rl RedState(cx, LetRec [idl = vall’] ex’’)
=>
RedState(cx, [idl := (LetRec [idl = vall’] wvall’)] ex’’)

Somewhat different than the previous rules are the rules for raising and
handling exceptions. First, there is the control rule and the reduction rule for
the non-error case:

rl RedState(cx, (Try nval Catch [id] ex’))
=>
RedState(<< 7 := (Try 7 Catch [id] ex’) >> cx, nval)

rl RedState(cx, (Try val Catch [id] ex’))
=>
RedState(cx, val)

The error case, however, if it cannot be directly handled by the first rule below,
requires propagation of Throw upward in the program till the either the excep-
tions can be directly handled or the program terminates with this exception.

rl RedState(cx, (Try (Throw eval) Catch [id] ex’))
=>
RedState(cx, [id := evall] ex’)

rl RedState(cx, ((Throw eval) exl))

=>
RedState(cx, (Throw eval))

12



rl RedState(cx, (val (vall, (Throw eval),exl)))
=>
RedState(cx, (Throw eval)) .

rl RedState(cx, (Throw eval) ; ex)
=>
RedState(cx, (Throw eval)) .

rl RedState(cx, (If (Throw eval) Then ex Else ex’))
=>
RedState(cx, (Throw eval)) .

4 PLAN - A Packet Language for Active Networks

As an application of the techniques introduced above, we briefly summarize our
work [47] on the formal specification of PLAN, a Packet Language for Active
Networks. The presentation is simplified a bit, e.g. we have omitted types, several
built-in language constructs and services, because its purpose in this paper is to
serve as a illustration of our techniques for language design and prototyping.

Active networks are networks with nodes that do not operate according to a
fixed scheme (e.g. as conventional routers) but are instead fully programmable
and provide execution environments for programs that can be received from
other nodes via the network. Active networks can be wired, wireless or hybrid
networks. One may think of active networks as a generalization of conventional
networks and as a step toward greater flexibility: Packets, which are interpreted
by routers in conventional networks following rigid schemes, become programs,
which are ezecuted in active networks in a universal fashion. See [50] for a survey
of active network research and the recent DARPA conferences on this subject
[13,14].

PLAN [25,24,41, 26, 33], is an imperative functional language similar to ML,
but has a number of additional features, such as remote function execution and
resource awareness. Remote function erecution, means that functions can be in-
voked in such a way that the execution does not take place locally but in the
execution environment of a different network node. To this end, the function
call is treated as a so-called chunk, i.e. as a piece of data, which is transmitted
to the destination node by means of a packet. Resource awareness refers to a
mechanism which keeps track of computational resources and ensures that all
PLAN programs are terminating. In addition, PLAN programs interact with
their host nodes through service package interfaces. Basic services include provi-
sion of information about local network topology, local node properties, time, and
routing. Other possible services include resident data services for (time-limited)
data storage and retrieval.

Our sources for the informal semantics of PLAN included (in addition to
conversations with members of the Switchware team) the PLAN specification
document [31] and the paper [33] (a fairly detailed description of an operational
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semantics), an abstract version of PLAN for reasoning about security [32], and
the PLAN programmers guide [27]. We have specified a more general language
that we call the extended PLAN Language (briefly xPLAN). It is based on the
full call-by-value A-calculus and unrestricted recursion, whereas the functional
core language of PLAN is similar to a first-order fragment of ML, but only
allows a form of bounded recursion. This generalization leads to a syntactially
simpler, more elegant model with many interesting possibilities for mobile code.
The official PLAN language maps naturally to a subset of xPLAN defined by
simple syntactic restrictions. The main restriction, which ensures termination of
PLAN (and corresponding xPLAN) programs, is that recursive calls can only
occur inside chunks, and the local or remote invocation of a chunk reduces the
computational resources available by at least one unit. Furthermore, forwarding
a packet to the next hop consumes one unit so that the standard hop counter
scheme to avoid nontermination of routing is subsumed by this concept.

Our specification is organized in three main parts: syntax; network; and se-
mantics. The syntax part is a fairly direct formalization in Maude of the syntax
of xPLAN as an algebraic data type. The network part models basic network
concepts such as locations, addresses, connections, and routing, with the minimal
detail needed for the PLAN specification. The semantic part is the heart of the
matter. The multilevel concurrency of active networks is very directly reflected
in the computation state which is structured to provide clear boundaries for the
scope of effects and information access.

— A network configuration is modeled as a multiset containing nodes and pack-
ets.

— With each node we associate a multiset of processes local to the node, which
serve as execution environments for programs and can themselves execute
concurrently within the node.

— Each process encapsulates the local state of the execution environment to-
gether with an abstract reduction machine.

4.1 Syntax

The syntax of xPLAN is an extension of the syntax of the call-by-value A-calculus
base language of Section 3. We presuppose a sort Addr of host addresses, which
are not necessarily unique for a given host, because each host can have several
network devices and each of these has an associated host addresss. Host addresses
and keys for the resident data services are the constants that we are adding to
the base langauge.

op Addr_ : Addr -> Comnst .
op Key_ : Int -> Const .

There is an additional constructor Chunk for chunks of code.

op Chunk : -> Cstr .
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Furthermroe, there are constants for each of the service functions. Some
examples are given below.

ops GetRB GetSource GetSrcDev : -> NonCstr . *** Proc. level
ops ThisHostIs GetNeighbors : -> NonCstr . *** Node level

ops OnNeighbor OnRemote : -> NonCstr . ***x Packet creation
ops Exists Get Put : -> NonCstr . *** Data repository

The service calls GetRB(), GetSource(), and GetSrcDev() are used to access
information about the current process, namely the remaining amount of com-
putational resources, the address of the originating host, and the address of the
network device at which the packet arrived that initiated the current process.
The service ThisHostIs(a) checks whether a given address a refers to a network
device local to the current note, and GetNeighbors() returns the list of neighbors
of the current node. OnNeighbor(chunk, dest, int, dev) invokes the given chunk
chunk at a neighbor dest using dev as the outgoing device and passes on int of
its resource units for sending the packet containing the chunk and for its execu-
tion on the remote node. OnRemote is similar but allows execution on arbitrary
nodes and hence may involve packet routing by means of a routing function that
has to be passed as an additional argument. Finally, Exists(str, i), Get(str, 1),
and Put(str, i, val, exp) provide access to a resident data dictionary local to the
current node, (str,i) being a composite access key, val the value to be stored,
and exp the time till expiration.

