
Inter-program Optimizations for Disk Energy

Reduction?

Jerry Hom1 and Ulrich Kremer1

Rutgers University, Department of Computer Science
96 Frelinghuysen Rd, Piscataway, New Jersey 08854, USA

{jhom, uli}@cs.rutgers.edu

Abstract. Previous work has shown that intra-program optimizations,
i.e., optimizations performed on individual programs in isolation, can
be very effective in reducing disk energy in streaming applications. This
paper investigates the potential additional benefits of inter-program opti-
mizations where sets of programs are optimized together. Experimental
results on different subsets of three streaming applications show that
7–49% additional energy savings (27.3% on average) can be obtained
with negligible performance penalties using two novel inter-program op-
timizations, namely execution context sensitive buffer size selection and
inverse barrier synchronization. These figures were obtained via physical
measurements on two laptop disks.

Keywords. execution context, inverse barrier

1 Introduction

Power dissipation and energy consumption have become crucial design con-
straints for mobile, laptop, and desktop computers since they impact several
aspects of a system, including packaging costs due to cooling requirements, op-
erating costs, battery life time, and the overall weight of the device. Hardware,
operating systems, and compiler techniques have been successful in reducing
power and energy, but more work needs to be done in order to keep up with
users’ increasing demand for faster CPUs, faster and larger disks, and higher
networking speeds.

Resource hibernation exploits the ability of devices to switch between differ-
ent activity states, ranging from high activity (active and operational) to low
activity (deep sleep and not operational) states[1]. As a rule of thumb, the lower
the activity state, the more power and energy may be saved, but the longer it
takes to transition between the low power and fully operational, active state.
Each transition between activity states has a penalty, i.e., overhead, both in
terms of performance and power/energy. Resource hibernation strategies iden-
tify intervals in a program’s execution where a resource is not in use and therefore
can be put into a low power state. For a given hibernation interval, the most
? This work was partially supported by NSF CAREER award #9985050.

Dagstuhl Seminar Proceedings 05141
Power-aware Computing Systems
http://drops.dagstuhl.de/opus/volltexte/2005/308

2 J. Hom, U. Kremer

effective hibernation mode should be selected, and the transition into this mode
should be initiated as early as possible, i.e., at the beginning of the interval. The
transition out of the selected hibernation state back to the active state should
be done just in time before an upcoming use, i.e., just before the end of the
hibernation interval. It may not always be possible or profitable to utilize the
deepest hibernation mode due to the length of the hibernation interval and the
overhead of required state transitions. Most hibernation strategies have a “break
even” point which typically is specified by the minimal length of the hibernation
interval for which transitioning into and out of the state is profitable. Resources
that have been targets for the hibernation optimization include the disk, display,
memory banks, cache lines, and wireless network cards.

An energy-aware compiler can reshape a program such that the idle times
between successive resource accesses are maximized, giving opportunities to hi-
bernate a device more often, and/or in deeper hibernation states. This compila-
tion strategy has been shown to work well in a single process environment[2–4],
but may lead to poor overall results in a multiprogramming environment. In
a multiprogramming setting, one program may finish accessing a resource and
may direct the resource to hibernate during some time of idleness. During this
time, another program may need to access the resource. In the worst case, each
program alternately accesses a resource such that the resource never experi-
ences significant amounts of idleness. In effect, one program’s activity pattern
interferes with another program’s idle periods and vice versa. To alleviate this
problem, some inter-program or inter-process coordination is necessary.

Operating systems techniques such as batch scheduling coordinate accesses
to resources across active processes. Requests for a resource are grouped and
served together instead of individually, potentially delaying individual requests
for the sake of improved overall resource usage. In contrast to operating systems,
compilers often have the advantage of knowing about future program behavior
and resource requirements. Instead of reacting to resource requests at runtime,
a compiler can insert code into a set of programs that will proactively initiate
resource usage across the program set at execution time. This is typically beyond
the ability of an operating system since it requires program modifications and
knowledge about future resource usage.

