05101 Executive Summary
Scheduling for Parallel Architectures: Theory,
Applications, Challenges

— Dagstuhl Seminar —

E. Altman', J. Dehnert?, C. W. Kessler? and J. Knoop*

1 IBM TJ Watson Research Center, US
erik@watson.ibm.com
2 Transmeta - Santa Clara, US
dehnertj@acm.org
3 Link6ping Univ., SE
chrke@ida.liu.se
4 TU Wien, AT

knoop@complang.tuwien.ac.at

Scheduling, the task of mapping computation units to time slots on computing
resources for execution, is important for the effective use of resources in all
kinds of parallel systems, ranging from the level of more coarsepgrain tasks in
multiprocessors, clusters and computational grids, to mediumggrain tasks at the
loop level, down to instructionylevel parallelism (ILP).

Scheduling issues are of crucial importance in very diverse areas ranging from
operating systems and realtime systems to network management to static and
dynamic program optimization and code generation. Likewise, they evolve on
very different levels of granularity, from coarse grain task and job scheduling
over loop scheduling to fineygrain instruction scheduling. Though highly inter-
related, these fields are tackled by usually independently working communities.
However, emerging processor architectures such as chip multiprocessors will de-
mand effective hybrid scheduling strategies that unify previously separate scopes
of scheduling.

In practice, scheduling problems often do not appear in isolation but come
with a domain-specific context that—explicitly or implicitly—introduces inter-
dependencies with other optimization problems. For instance, when compiling
for parallel execution platforms, decisions made in scheduling depend on and
influence other aspects of the problem of generating efficient parallel code, such
as resource allocation, clustering, or program transformations, such that sche-
duling can rarely be considered as an isolated problem. Such interdependences,
even though perhaps most apparent for instructionglevel parallelism, appear at
all levels of parallelism and are solved by various techniques, including heuristics,
integer programming, dynamic programming, or genetic programming. Integra-
ted approaches are generally more flexible but suffer from an increased problem
complexity.

Interestingly, the research communities for task-level, loop-level and instruction-
level scheduling appear to be quite separated from each other. Furthermore, there

Dagstuhl Seminar Proceedings 05101
Scheduling for Parallel Architectures: Theory, Applications, Challenges
http://drops.dagstuhl.de/opus/volltexte/2005/323



2 E. Altman, J. Dehnert, C. W. Kessler and J. Knoop

appears to be a gap between the theoretical foundations of scheduling, formu-
lated in terms of abstract machine models, and the algorithms developed in
both academia and industry for concrete scheduling problems in compilers and
run-time systems for parallel computer architectures. This gap is exacerbated
by requirements that practical schedulers deal with the complexities of irregular
architectures.

The purpose of this seminar was therefore to gather leading experts from
these scheduling communities, to identify common approaches, techniques, fra-
meworks and tools, and to stimulate crossyfertilization between the various sche-
duling communities. Moreover, we intended to bridge the gap between schedu-
ling theory and methods currently applied in compilers and rungtime systems
for parallel architectures. A third goal was to encourage a constructive dialog
between scheduling algorithm designers and developers of parallel architectures,
specifically in the embedded systems domain.

31 researchers accepted the invitation to the seminar and met 6-11 March
2005 at Schloss Dagstuhl, Germany. The seminar participants represented a
broad spectrum of research on scheduling, including instruction scheduling, job
scheduling, task scheduling, loop scheduling, parallel computer architecture, and
scheduling theory.

With the invitation and the opening address, we provided the following gui-
ding questions:

— How can we bridge the gap between scheduling theory and practice?

— Can the practical ILP scheduling problems broaden the theory models?

— In particular, do recent micronarchitectural trends such as clustered archi-
tectures add fundamentally different factors to the problem?

— Is there current theory that can lead to interesting practical algorithms?

— What are the interference effects between taskrplevel, loopylevel and instruc-
tionlevel scheduling?

— Can existing scheduling approaches be transferred to other problem domains,
granularities, or architecture models?

— What are the phasenordering effects, and the techniques, potential, and li-
mitations of integrating scheduling with other transformations or code ge-
neration phases?

— Can we define generic scheduling approaches for flexible optimization goals
(execution time, stack/register space, energy consumption)?

A central goal of this seminar was thus to bring together leading experts
of the various communities to foster discussions on the usability and usefulness
of approaches developed for specific areas and the impact they may have to
others. By means of crossyfertilization and synergy the seminar should contri-
bute to both a better understanding of the key issues of scheduling and to further
advancing the state-of-the-art in the various fields. The specific atmosphere of
Dagstuhl Seminars, which can be characterized by openness, accessibility and co-
operation, and which is supported by Schloss Dagstuhl’s architecture, its services
and facilities, encourages both formal and informal meetings and discussions and
therefore provided a perfect environment to achieve these goals.



Scheduling for Parallel Architectures: Theory, Applications, Challenges 3

The seminar started with a short introductory presentation from each parti-
cipant, with his/her view on the topic and expectations for the seminar. During
the seminar week, there were 26 presentations by the participants, discussions
in plenum and in smaller working groups, and work-in-progress sessions. The
presentation abstracts are given in the remainder of this seminar report.

At the end of the seminar, the general impressions brought up in the final
wrap-up discussion were thoroughly positive: The representatives of the various
scheduling communities, albeit being different in scope, application domain, and
even in the terminology used, really understood each other and could learn and
got inspirations from each other’s presentations. For instance, a constructive
dialog was initiated between compiler scheduling and job/task scheduling theo-
ry researchers, providing in the one direction new problem formulations and
application areas for the theory community and in the other one the wish from
the practitioner’s side to the theory community for better communication of the
constraints and limitations of theoretical solutions, such as assumptions in the
model. There was an insight into the problem of different scheduling commu-
nities and of insufficient communication of results e.g. between theory and the
various application domains, leading to undesirable effects such as reinvention
of the same or similar ideas in different fields and with different terminology.
The need for bridging the gap between scheduling theory and practice was re-
cognized, although a fundamental solution to this problem, of course, cannot
be provided within the scope of a single seminar week. There were suggesti-
ons to create a common web page collecting resources, existing results, ongoing
work, open problems etc.; to compile a common list of most important litera-
ture references, to agree on a common benchmark suite for scheduling problems
that covers a broader range of problems and in particular includes malleable
tasks, and even to build a common experimental compiler platform that covers
all types of scheduling problems in a single framework and therefore allows e.g.
to empirically study trade-off effects between instruction-level, loop-level, and
thread-level scheduling, which turn out to be hard to define in a generic way
because they heavily depend on the underlying hardware platform. It may be
premature to speak of the birth of a new, merged scheduling community, but at
least there exist concrete plans to organize a successor workshop with the same
broad scope of scheduling issues for parallel architectures, prospectively in 2007.