4.2 Semantics

The semantics of xPLAN correspondingly extends the semantics of our base
language. In the following we first explain how the global active network state is
represented. Then, we discuss the additional transition rules specific to xPLAN
by giving a few representative examples.

The global state of an active network is a configuration modeled as multiset
whose elements are nodes, processes, packets, data sets, and a unique global
key. The sort and constructor declarations are as follows. We assume sorts Addr,
Loc, Connection, Route of host addresses, locations, connections (i.e. pairs of
the form src >> dest), routes (i.e. pairs of the form dest via con, meaning that
dest can be reached via the connection con), and sorts AddrList, Connection,
List, RouteList of corresponding lists.

sort Configuration .
sort Node Packet Process FreshKey Data Dataltem .
subsorts Node Packet Process FreshKey Data < Configuration .
op empty-conf : -> Configuration .
op __ : Configuration Configuration -> Configuration

[assoc comm id: empty-conf]
op Node : Loc AddrList ConnectionList RouteList -> Node .
op Packet : Addr Addr Addr Int Int Const

Val Vallist -> Packet .

15



op Process : Loc Addr Addr Int Int RedState -> Process .
op FreshKey : Int -> FreshKey .

op Data : Loc DataltemList -> Data .

op Dataltem : String Int Val Int -> Dataltem

A network node has the form Node(l, devs, nbrs,rt). The location I serves
as its identifier, devs lists its network devices, nbrs gives the connections to
neighbors, and 7t is the node’s routing table. The network topology is given by
the combined device and neighbors information of all of its nodes.

A packet in transit has the form Packet(dest, fdest, orign, ssn, rb, rf , val, vall),
where dest specifies the next hop destination address on its route to the final des-
tination fdest. Each packet has an originating packet, injected into the network
by some application and has assigned a unique session key. ssn is the session
key of the originating packet, and orign is the address of the originating appli-
cation. rb is the amount of computational resources available to the packet for
its execution, and rf is the packet’s preferred routing function. The final two
arguments make up a chunk with function val, and (evaluated) arguments vall.

A process has the form Process(l, orign, ardev, ssn,rb,rs). The process was
created when a packet with node [ as its final destination arrived. The address
ardev refers to the device at which the packet entered the node, orign, ssn,
are the same as in the packet, rb is the remaining amount of computational
resources, and rs is the reduction machine state (see below).

Admissible configurations have a single object of the form FreshKey(key)
used to generate fresh keys for sessions and controlled data sharing. The integer
key is incremented each time a key is generated.

For the resident data services each node Node(l,...) has an associated data
object Data(l,dil) where dil is a list of data items. Data items have the form
Dataltem(id, k, val, ttl), where (id, k) constitutes a composite key under which
the value val is stored. The last argument ¢t/ determines the time until expiration
of the data item (present for future compatibility, since time advance is currently
not modeled).

The configuration evolves by means of local reduction machine rules and ser-
vice rules. The local reduction machine rules are precisely the reduction machine
rules of our base language. The service rules are further split into process, net-
work, packet, and data service rules. We now give a few representative examples
of such rules.

Process service rules use information held in the process but outside the re-
duction machine state. For example, application of GetRB returns the resource
bound, i.e. the remaining computational resources, of the current process.

rl Process(l, orign, ardev, ssn, rb,
RedState(cx, (GetRB empty-exl)))
=>
Process(l, orign, ardev, ssn, rb,
RedState(cx, (Int rb)))
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Network service rules use the nodes local network information. For example, the
service function ThisHostIs checks whether a given address is one of the nodes
network devices.

rl Node(l,devs,nbrs,rt)
Process(l, orign, ardev, ssn, rb,
RedState(cx, (ThisHostIs (Addr a))))
=>
Node(1l,devs,nbrs,rt)
Process(l, orign, ardev, ssn, rb,
RedState(cx, (Bool (contains(devs,a)))))

Data service rules manipulate the nodes resident data storage. For example, the
service function Put adds or updates a data item.

rl Data(l,dil)

Process(l, orign, ardev, ssn, rb,

RedState(cx, (Put ((String str), (Key key),
val, (Int tt1)))))

=>

Data(l,put(dil,str,key,val,ttl))

Process(l, orign, ardev, ssn, rb,
RedState(cx, Dummy))

Packet rules include rules for emitting, delivering, and routing packets in transit.
The PLAN construct OnNeighbor is one of the two possibilities to initiate a
remote function call which is given by a chunk Chunk(val,vall). As we can see
below, the execution of OnNeighbor leads to the emission of a packet which
encapsulates this chunk.

crl Node(l,devs,nbrs,rt)
Process(l, orign, ardev, ssn, rb,
RedState(cx, (OnNeighbor ((Chunk (val,vall)),
(Addr dest), (Int int), (Addr dev)))))
=>
Node(1l,devs,nbrs,rt)
Process(l, orign, ardev, ssn, (rb -int),
RedState(cx, Dummy))
Packet(dest, dest, orign, ssn, (int - 1), NoRoute,
val, vall)
if connection(devs,nbrs, (dev >> dest)) and
(rb >= int) and (int > 0)

Notice that the current amount of resources rb of the executing process
is decreased by the amount given to the emitted packet, and that amount is
then decreased by one corresponding to the use of one unit for the first hop. The
routing function component of the packet is set to an irrelevant constant NoRoute
above, because OnNeighbor can only send packets to immediate neigbors. The
more general OnRemote service allows remote invocation on arbitrary locations
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and allows the user to specify a routing function which is passed along in the
packet.