In this paper, we discuss the opportunities for power and energy optimiza-
tions based on the idea of optimizing applications not in isolation, but as groups
of active programs that share common resources. The disk is a primary example
of such a shared resource. The original contributions of this paper are

1. The implementation of an inter-program optimization strategy through in-
verse barriers that use semaphores for inter-process communication under
Linux to synchronize disk accesses. The implementation uses prefetching
when profitable, assuming that disk and CPU activities may be overlapped,

2. Application-level buffer size allocation policies that consider the execution
context of an application, i.e., the knowledge of other applications running
at the same time in order to dynamically choose the best buffer sizes, and

Inter-program Optimizations 3

3. The evaluation of the entire compiler / runtime system optimization frame-
work through physical measurements for two commercial disk drives (4200
rpm Fujitsu MHK2060AT and 7200 rpm Hitachi E7K60) and subsets of three
streaming applications (MPEG audio, MPEG video, and ftp) that were ex-
ecuting at the same time. The test system was a default installation of Red
Hat 9 Linux, and OS-based disk prefetching remained enabled.

Relative to the intra-program optimized versions of the applications, our
new inter-program optimizations save an additional 21–49% (34% on average)
of disk energy on the Hitachi disk, and 7–32% (21% on average) on the Fujitsu
disk. Relative to the unoptimized applications, the energy savings are 49–82%
(68% on average) across both disks. Therefore, inter-program optimization is a
successful and promising new optimization strategy that may be implemented
effectively through a compiler / runtime library approach. These results were
obtained without any user observable performance or quality of result penalties.

Although the discussed inter-program optimization strategy is based on a
compiler/runtime library framework, an operating system only or a combined
OS and compiler approach is also possible. A direct comparison with these other
approaches is beyond the scope of this paper and is currently under investigation.
Our results show that inter-program optimization is feasible and can result in
significant additional disk energy savings over intra-program optimization alone.

2 Related Work

Previous work has shown that applications which read data from disk in a
streamed fashion (i.e., periodic access) can utilize large disk buffers to save en-
ergy[2]. These disk buffers are local to each application and serve to increase
the idle period between disk accesses. Hence each application has a unique disk
access interval associated with the size of its buffer. Having longer intervals
between disk accesses creates opportunities to hibernate the disk. This intra-
program optimization works well for applications running in isolation, but when
multiple such applications execute simultaneously, some of the intra-program
optimization’s effects are negated. That is, the disk idle period of one applica-
tion is interrupted by a disk access from another application. This will occur
whenever the intervals between accesses by multiple applications are different.

A scheduling technique, inverse barrier, was proposed to synchronize disk
accesses across active applications[5]. This mechanism is similar to implicit co-
scheduling for distributed systems[6]. Arpaci-Dusseau et al. introduce a method
for coordinating process scheduling by deducing the state of remote processes
via normal inter-process communication. The state of a remote process helps the
local node determine which process to schedule next. The inverse barrier applies
this idea to coordinate resource accesses by multiple processes on a single system.

Program cooperation can be accomplished in at least two ways: (1) delay
resource access until all group members wish to use it or (2) inform all group
members to use the resource immediately. The first method is similar to a barrier
mechanism in parallel programming and can be used by programs which lack

4 J. Hom, U. Kremer

deadlines. The second method is the notion of an inverse barrier and can be used
by programs with deadline constraints such as real-time software. For example,
having “gaps” in a video stream application of more than 300 milli-seconds
will reduce the overall perceived quality of the video. For audio streams, the
tolerance for such “gaps” is even lower. Programs using a barrier cooperate in a
passive fashion. When a program wants to access a resource, it will pause and
wait until all members in its group also wish to access the resource. When all
members have reached the barrier, they all may access the resource consecutively.
To avoid starvation, each waiting process has a timer. If the timer expires, the
process will proceed to access the resource. Programs using an inverse barrier
cooperate actively to synchronize resource accesses. When a program needs to
access a resource, it will notify all members in its group that the resource is
in use. Other group members may decide whether accessing the resource early
is benefitial. For programs with disk buffering, this has the effect of refilling a
program’s disk buffer earlier than necessary. In conjunction with a prefetching
mechanism, this strategy can ensure that deadlines are satisfied with negligible
performance impact.

There is a significant body of work with respect to scheduling processes that
share resources. We are only able to discuss what we consider the most closely
related works in the remainder of this section.

Weissel et al. developed Coop-I/O to address energy reduction by the disk[7].
Coop-I/O enables disk operations to be deferrable and abortable. By deferring
operations, the OS may batch schedule them at a later time until necessary. The
research also shows that some operations may be unnecessary and hence the
abortable designation. However, the proposed operations require applications
to be updated by using the new I/O function calls. In contrast, our technique
utilizes compiler analysis to determine which operations should be replaced. The
modification cost is consolidated to the compiler optimization and a recompile
of the application.

In terms of scheduling paradigms, our work resembles basic ideas from the
slotted ALOHA system[8, 9]. The essential idea is to schedule access between
multiple users to a common resource (e.g. radio frequency band) while elimi-
nating collisions or when multiple host transmit on the same frequency at the
same time. For our purposes, a collision takes on almost the opposite notion of
a disk request without any other requests close in time. Rather than scheduling
for average utilization of the disk, optimizing for energy means scheduling for
bursts of activity followed by long periods of idleness.

A form of inter-program compilation has been applied to a specific problem
of enhancing I/O-intensive workloads[10]. Kadayif et al. use program analysis
to determine access patterns across applications. Knowledge of access patterns
allows the compiler to optimize the codes by transforming naive disk I/O into
collective or parallel I/O as appropriate. The benefit manifests as enhanced
I/O performance for large, parallel applications. We aim to construct a general
framework suitable for developing resource optimizations across applications to
reduce energy and power consumption.

Inter-program Optimizations 5

3 Compiler / Runtime System
Framework

In this paper, we start with the basic compilation framework as proposed by
Heath, et al.[2] for intra-program optimizations. All applications are assumed to
fit into main memory, avoiding any additional disk activities due to swapping.
In contrast to their approach, our compiler framework initiates disk power state
transitions directly through appropriate system calls, i.e., the operating system
is not involved in making decisions with respect to disk hibernation for the
set of optimized applications. In addition, the compiler performs inter-program
optimizations by inserting code to implement inverse barriers for disk access syn-
chronization, and to perform user-level data buffer prefetching for applications
that allow overlapped CPU and disk activities. In such applications, the physical
disk accesses are performed by a child process that writes into the buffer, while
the corresponding application (parent) process reads from the buffer. Commu-
nication between parent and child processes is performed through semaphores.
It is important to note that user-level buffer prefetching is not always possible.
For example, the use of the ANSI C language STREAM I/O data type prohibits
concurrent processing of and reading from a file stream. As a result, a perfor-
mance penalty would be observed during the time of a buffer refill. Execution
time constraints may specify the maximal length of such a “gap” in terms of
milli-seconds in order to preserve the QoR (quality of result) guarantee of the
application.

In the compiler framework, a user may declare a file descriptor to be buffered
or non-buffered. If no annotation is specified, I/O operations for the file descrip-
tor will not be modified by the compiler. The compiler propagates file descriptor
attributes across procedure boundaries, and replaces every original I/O opera-
tion of the file descriptor in the program with calls to a corresponding buffered
I/O runtime library. If programs use file descriptors as formal parameters, a
static replacement of the orignal I/O call by a buffered I/O call is not always
legal. In this case, the compiler will generate a guarded expression that selects
the appropriate type of I/O operation at runtime.

To apply the buffering optimization, some characteristics of the disk must be
known. This information can be obtained through runtime profiling. The goal
of the profiling is to determine read and write performance characteristics of
the disk, and application characteristics such as data production and/or data
consumption rates. The values of these parameters are used to calculate the
maximal buffer size that can be read and/or written without violating an existing
performance constraint. In addition, disk speed and data consumption rate are
used to determine the best placement of operations to refill the buffer with
negligible performance impact on the application.