When a packet reaches its destination (next hop agrees with final destination)
a process is created to evaluate the contained chunk.

crl Node(l,devs,nbrs,rt)
Packet(dest, fdest, orign, ssn, rb, rf, val, vall)
=>
Node(1l,devs,nbrs,rt)
Process(l, orign, dest, ssn, rb, RedState(?,(val vall)))
if (dest == fdest) and contains(devs,dest)

As we can see from the last two rules, the use of CINNI yields an elegant
solution to the subtle problems of binding and environment handling in the
context of recursive remote function calls. There is no need the carry explicit
environments in chunks, because all variables that are in the scope of binding
constructs of xPLAN are bound by explicit substitutions if evaluation reaches
the construct and hence will be eliminated by the equations of CINNI.

In addition to the rules presented above, there are rules for other services,
rules to route packets not yet at their destination, and termination rules to
remove processes that have completed their task.

4.3 Example

As a concrete example of a PLAN program, we will use one of the route finding
programs published in [33]. The Maude representation of this program is shown
below. The program has two main functions: find, which does a forward search
for the node with the destination address, and goback, that returns to the source
by the inverse route and Prints the route found. The forward search, like Hansel
and Gretel, drops crumbs to mark the way back, by storing at each node visited
a backpointer, i.e. the address of the network device it used when leaving the
previous node. When a packet containing an invocation find-prog-2(dest) is
injected at some node in the network with a given destination address dest, the
computation is initialized by determining the address of the starting node (using
the GetSource service), by generating a fresh key for labeling data (using the
GenerateKey service), and by an initial call of the find function with this infor-
mation. The network is then flooded with packets which propagate themselves
from nodes that have not been previously visited. To this end, the find function
first uses the resident data service Exists to check if an entry associated with
the current key exists in the local dictionary of the current node. If this is not
the case, the node has not been previously visited. Hence a new entry in the lo-
cal dictionary under the same key is created using Put to store the backpointer.
Next it is checked using ThisHostIs if the destination has been reached, and if
this is the case the route is reported back to the source by calling goback, which
recursively follows the backpointers until the source is reached and the route can
be Printed, which is assembled on the way. Otherwise, the auxiliary function
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sendchild is called in the body of find for each neighbor (using Foldr to it-
erate over the list of neighbors), and sendchild itself recursively invokes find
on the given neighbor’s address using the OnNeighbor construct. The remaining
computational resources are equally distributed among all neighbors (the corre-
sponding amount is computed in childrb). For a more detailed discussion and
analysis of this program and its somewhat surprising behavior we refer to [48].

LetRec [’goback = Lam [’k,’route]
If (ThisHostIs (GetSource empty-exl))
Then (Print ’route)
Else (Let [’nexthop = (Get ((String ""),’k))]
Let [’d = (GetDevToHost ’nexthop)]
Let [’newroute = (Cons (’d,’route))]
(OnNeighbor ((Chunk (’goback, (’k,’newroute))),
’nexthop, (GetRB empty-exl), ’d)))]

LetRec [’find = Lam [(’dest,’previous,’k)]
If (Exists ((String ""),’k))
Then Dummy
Else ((Put ((String ""), ’k, ’previous, (Int 200)));
If (ThisHostIs ’dest)
Then (’goback (’k,Nil))
Else (Let [’neighbors = (GetNeighbors empty-exl)]
Let [’srcdev = (GetSrcDev empty-exl)]
Let [’childrb = ... ] ***x divide up rb
Let [’sendchild = Lam [’n,’u] #*** emit a find packet
(OnNeighbor ((Chunk (’find,
(’dest, (Snd ’n),’k))),
(Fst ’n), ’childrb, (Snd ’n)))]
(Foldr (’sendchild,’neighbors,Dummy))))]

(’find ((Addr dest), (GetSource empty-exl), (GenerateKey empty-exl)))

In summary, our specification fully captures the intent of the specifications
[31] and [32], but has the benefit of being both formal and executable. Further-
more, we have illustrated in [47] how this specification can be used at very dif-
ferent levels [16] ranging from execution of test configurations, symbolic search,
and model checking analysis to verification of general properties of programs
and of the language itself [48].

Furthermore, our formal specification of the PLAN semantics clarifies a num-
ber of issues that remain vague or unsatisfactory in the original mathematical
specification [31] such as: the scope of names and the notion of binding (in par-
ticular in connection with recursive programs), the handling of environments
(especially when packets are shipped), the treatment of side-effects of iterators,
the mechanism of exception handing, and the concurrent and distributed nature
of packet execution. By treating a less restrictive language xPLAN the seman-
tics was simplified without sacrificing the essential features of PLAN (the proper
PLAN subset is characterized by a simple type system).
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Last but not least, our specification captures the general idea of a program-
ming language for mobile computation based on an imperative A-calculus with
features such as recursive function calls with a simultaneous change of location,
a concept that is very different from the notion of remote procedure calls, which
are static and synchronous in nature.

5 CIAO - A Calculus of Imperative Active Objects

CIAO is an ongoing attempt to develop a core language for concurrent object-
oriented programming that is capable of representing practically relevant sub-
languages of actual programming languages like Java, C#, and C++. Although
some features have not been covered yet, the current version of CIAO serves
as an interesting illustration of the general approach to language design and
semantics proposed in this paper.

Many sucessful attempts to develop and study calculi for object-orientation
exist in the literature. There is an entire line of research on A-calculus represen-
tations of object-oriented languages [23, 8, 30,42] and the development of special
calculi for object-oriented prgramming such as Abadi and Cardelli’s ¢-calculus
[3]. In addition, a number of Java-like core languages have been used in the
literature for different purposes, Classic Java [20], Featherweight Java [29], and
Middleweight Java [21] being just some examples. Since most work in this area
is focussed on the challange of types systems for object-oriented programming,
only a few approaches deal with calculi for concurent object-oriented languages,
notable exceptions being [39], [17], [22], [9]. In contrast to most of these refer-
ences, which introduce a calculus to study particular aspects, our objective is
rather modest and pragmatic, in the sense that we are interested in a calculus
with a small representational distance to existing practical languages, and the
main emphasis is on an easy-to-understand syntax-based presentation of its op-
erational semantics following the systematic, executable, and formal approach
introduced in this paper.