The buffer size should be maximal in order to allow the longest possible disk
hibernation time between successive disk accesses. However, when a set of ap-
plications are running, the available memory for each application is restricted.
The selected buffer sizes should not lead to any swapping. When compiling this
set of applications, a conservative approach might divide the available memory

6 J. Hom, U. Kremer

equally among each application. This will have a poor result when only a single
application is actually running. Including execution context knowledge allows
the applications to truly use the available resources rather than stick to a con-
servative assumption. In our framework, all interesting execution contexts are
known at compile time and modeled as states of a finite state machine[5]. At
runtime, process communication is necessary to inform active programs about
changes in their execution context. These changes are due to programs starting
or ending their execution.

The profiling mechanism has two phases. The first phase measures the data
consumption rate of the application’s unchanged execution behavior. The un-
changed behavior typically reads only the next needed block of data, processes
it, then loops. This rate is used to estimate the amount of time taken to consume
a buffer of a given size. The measurement also provides a lower bound estimate
on the disk bandwidth. The second phase measures the observed disk bandwidth
while reading a large block of data. The observed bandwidth is useful because it
may be affected by the existing load on the system. The lower bound estimate
is used to allocate a small buffer which will supply data to the application. This
allows a forked, child process to profile the disk without interrupting the main
process. Finally, a buffer size can be calculated considering parameters such as
disk bandwidth, quality of result performance guarantees, available memory, ex-
ecution context, and consumption rates. The actions of each phase are discussed
in more detail in [2]. The overhead of our profiling strategies is negligible and
does not affect the user-perceived application performance.

In this work, user-level prefetching has been added to those applications
which can support it. Applications which implement disk I/O using raw file
I/O operations (i.e., read()) are candidates for prefetching. For the applications
we studied, MPEG audio and ftp can utilize such prefetching. A child process
is created which sleeps until its parent’s buffer is nearly consumed. The child
must refill the buffer and update the buffer’s new end point before the parent
reaches the previous end point. The prefetch point is calculated according to the
estimated time of waking up the disk, time to read the disk, and the number of
other applications in its execution context. Therefore, execution context becomes
necessary when disk accesses are synchronized because each application must
consider all other applications which are also in queue to access the disk.

Data prefetching then relaxes execution time constraints, and accordingly
the buffer sizes. In the previous model where computation and I/O were not
overlapped, buffers were sized according to an execution time constraint to refill
the buffer[2]. In the current model, buffers may be sized up to the available
memory or allocated based on some policy of fairness. While memory sizes may
vary from system to system, this work investigates interesting available memory
sizes, excluding the cases of extremely large or small available memory.

The discussed approach compares favorably against a pure operating system-
based, “buffered” I/O approach, in that the latter would require expensive sys-
tem calls for each original application-level I/O operation. Existing OS tech-
niques for disk hibernation use a fixed threshold of idleness before transitioning

Inter-program Optimizations 7

to a power saving mode. In addition, such an approach may not work well if the
files are accessed with a large stride, or accessed irregularly. We are currently
investigating compile-time analyses and optimizations to prefetch “sparse” file
accesses into a “dense” buffer, and to determine a working set of active file blocks
that should be buffered for the non-sequential file accesses.

4 Experiments and Results

This study examines three streaming applications mpeg play, mpg123, and sftp.
The MPEG video and audio decoders are examples of real-time applications
with the need for low latency access to the disk. The audio and ftp applications
use direct disk reads, which allows an overlap of CPU and disk activity, making
prefetching feasible. The video application uses file descriptors of type stream
I/O, prohibiting the overlap of CPU activities in the parent process and disk
reading activities in the child process. We assume that the video application has
a time constraint of 300 milli-seconds, i.e., can tolerate “gaps” in displaying the
frames of no more than 300 milli-seconds. This becomes the amount of available
time to refill the buffer, and consequently, the size constraint of the buffer itself.
All three applications in the experiments have overall execution times in the
range of 6.5 - 8.0 minutes. Each experiment was run three times, and the energy
results reported in Figure 3 are averages.