The main inspiration for CIAO comes from the imperative version of Abadi
and Cardelli’s ¢-calculus [3], but we deviate from it and extend it in a few im-
portant points. First, we do not aim at minimality and simply define CIAO as
an extension of our call-by-value A-calculus base language with standard pro-
gramming constructs. Similar to the ¢-calculus, objects are represented as a set
of labeled attributes, which represent either fields or methods. While methods
can be seen as passive code, objects in CIAO can also carry active code, that
is code that is executed while the object is in existence. Furthermore, objects
in CIAO are intended to represent both classes and their instances, and the
calculus assumes a particular organization, namely a two dimensional hierarchy
of classification and inheritance. In the first dimension, each non-class object
has a distinguished attribute labelled class, which refers to the class object it
is an instance of. The second dimension expresses inheritance, more precisely
single inheritance in the current version of CIAO. To this end, each object has
an attribute labelled super which refers to the object that it extends. Hence,
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an object in the traditional sense corresponds to a chain of partial objects in
CIAO. Apart from this explicit two-dimensional organization, which is exploited
by operations like method invocation, another noteworthy deviation from the
¢-calculus is that a means for method update does not exist, the justification
being that this feature is not present in the established real-world programming
languages we want to model.

5.1 Syntax

The syntax of CIAO extends the syntax of our base language as follows. We
first add some reserved identifiers. The identifiers self and this are usually
used for the formal self parameter of a class and the formal this parameter of
each method, although this convention is not a strict requireent. The identifier
unused will be used only to introduce some syntactic sugar and is by convention
never referenced.

ops super class new value self this unused : -> Id .

We also add constants denoting references. We have a distinguished Null
reference and references to objects stored in the heap are constructed using < p
>.

op Null : -> Const .
op <_> : Nat -> Const .

We also add a standard iteration construct which was not included in our
base language:

op While_Do_ : Ex Ex -> Ex .

Now there are the following additional constructs specific to concurrent object-
oriented programs. We have an explicit syntax for an active object, namely
Object < sid : cid | aexl | mexl | cex >. Here, cid is a class identifier, aexl
and mexl are the lists of fields and methods, respectively, and cex is the active
code associated with the object. The identifier sid, which is called the formal
self parameter and will usually be denoted as self, is bound by this construct
and can can be used in mexl and cex to refer to the object itself, e.g. to access
the object’s own attributes. If aexl or mexl is the emty list we simply omit it
for better readability. Similarly, we omit the active code cex if it is just Skip. In
fact, this is the special case of a passive object prevailing in most object-oriented
programming languages today.

sorts AttrEx .
op _:_ : Id Ex -> AttrEx .
op Object‘<_:_|_I_I_> : Id Id AttrExList AttrExList Ex -> Ex .
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Objects can then be created on the heap using New, which returns a reference
to the given object. Hence, the New construct can be used to create instances
of classes, and hence will typically be called by a factory method new of the
corresponding class object, but New will also be used to create boxed versions
(object representations) of the elements of basic data types, which are stored in
the heap and can be subject to modifications. In fact, the is uniform way to deal
with variable assignments in CIAQO.

op New_ : Ex -> Ex .

Given an object reference ex, we use ex . id to access the field labelled id,
and we use ex . id := ex’ to update the field with the value of ex’. Finally,
we have a generalized method invocation ex @ ex’ . id ( exl ), which invokes
the method id with arguments exl on the objects referenced by ex, but uses the
object referenced by ex’ for dynamic binding, i.e. the determination of method
code to be executed. Usually, ex and ex’ will refer to the same object, but there
are common programming patterns where we explicitly wish to restrict dynamic
binding, e.g. to methods of the super object.

op _._ : Ex Id -> Ex .
op _._=_ : Ex Id Ex > Ex .
op _@_._¢(_¢) : Ex Ex Id ExList -> Ex .

Since we now need to work modulo an instance of CINNI for CIAO syntax-
specific equations corresponsing to the above constructs are added in the sys-
tematic way layed out in Section 2.

5.2 Semantics

Along with the new syntactic constructs we also extend our classification of
expressions into values and non-values, as shown below. It is noteworthy that
in order to evaluate an object only its fields will be evaluated, but neither its
methods (which by convention are A-abstractions, and will not be evaluated
before their are invoked) nor its active code (which will be not evaluated before
the object is stored in the heap).

sort AttrVal AttrNonVal .

mb (id : val) : AttrVal .
mb (id : nval) : AttrNomnVal .

mb (Object < sid : id | avall | mexl | ex >) : Val .
mb (Object < sid : id | (aexl,anval,aexl’) | mexl | ex >) : NonVal .

mb (New ex) : NonVal .
mb (ex . id) : NonVal .

mb (ex . id = ex’) : NomVal .
mb (ex @ ex’ . id (ex1)) : NomnVal .
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Correspondingly, we extend our hole filling operator <?:=_>_ to the new
syntactic constructs in the obvious way.

The next step is the definition of the global state. Since we are dealing with
potentially interacting concurrent objects, a multiset is the most suitable rep-
resentation. In order to generate objects using New, the global state needs to
maintain information about the next available heap reference Fresh(p). For the
runtime representation of an object in the heap we use a syntax similar to the
notation for objects in programs (sort Object below). The active code, however,
is not only an expression, but an entire reduction machine state. We introduce
an auxiliary function setRedState to update this component.

sort Fresh .
op Fresh : Int -> Fresh .

sort Object .
op <_:_I_I_I_> : Nat Id AttrExList AttrExList RedState -> Object .

op setRedState : Object RedState "> Object .
eq setRedState(< p : cid | aexl | mexl | rstate >, rstate’) =
<p:cid | aexl | mexl | rstate’ > .