4.1 Prototype Framework

The existing framework consists mainly of runtime libraries which implement
the profiling, buffer allocation policies, disk buffering, and synchronization. Us-
ing the annotations described in Section 3, the compiler can, for example, replace
the read() calls with EEL read(), which is part of our runtime system. Cur-
rently, this replacement is done by hand. The profiling phase requires a handful
of parameters about the disk such as cache size, power modes, and time to tran-
sition between modes. Some of these parameters are readily available from the
disk, and some were determined through physical measurement. Disk manufac-
turers could trivially include all these parameters on the disk. The existing buffer
allocation policies include SIZE and TIME, which are discussed in Section 4.3.
SIZE is easily implemented in our system as a “divide-by-n” policy. However,
TIME requires data dependent information from the profiling phase, which is
only available at execution time. Since the data streams are known to us, this in-
formation is derived and hard-coded into those experiments. The disk buffering
provides a virtual representation of the disk, and our runtime system mediates
between the program and the physical disk. Disk reads by the program are satis-
fied by the disk buffer, and the runtime system will refill the buffer as necessary.
So far, the only synchronization policy implemented is inverse barrier. The run-
time system of each application share a semaphore as a means of communicating
a “broadcast notification”. The runtime system uses a child process to monitor

8 J. Hom, U. Kremer

these notifications and alert the parent as necessary. All of these optimizations
are transparent to the original program.

There are several parts which are in the process of being automated within
the runtime system. The TIME allocation policy also requires execution context
knowledge (e.g., consumption rate) from all running applications within a set. A
communication mechanism to exchange this context will be implemented as part
of the state transition module. When an application transitions to a new state,
it must communicate its context information as well as determine the context
information from all other applications.

Table 1. Power levels of disk states

Disk States
average power (W)

read idle hibernation standby wakeup

Fujitsu 1.8 0.9 0.7 0.2 3.0
Hitachi 2.5 2.0 2.7 0.25 3.0

Table 2. Times and energy for disk state transitions

State Transitions (secs / joules)
hibernation wakeup

time / energy time / energy

Fujitsu 5.0 / 3.5 1.6 / 4.8
Hitachi 0.6 / 1.6 3.0 / 6.9

4.2 Setup

A 4200 rpm Fujitsu and 7200 rpm Hitachi laptop disk were used for the experi-
ments. The built-in data buffer sizes (disk cache) are 0.5 MBytes for the Fujitsu
and 8 MBytes for the Hitachi. The hibernation states together with their power
dissipation levels are listed in Table 1. The transition costs of hibernating and
waking up are listed in Table 2. The break-even point for hibernation in terms of
energy savings is 17 seconds for the Fujitsu and 5.2 seconds for the Hitachi. That
is, the energy consumed would be the same if either the Hitachi disk was left
in idle mode for 5.2 seconds, or the disk was immediately directed to standby
mode, hibernated for some seconds, and then reactivated such that it was in
ready or idle mode by 5.2 seconds.

The OS on the host PC was a default installation of Red Hat 9 Linux. Linux
has a disk prefetching feature, which remained enabled, but its effect on our

Inter-program Optimizations 9

computer
data acquisition

connection
network

oscilloscope

readings
voltagecurrent

readings

start/stop
trigger

disk

host PC

Fig. 1. Power measurement infrastructure for disk power dissipation

experiments was insignificant. This is largely because the default prefetch buffer
on Linux is on the order of one hundred kilobytes whereas our runtime system’s
disk buffer is on the order of megabytes. Figure 1 shows the basic measurement
infrastructure. Each disk was installed in the host PC, and the supply current and
voltage were measured using a Tektronix TDS3014 oscilloscope with a Hall effect
current probe. Measurements were reported by the oscilloscope every 20 milli-
seconds and communicated to the data acquisition computer. In other words,
each data point represents the average current reading for a 20 milli-second
interval based on the TDS3014 sampling rate of 1.25 Giga samples per second.

4.3 Results

Experimental results are based on three streaming applications, MPEG audio
(A), MPEG video (V), and ftp (F), and their subsets (AV, AF, AVF). We use
the compilation strategy as proposed by Heath et al.[2] coupled with user-level
buffer prefetching as the base line for our comparison. In each application set,
the individual programs were optimized independently. However, Heath, et al.’s
algorithm does not perform prefetching, nor does it synchronize disk accesses
across the running applications. We refer to this version as the INTRA strategy,
and our new proposed version as the INTER approach.

Figure 2 shows the disk current/power profile of the application set AV under
different optimization strategies on the Hitachi disk. This figure illustrates the
impact of the different optimizations on the power dissipation behavior of the
sample application set. A summary across all application sets and the two disks
is given in Figure 3. The disk has a supply voltage of 5 volts, and the graphs in
Figure 2 show the measured supply current in amperes along the y-axes. Hence,

10 J. Hom, U. Kremer

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 5000 10000 15000 20000
C

ur
re

nt
 (

am
ps

)

Time (50 pts/sec)

UNMODIFIED

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 5000 10000 15000 20000

C
ur

re
nt

 (
am

ps
)

Time (50 pts/sec)

TIME

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 5000 10000 15000 20000

C
ur

re
nt

 (
am

ps
)

Time (50 pts/sec)

SYNC + TIME

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 5000 10000 15000 20000

C
ur

re
nt

 (
am

ps
)

Time (50 pts/sec)

CON + TIME

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 5000 10000 15000 20000

C
ur

re
nt

 (
am

ps
)

Time (50 pts/sec)

SYNC + CON + TIME

Fig. 2. Application set AV on the Hitachi disk (from top to bottom): UNMODIFIED
— original unmodified code; TIME — with buffers allocated proportionally to each
programs’ data consumption rate; SYNC + TIME — adding inverse barrier synchro-
nization to TIME; CON + TIME — adding execution context knowledge to TIME;
SYNC + CON + TIME — using all three optimization strategies. The performance
impact relative to the UNMODIFIED version is negligible

Inter-program Optimizations 11

a 1 amp supply current results in 5 watts of power dissipation. Programs without
any modifications typically exhibit the profile shown under UNMODIFIED. The
disk is nearly constantly utilized and is never idle for more than a few seconds.
TIME, SYNC + TIME, CON + TIME, and SYNC + CON + TIME show
the effects of applying additional optimization techniques. In particular, TIME
means each application in a set will have buffers allocated proportionally to its
data consumption rate, resulting in all applications exhausting their buffers at
the same time. TIME has no synchronization nor execution context knowledge.
SYNC + TIME and CON + TIME add synchronization and execution context,
respectively, to the TIME strategy. Finally, SYNC + CON + TIME uses all
three optimizations.

The energy benefits of hibernation are clear when comparing UNMODIFIED
and TIME. Using available memory to buffer the disk allows sufficiently long idle
periods to save energy through hibernation. The effect of synchronization across
applications joins together disk accesses, as shown by SYNC + TIME, which
would have been non-uniformly dispersed over time. When adding execution
context information, both A and V no longer use the worst case, conservative
assumption that all three applications are running, but instead may use larger,
proportional shares of the available memory. The essential effect of larger buffers
can be seen in CON + TIME. Lastly, SYNC + CON + TIME appears to have
little benefit with the additional optimization of resource synchronization, but
this is actually dependant on the data streams. It turns out that the bitrate
of the video stream is almost an even multiple of that of the audio stream.
Hence, the buffer refill points happen to very nearly coincide. If the data streams
were longer, CON + TIME would show a pattern of disk accesses starting close
together and then drifting apart as time extends because the acceses are never
synchronized.