A configuration (sort Configuration) is then formalized as a multiset over
these two sorts, but more often we are interested in pure multisets of objects
(sort Objects).

sort Objects Configuration .

subsort Object < Objects < Configuration .
subsort Fresh < Configuration .

op empty-conf : -> Objects .

op __ : Configuration Configuration -> Configuration
[assoc comm id: empty-conf]
op __ : Objects Objects -> Objects

[assoc comm id: empty-conf]

A global state (sort Everything) is not exactly a configuration, but uses a
toplevel constructor {{_}} to denote an explcitly closed configuration, that is
a configuration that contains all objects. This notion is needed, as we will see
later, because the effect of operations on an object is not necessarily restricted
to the object itself, but in principle may involve any object of the configuration.

sort Everything .
op {{_}} : Configuration -> Everything .

Iteration rule Now we a prepared to present the transition rules associated with
each new syntactic construct of CIAO. We begin with the reduction rule for the
iteration construct, which is simply defined in terms of its unfolding;:
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rl RedState(cx, (While ex Do ex’))
=>
RedState(cx, (If ex Then (Do ex’ ; (While ex Do ex’))))

Object creation rules The construct New (ex) allows us to create a runtime object
representing ex in the heap. The first two rules are the control rules. As we can
see from the second rule, to evaluate an object it is sufficient to evaluate its
fields. The third rule deals with the case where ex is an object expression. Here,
the formal self parameter sid is instantiated with the reference to the object
itself. Recall that sid is bound in the methods mex!’ and in the exctive code
ex’, but not in the fields avall’. This is consistent with the fact that the fields
are evaluated before the object is stored, but the actual reference of sid becomes
available only when the object is actually stored in the heap.

rl RedState(cx, (New nval))
=>
RedState(<< ? := (New ?)>> cx, nval)

rl RedState(cx, (Object < sid : cid | avall’, (id’ : nval’), aexl’
| mexl | actex >))
=>
RedState(<< ? := (Object < sid : cid | avall’, (id’ : ?), aexl’
| mexl | actex >) >> cx, nval’)

rl Fresh(p)

< q: cid | aexl | mexl

| RedState(cx, (New (Object < sid : cid’ | avall’

| mexl’ | ex’ >))) >

=>
Fresh(s p)
< q: cid | aexl | mexl

| RedState(cx, < p >) >
<p: cid’ | avall’ | [sid := < p >] mexl’

| RedState(?, [sid := < p >] ex’) > .

The subsequent reduction rule takes care of the case where ex is an integer,
which is encapsulated as an object when stored in the heap. Similar rules exist
for other constants.

rl Fresh(p)
< q : cid | aexl | mexl | RedState(cx, (New (Int int))) >

=>

Fresh(s p)

< q: cid | aexl | mexl | RedState(cx, < p >) >

< p : ’Integer | value : (Int int) | none | nocode > .

Object-oriented programming languages support boxed and unboxed repre-
sentations of atoms, both with the capability to modify the content. In practice,
unboxed representations are more efficient, but boxed representations offer the
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advantage of a uniform object-oriented treatment of data. Unboxed representa-
tions of this kind can be understood as an optimization of boxed representations
and hence are not incorporated into CIAO to avoid conceptual redundancy.
CTAO, however, allows unboxed representations without the capability of modi-
fication to be used for the purpose of functional computation and to serve as an
intermediate step in the construction of boxed representations using New as in
the previous rule.

The following syntactic sugar can be introduced for explicit unboxing and
the usual notation of variable assignment:

op unbox_ : Ex -> Ex .
op _:=_ : Ex Ex -> Ex .

eq (unbox ex) = ex . value .
eq (ex := ex’) = (ex . value = ex’)

Field access and update rules Before we give the rules for operations on objects
we first introduce a few auxiliary functions to access and modify fields and to
access methods. The search for the matching label follows the inheritance chain
given by the super field if it exists. Note that these are all partial functions,
because the search maybe unsuccessful, and the membership operator : : is used
to check definedness. Below we use obj and objs to range over Object and
Objects, respectively.

op super : AttrExList "> Nat .
ceq super(aexl) = p if < p > := get(aexl,super)

op get : AttrExList Id "> Ex .
eq get(((id : ex),aexl), id) = ex .
ceq get(((id : ex),aexl), id’) = get(aexl,id’) if id =/= id’

op getField : Objects Nat Id "> Ex .
eq getField(< p : cid | aexl | mexl | rstate > objs, p, id) =
if (get(aexl,id) :: Ex) then get(aexl,id)
else getField(objs, super(aexl), id) fi .

op getMethod : Objects Nat Id "> Ex .
eq getMethod(< p : cid | aexl | mexl | rstate > objs, p, id) =
if (get(mexl,id) :: Ex) then get(mexl,id)
else getMethod(objs, super(aexl), id) fi .

op set : AttrExList Id Ex > AttrExList .

eq set(((id : ex),aexl), id, ex’) = ((id : ex’),aexl)

ceq set(((id : ex),aexl), id’, ex’) = ((id : ex),set(aexl,id’,ex’))
if id =/= id’

op setField : Objects Nat Id Ex "> Objects .

eq setField(< p : cid | aexl | mexl | rstate > objs, p, id, ex’) =
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if (set(aexl,id,ex’) :: AttrExList)
then < p : cid | set(aexl,id,ex’) | mexl | rstate > objs
else < p : cid | aexl | mexl | rstate >

setField(objs, super(aexl), id, ex’) fi

Finally, we will need an auxiliary notion of a multiset of objects with a
distinguished element, which we write as a pair of an object and all remaining
objects. The function setField is lifted to this structure.

sort ObjectsPair .

op ‘(_‘,_¢) : Object Objects -> ObjectsPair .

op __ : Object ObjectsPair -> ObjectsPair .
eq obj (obj’,objs’) = (obj’,obj objs’)

op setField : ObjectsPair Nat Id Ex "> ObjectsPair .

eq setField((< p : cid | aexl | mexl | rstate >, objs), p, id, ex’) =
if (set(aexl,id,ex’) :: AttrExList)
then (< p : cid | set(aexl,id,ex’) | mexl | rstate >, objs)
else (K p : cid | aexl | mexl | rstate >,
setField(objs, super(aexl), id, ex’)) fi

eq setField((obj, < p : cid | aexl | mexl | rstate > objs), p, id, ex’) =
if (set(aexl,id,ex’) :: AttrExList)
then (obj, < p : cid | set(aexl,id,ex’) | mexl | rstate > objs)
else < p : cid | aexl | mexl | rstate >
setField((obj,objs), super(aexl), id, ex’) fi [owise]