Figure 3 gives a broad comparison on both the Hitachi (left) and Fujitsu
(right) disks of all combinations of optimizations relative to SIZE. The first bar,
SIZE, is considered a baseline optimization based on previously established re-
sults[2]. That is, applications compiled in a set will have disk buffers which are
sized equally across the applications in the set. Furthermore, this implementation
improves upon the established optimization by including data buffer prefetch-
ing. Related to this baseline is TIME, which assumes that the data consumption
rates for each application is known. Each program’s buffer size is allocated pro-
portionally to its data consumption rate without violating the overall memory
constraint. Against these baselines, applying all optimizations (SYNC + CON +
SIZE, SYNC + CON + TIME) results in up to 50% additional energy savings.
If synchronization is added to the baselines (SYNC + SIZE, SYNC + TIME),
comparing these against all optimizations shows that up to 40% energy savings
can be attributed to context knowledge. Comparing against the optimization of
execution context, CON + SIZE and CON + TIME, we see that synchronization
can provide up to 20% savings.

12 J. Hom, U. Kremer

Fig. 3. Comparison of energy savings between optimization combinations and across
application sets on Hitachi (top) and Fujitsu (bottom) disks. All values are % energy
consumption relative to SIZE

Inter-program Optimizations 13

Discussion of Results In Figure 3, there are a few significant trends to observe.
In general, TIME should have better results than SIZE because the allocated
buffers are proportionally maximal for all applications. Under SIZE, the appli-
cation with the fastest consumption rate will dominate in terms of disk accesses,
and most likely result in greater overall energy consumption. The notable excep-
tions occur in the application set, A. This is actually showing the significance
of execution context. Without context knowledge, the conservative assumption
meant that SIZE allocated 33% of available memory for its buffer. However, it
turns out that TIME allocated only 10% of the available memory because A’s
consumption rate is only 10% of the overall consumption rate of AVF. If context
knowledge was used, A could have known it was running by itself and then used
100% of the available memory.

AVF shows the most benefits coming from synchronization. As the number of
applications in a set increases, resource accesses will also increase. This applica-
tion set is already the most conservative assumption for execution context, so the
context results within AVF are identical to those without context. On the right
half of the graphs, single applications show the most benefit from execution con-
text. They are allocated 100% of available memory as buffer space. Conversely,
synchronization has no use with single applications. There is an overhead as-
sociated with synchronization, but the performance penalty is usually hidden
because the CPU is never overloaded. Sets consisting of two applications show
the modest, cumulative energy saving effects of synchronization and context
knowledge.

These trends appear in both the Hitachi and Fujitsu disks. The Hitachi results
turn out better mainly because the threshold for hibernation benefit is lower (5.2
vs. 17 seconds). Hence, the Hitachi allows greater opportunities for hibernation,
and our optimizations exploit it. These similar trends indicate that our profiling
mechanism and optimization techniques are equally applicable among disks with
widely different specifications.

A key opportunity to save power and energy is due to the fact that the
available memory for buffering varies and may depend on concurrently running
applications. If applications know about each other, i.e., if they know their exe-
cution context, an inter-program optimization allows the choice of the best buffer
sizes across all applications for the given available memory. For example, assume
that for each of three application programs there is a combination of applica-
tions and buffer sizes that will allow them to allocate a buffer size of at most 33%
before inducing disk swapping. Without the execution context, each application
makes a conservative assumption, leading to buffer sizes of 33%. However, if only
a single application is running, context knowledge would allow that application
to use 100%. The effects of context knowledge are most pronounced in the sets
with a single application as shown in the right halves of Figure 3; compare the
bars with and without CON.

Our experiments showed significant energy reductions of the inter-program
optimization approach over an optimization approach that considers data ac-
cesses only for individual programs in isolation. Using execution context knowl-

14 J. Hom, U. Kremer

edge across applications provides up to 40% disk energy savings. Adding inverse
barrier synchronization also contributes a potential 20% energy savings. The
effect of prefetching serves chiefly to reduce or remove any performance penal-
ties incurred by the runtime system’s buffer management or the communication
overhead of synchronization. These optimizations are orthogonal to each other
and can be used in combination for greater energy benefits. The degree of energy
savings from each optimization depends on the application set while performance
is unchanged.