The semantics of language constructs for accessing and updating fields can
be now formulated as follows. First we give the control rules, and then the two
reduction rules for field access (< p > . id) and field update (< p > . id :=
val’) respectively. Using the toplevel constructor {{_}} we make sure that both
of these rules have access to all objects in the heap. Both rules involve two
steps, first the information in the object referenced by p is accessed or updated,
and then the reduction machine state of the active object which executes the
instruction is updated.

rl RedState(cx, (nval . id))
=>
RedState(<< ? := (? . id)>> cx, nval)

rl RedState(cx, (mval . id = ex’))
=>
RedState(<< ? := (? . id = ex’)>> cx, nval)

rl RedState(cx, (val . id = nval))

=>
RedState(<< ? := (val . id = ?)>> cx, nval)
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crl {{ Fresh(m) obj objs }} => {{ Fresh(m) obj’ objs }}

if < q : cid | aexl | mexl | RedState(cx, < p > . id) > := obj /\
ex’ := getField(obj objs, p, id) /\
obj’ := setRedState(obj, RedState(cx, ex’))

crl {{ Fresh(m) obj objs }} => {{ Fresh(m) obj’’ objs’ }}

if < q : cid | aexl | mexl | RedState(cx, < p > . id = val’) > := obj /\
(obj’, objs’) := setField((obj,objs), p, id, val’) /\
obj’’ := setRedState(obj’, RedState(cx, val’))

Method invocation rules The remaining operation is method invocation. There
are three control rules and then a reduction rule for<p>@<p’ > . id (wvall ). In
the control rules it is critical for the correct semantics of method invocations (in
the presence of exceptions) that the arguments are evaluated before the method
lookup takes place. The reduction rule again proceeds in two steps. First, it looks
up the method code, which is expected to be a A-abstraction of the form Lam [
id', idl’ 1 ex. The method lookup will start at the object referenced by < p’ >,
which can be higher in the inheritance hierarchy than the the object referenced
by < p > on which the method is invoked. The first formal parameter is called
the formal this parameter and usually denoted by this. In the second step, this
parameter is substituted by < p >, and the remaining formal parameters are
substituted by the evaluated arguments vall of the method invocation.

rl RedState(cx, (nval @ ex . id (ex1’)))
=>
RedState(<< ? := (? @ ex . id (ex1l’)) >> cx, nval)

rl RedState(cx, (val @ nval . id (ex1’)))
=>
RedState(<< ? := (val @ ? . id (ex1’)) >> cx, nval)

rl RedState(cx, (val @ val’ . id (vall’, nval’, exl’)))
=>
RedState(<< ? := (val @ val’ . id (vall’, 7, exl’)) >> cx, nval’)

crl {{ Fresh(m) obj objs }} => {{ Fresh(m) obj’ objs }}
if < q : cid | aexl | mexl |
RedState(cx, < p > @ < p’ > . id (vall)) > := obj /\
(Lam [id’,id1’] ex) := getMethod(obj objs,p’,id) /\
obj’ := setRedState(obj,
RedState(cx, (Lam [id’ := < p >] [idl’ := valll ex)))

Since in the most common case the location of dynamic binding and the
object of method invocation are identical, we introduce the following syntactic
sugar:

op _._(_) : Ex Id ExList -> Ex.
eq ex . id (exl) = ex @ ex . id (exl)
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In the object-oriented programming style, method calls are often used to
communicate among objects using well-defined interfaces, which is why they are
traditionally interpreted as messages that can be understood by their receivers.
Although in truely concurrent setting it is very tempting to replace this notion of
method invocation with an asynchronous message exchange between concurrent
threads of control as for instance in [39], CIAO keeps the common sequential
notion of method invocation, where the thread of the caller rather than the
callee is evaluating the method body. The rationale for this descision is again
the goal the reduce the gap to actual programming languages. Clearly, this does
not exclude an asynchronous message-passing style where the only function of
such a method invocation is the (simulated) transmission of a message.

5.3 Examples

In the remaing part of this section we give a few simple examples showing how
standard features of object-oriented languages can be expressed in CTAO. Al-
though our approach is not specific to Java, we use Java-like code fragments and
give their representation in CIAQO. Hence the examples also convey an idea of
how a representation mapping from a Java-like language into CIAO could be
defined.

We begin with a program introducing a single class Cell of memory cells
which can hold integer values. The program generates two instances of this class
and modifies them subsequently.

class Cell
{
int val = 0;
Cell() {}
Cell(int init) { val = init; }
int get() { return val; }
void set(int newval) { val = newval; }

}

Cell celll = new Cell(5);
Cell cell2 = new Cell(6);

celll.set(7);
cell2.set(celll.get());

The representation in CIAO introduces a corresponding class object named
’Cell, which serves as a factory for its object instances. The operator new, which
is usually a built-in operator in object oriented languages, become an explicit
method of the class object. The invocation of new creates an instance of the class
with the default initialization. The default initialization is explicitly overwritten
by the more specific class initializer >Cell. This behaviour is implicit in the
constructor Cell of the above Java-like program. In other words, a non-default
initializer which is part of the object contructor is always made explicit in our
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representation. Also note that the object of each field access is make explicit
using the formal self parameter.

Let [’Cell =
New Object < self : ’Class
|| new : Lam [this]
New Object < self : ’Cell

| >val : Int O

| ’Cell : Lam [this,’init] self . ’val = ’init,
’get : Lam [this] self . ’val,
’set : Lam [this,’newval] self . ’val = ’newval [> [|> ]

Let [’celll ’Cell . new ()] ’celll . ’Cell (Int 5);
Let [’cell2 = ’Cell . new ()] ’cell2 . ’Cell (Int 6);

’celll . ’set (Int 7);
’cell2 . ’set (’celll . ’get ()

The next example deals with inheritance. The class Cell from above is ex-
tended by a counter which keeps track of the number of modifications of each
instance of this class. The constructor CountingCell reuses the constructor Cell
of the super class, as indicated by the invocation of super. Similarly, the method
set in the new subclass CountingCell overwrites set in Cell, but reuses the
old code using a method invocation qualified by super.

class CountingCell extends Cell
{
int counter = O0;
CountingCell(int init) { super(init); }
void set(int newval) { counter = counter + 1; super.set(newval); }

}

Cell celll = new CountingCell(5);
Cell cell2 = new CountingCell(6);

celll.set(7);
cell2.set(celll.get());

In the CIAO representation we again create a class object for the new subclass
with a new method to create instances. In this case each instance has a super
field which is initialized with an instance of the superclass, i.e. an instance of
Cell. The invocation of super in CountingCell is represented by following the
inheritance chain given by the super field and explicitly invoking the initializer
of the super class. The invocation of super in set has a different semantics. It
is represented by invoking the set method of the super class on the object this
on which set is invoked. Here it is essential that, the scope of dynamic binding
is explicitly restricted to the super class (and everything above).
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Let [’CountingCell =
New Object < self : ’Class
|| new : Lam [this]
New Object < self : ’CountingCell
| super : ’Cell . new (),
’counter : Int O
| ’CountingCell : Lam [this,’init]
self . super . ’Cell (’init),
’set : Lam [this, ’newvall]
self . ’counter = self . ’counter + Int 1 ;
this @ (self . super) . ’set (’newval) [> [> ]

Let [’celll = ’CountingCell . new ()] ’celll . ’CountingCell (Int 5);
Let [’cell2 = ’CountingCell . new ()] ’cell2 . ’CountingCell (Int 6);

’celll . ’set (Int 7);
’cell2 . ’set (’celll . ’get ()

For a more concise formulation of the creation of classes and the pattern of
class extension we introduce some syntactic sugar:

op New‘Class_<_|_|_|> : Id Id AttrExList AttrExList -> Ex .
op New‘Class_Extending <_|_|_|> : Id Ex Id AttrExList AttrExList -> Ex .

eq New Class cid < sid | aexl | mexl [|> =
New Object < self : ’Class
|| new : Lam[unused]
New Object < sid : cid | aexl | mexl [|> [> .

eq New Class cid Extending ex < sid | aexl | mexl [> =
New Object < self : ’Class
|| new : Lam[unused]
New Object < sid : cid | super : (ex . new ()), aexl | mexl [> [> .

Using these abbreviations the previous representation can be rewritten in a
form that is very close to the original Java-like code:

Let [’Cell =
New Class ’Cell < self
| val : Int O

| ’Cell : Lam [this,’init] self . ’val = ’init,
’get : Lam [this] self . ’val,
’set : Lam [this,’newval] self . ’val = ’newval [|> ]

Let [’CountingCell =
New Class ’CountingCell Extending ’Cell < self
| ’counter : Int O
| ’CountingCell : Lam [this,’init] self . super . ’Cell (’init),
’set : Lam [this, ’newval]
self . ’counter = self . ’counter + Int 1

>
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this @ (self . super) . ’set (’mewval) [|> ]

A slight variation of the previous example uses a single class variable (rather
than an instance variable) as a counter the keep track of the number of modifi-
cations of the counter across all instances. The code is shown below.

class Cell
{
static int counter = 0;
int val = 0;
CellO{}
Cell(int init) { val = init; }
int get() { return val; }
void set(int newval) { counter = counter + 1; val = newval; }

Cell celll = new Cell(5);
Cell cell2 = new Cell(6);

celll.set(7);
cell2.set(celll.get());

To deal with class variables each instance explicitly maintains a class field,
which is initialized by the formal self parameter of the class object (and not
the formal self parameter of the instance). This is correctly represented below,
because the second formal self parameter of the instance is not in the scope of the
field section of an object. With the class field being available, all class variable
references are explicitly qualified using self . class.

Let [’Cell =
New Object < self : ’Class
| ’counter : Int O
| new : Lam [this]
New Object < self : ’Cell
| class : self,
’val : Int O
| °Cell : Lam [this,’init] self . ’val = ’init,
’get : Lam [this] self . ’val,
’set : Lam [this,’newval]

self . class . ’counter = self . class . ’counter + Int 1 ;
self . ’val = ’newval |> [> ]

Let [’celll = ’Cell . new ()] ’celll . ’Cell (Int 5);

Let [’cell2 = ’Cell . new ()] ’cell2 . ’Cell (Int 6);

‘celll . ’set (Int 7);
’cell2 . ’set (’celll . ’get ()
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Finally, we give an example illustrating the use of active objects. All objects
encountered until now are passive, that is their code section was empty, abbre-
viating the trivial statement Skip. Below, we use threads, which in a Java-like
language are object of special class Thread, which abstracts from system-level
details of thread implementation. Our example below is a trivial application
of threads, but it is sufficient to convey the main idea. We introduce a class
ThreadExt which extends Thread with a local thread state captured by the in-
stance variable x and a piece of code defined by the method run. This code
will be executed when the thread is started, using the method start which is
inherited from Thread. Two trivial concurrent threads are created and started
in the example below.

class ThreadExt extends Thread
{

int x = 0;

public void run() { x = 1; }
}

ThreadExt threadl = new Thread();
ThreadExt thread2 = new Thread();

threadl.start();
thread2.start();

Using the syntactic sugar introduced earlier, the CIAO representation of
this program is as follows. First, the built-in Thread class needs to represented
explicitly. The idea is that it encapsulates the thread state in an instance variable
state, which is initialized with an active code upon invocation of start. The
active object then invokes that actual code of the thread. This encapsulation
into an additional active object is essential, because the active code of CIAO
obejcts executes as soon as the object comes into existence, as opposed to the
behavior of threads which can be created and then need to be started explicitly.!