5 Summary and Future Work

Inter-program optimization is a promising compilation strategy for sets of pro-
grams that are expected to be executed together. The program’s resource usage
can be coordinated across all programs in the set, allowing additional oppor-
tunities for resource hibernation over single program, i.e., intra-program, opti-
mizations alone. This paper discusses the potential benefits of inter-program op-
timizatios using the disk as the shared resource. Using 48 separate experiments,
we have shown energy savings in the range of 7–49% over the intra-program
optimization approach when the most aggressive optimization strategies were
applied. The discussed optimization strategies included different policies for as-
signing buffer sizes, policies that utilize execution context knowledge, and in-
verse barrier synchronisation for disk access. As a point of reference, although
not shown in Figure 3, energy savings over unmodified applications range from
49–82%.

Significant work is left to be done. This includes the evaluation of differ-
ent strategies to identify promising sets of applications that may benefit from
inter-program optimization. We are planning to instrument a collection of target
systems potentially including cell phones, PDAs, laptops, and desktop systems
in order to record users’ typical program usage over time. We expect these re-
sults to illuminate specific usage patterns and perhaps guide the development
of mobile devices. In addition, we are currently implementing dynamic context
awareness in programs that are part of promising application sets. Programs use
a shared interface to indicate their arrival and departure. In response, active
applications may adjust their resource allocation or even change their allocation
policies.

The compiler and OS have unique perspectives on key parts of the entire
resource management scheme. We will experimentally explore the strengths of
each strategy, resulting in the development of a resource-aware, combined com-
piler, runtime system, and operating system approach. A current study is trying
to assess the advantages and disadvantages of a compiler-only; compiler and run-
time system; OS-only; and compiler, runtime system and OS approach to inter-
program resource management. The integration of the discussed inter-program
optimization strategy as part of a fully automatic compiler and corresponding
runtime library is currently underway.

Inter-program Optimizations 15

References

1. Intel Corp., Microsoft Corp., Toshiba Corp.: ACPI implementers guide. Draft
(1998)

2. Heath, T., Pinheiro, E., Hom, J., Kremer, U., Bianchini, R.: Code transforma-
tions for energy-efficient device management. IEEE Transactions on Computers
53 (2004) 974–987

3. Delaluz, V., Kandemir, M., Vijaykrishnan, N., Irwin, M., Sivasubramaniam, A.,
Kolcu, I.: Compiler-directed array interleaving for reducing energy in multi-bank
memories. In: Proceedings of the Conference on VLSI Design. (2002) 288–293

4. Hom, J., Kremer, U.: Energy management of virtual memory on diskless devices. In
Benini, L., Kandemir, M., Ramanujam, J., eds.: Compilers and Operating systems
for Low Power. Kluwer Academic Publishers, Norwell, MA (2003) 95–113

5. Hom, J., Kremer, U.: Inter-program compilation for disk energy reduction. In:
Workshop on Power-Aware Computer Systems, Springer-Verlag (2003)

6. Arpaci-Dusseau, A., Culler, D., Mainwaring, A.: Scheduling with implicit infor-
mation in distributed systems. In: Proceedings of the Conference on Measurement
and Modeling of Computer Systems. (1998) 233–243

7. Weissel, A., Beutel, B., Bellosa, F.: Cooperative I/O — a novel I/O semantics
for energy-aware applications. In: Proceedings of the Conference on Operating
Systems Design and Implementation. (2002)

8. Abramson, N.: The ALOHA system — another alternative for computer commu-
nications. In: Proceedings of the Fall Joint Computer Conference. (1970) 281–285

9. Roberts, L.: ALOHA packet system with and without slots and capture. Computer
Communications Review 5 (1975) 28–42

10. Kadayif, I., Kandemir, M., Sezer, U.: Collective compilation for I/O-intensive
programs. In: Proceedings of the IASTED Conference on Parallel and Distributed
Computing and Systems. (2001)