Let [’Thread =
New Class ’Thread < self
| ’state : Null
| run : Lam [this] Skip,
’start : Lam [this]
self . ’state = New Object < self ||| this . ’run () > [|> ]

Let [’ThreadExt =
New Class ’ThreadExt Extending ’Thread < self
| ’x : Int O
| run : Lam [this] self . ’x = Int 1 [>]

1 A detail that we glossed over here is that restarting the CIAO thread creates another
active object. This is not relevant for the semantics of our example, but does not
correspond to the Java semantics for general programs. It is easy to enhance our
representation to handle details like this.
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Let [’threadl = ’ThreadExt . new ()]
Let [’thread2 ’ThreadExt . new ()]

’threadl . ’start ();
’thread2 . ’start ()

Just as in the case of PLAN, CTAO programs can be executed and analyzed
using the tools offered by Maude. What is particularly appealing is that there
is hardly any gap between the dynamic representation of the program and the
program itself, so that program errors, if not explicitly handled, will simply leave
the program in a state that directly corresponds to the remaining part of the
program, and hence is easy to understand. Another interesting practical aspect
of our representation of objects, is that it uses a syntax similar to the syntax for
rule-based object-oriented programming [39] in Maude, which should facilitate
the integration between Maude and languages supporting the classical style of
object-oriented programming.

Finally, we should point out that there is a lof of room for the extension of
our calculus. Common control flow constructs as known from C, C++, Java, C#,
have already been added to CTAO, but we have intentionally not included them
here to avoid too much syntactic overhead. However, there are more features,
e.g. casting, arrays, synchronization, interfaces, multiple inheritance, which still
need to be added in a reasonably clean way. Other features, e.g. the access
to hidden instance variables, seems less important but could be supported if
necessary. Typechecking, overloading, modules/packages and access control are
features that should be treated at an earlier stage, i.e. are outside of the scope
of the operational semantics. High-level reflection as available in Java could be
treated by augmenting the class objects with additional information, but low-
level reflection (e.g. stack/bytecode inspection) and dynamic class loading are
obviously at odds with the abstract syntactic approach, just as many other
system-level features provided via libraries. Finally, there is another whole array
of problems concerned with the semantics multi-threaded memory models. Our
viewpoint is that to keep the semantics syntax-based and comprehensible the
best solution is to restrict the class of programs to those whose abstract behavior
does not rely on the specific memory model. Typechecking techniques for race-
free programs like those of [7] look like a promising solution here.

6 Conclusions

The syntax-based approach to semantics has been used to give operational se-
mantics to languages with functional, imperative and/or concurrent features:
program equivalance for Scheme-like languages [18, 19, 43]; program equivalence
in actor languages [4, 36]; uniform semantics and program equivalence for a fam-
ily of higher-order imperative languages [49]; interaction equivalence of specifi-
cation diagrams [44]; and to provide a tool for developing operational semantics
and interpreters for programming languages [52]. With the exception of [52],
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these efforts have not developed executable semantics or automated analyses. To
the best of our knowledge the combination of explicit substitutions and reduc-
tion contexts to obtain an executable specification of a Felleisen-style semantics
is new. It has subsequently been used in a Maude implementation of Specification
Diagrams [51].

We have illustrated this syntax-based approach using two applications: PLAN,
a packet language for active networks that has been developed and implemented
before we started our formalization efforts, and CIAQO, a calculus of imperative
active objects, that is an example of how language design and prototypeing can
go hand-in-hand with the development of a formal semantics. The unique com-
bination of functional/imperative programming and concurrency aspects makes
both PLAN and CIAO good candidates to illustrate the use of rewriting logic as
a unifying semantic framework. On the conceptual level rewriting logic is general
enough to bridge the gap between these different aspects, and on the practical
level it comes with an efficient implementation in terms of the Maude rewriting
engine, so that in both cases our semantics serves as an executable prototype
implementation of the language, and at the same time can be used as a basis
for various forms of analysis as well as mathematical or formal reasoning about
programs, or more generally about the semantics itself.

It is noteworthy that the syntax-based approach to semantics is not the only
approach that is well-supported by rewriting logic and Maude. In fact, several
aproaches are discussed in [40], and have been applied to other programming
languages including Java [1] and [2]. Both a direct formalization of the Java
virtual machine and a continuation-based semantics for a large sublanguage of
Java have been developed in these references.

Methodologically, both of our applications suggest a two-step approach to
programming language semantics. The first step is to isolate a well-understood
and mathematically reasonably elegant core calculus, which in both of our ex-
amples is an extension of a call by-value A-calculus base language. The second
step is to define representation mappings from the full language into the core
language. In the case of PLAN, the representation mapping into xPLAN is es-
sentially an inclusion, that is PLAN programs can be regarded as a syntactically
restricted subset of xPLAN programs [47]. In the case of CIAO, which as we ex-
plained is subject of ongoing work, the objective is to further extend the calculus
to serve as a core language for multiple real world languages, so that we would be
concerned with several different representation mappings, which naturally will
be somewhat more complicated. So far we have only given a few examples of the
application of such a mapping for Java-like programs, but the mapping remains
to be formalized and implemented for a large class of programs. Hence, more
work is needed on two fronts: First, for each language of interest (Java, C+#,
and C++ are obvious candidates) a subset of reasonably well-behaved programs
needs to be defined, and second a formal representation mapping for this class
of programs needs to be developed. This could again be done in Maude as an
executable specification and/or implemented as an external tool.
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Another interesting direction that we have experimented with is the use of the
executable semantics for symbolic ezecution of programs, that is for the execution
of potentially incomplete programs, with holes represented by metavariables.
Since such programs can be regarded as the representation of an entire class
of conrete programs, symbolic execution could be used like partial evaluation,
namely to execute e.g. functions or methods of a program without knowing
the concrete arguments. Clearly, symbolic execution can be a useful tool to
simplify the analsis and verfication of programs, but there is another interesting
application. The abstract computation performed by symbolic execution can
then be added itself as a single step rewrite rule to the language semantics, so
that each concrete execution which falls ito the class represented by the new rule
can be executed in a single step. Due to interation constructs and data/control
dependencies there are some limitations to the number of steps that can be
covered before the symbolic execution ends, but by studying some example we
found that significant speedups can be achieved using this approach, which we
simply call symbolic optimization, and leave as another interesting area for future
work.
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