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Abstract – Power and energy consumption is an essential design constraint for passive embedded mobile 

devices. These devices, e.g. smart cards, do not contain an integrated power supply and often provide only 
limited resources. Such devices can be designed with traditional methods due to their low complexity, but 

integrated HW/SW co-design methodologies enable the gain of system-level optimization. This paper presents 
the abstraction of smart card designs to optimize system architecture and memory system. Functiona-level, 
transactional-level, and cycle-accurate models are presented and discussed. The proposed design flow and 

results of the evaluation are depicted. 
 

Keywords: Smart Card, HW/SW Co-design, Low Power, Transaction-level, Java Card 
 

1.0 Introduction 
Power and energy consumption has been an important design constraint for embedded devices for 

more than one decade. Embedded systems powered by batteries are designed for minimized energy 
dissipation to increase stand-by and active times. Passive mobile devices, for instance contact-less 
smart cards, are often powered by some sort of RF field with constrained field energy. This field does 
not limit energy dissipation but power consumption. Smart cards embedded into mobile GSM phones 
(Subscriber Identification Module (SIM) cards) have to fulfill both constraints because the mobile 
phone is powered by battery and smart card supply currents are limited by international standards.  To 
run complex applications on passive mobile devices low-power hardware design is not sufficient. 
HW/SW co-design methodologies supporting power aware techniques and low-power optimizations 
on all levels of abstractions are necessary to reach design constraints for power with regard to 
performance and chip size. This paper presents a methodology for the design of passive mobile 
devices with limited resources. The remaining paper is organized as follows. Section 2 describes the 
smart card system. Section 3 discusses the abstraction of smart cards and models. The used design 
flow is presented in Sect. 4 and the evaluation of this methodology in Sect. 5. Section 6 concludes. 

2.0 Smart Card Systems 
A smart card [15] has no integrated power supply and is therefore a passive device. Passive devices 

always need an active device to get their power. Hence, a smart card system comprises not only the 
smart card but also a host terminal and optional a background system. Such a system is presented in 
Fig. 1. The smart card itself is presented by its hardware, the operating system running on the card and 
the applications. The link between the card and the smart card reader depends on the interface type. 
Contact cards are directly connected to a reader via a serial link which contains also two lines for 
power supply. A contact-less smart card reader generates an RF-field for communication. The card 
uses this field as the power supply and for communication.  
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Figure 1: Smart card system with smart card, smart card reader, terminal and background system. 

The reader is connected to the terminal via a standard interface. This can be a serial RS-232 
connection or may be an USB interface. The terminal contains the interface hardware, the smart card 
reader driver and terminal applications. Dependent on the driver, a terminal can manage one or more 
smart card reader independent of the smart card I/O interface. The terminal application can 
communicate with a background system.   

As discussed before, a smart card is a passive component in terms of power but also a passive 
component due to its behavior. During normal mode of operation a smart card only reacts on 
commands sent to the card by the host. Hence, a serial universal asynchrony receiver/transmitter 
(UART) is an essential component of a card. This UART is used to receive and send messages. 
Additional to the serial interface data have to be stored permanently on the card. Different non-volatile 
memory technologies such as EEPROM and Flash are used. Smart cards are often used to store 
confidential information. Thus cryptographic algorithms and secure keys are used to protect 
confidential data and data transmission. But cryptographic algorithms require a high amount of 
computation power. This power is mostly provided by dedicated coprocessors. Only high performance 
32-bit smart cards can compute them in software.  

3.0 System Abstraction 
This section describes the different levels of abstraction and corresponding system models used in 

this approach. The reason for system abstraction is the high potential for power and performance 
optimization capabilities proposed by previous publications. Raghunathan et.al. [3] denoted the gain at 
system-level to a factor of five to ten and at behavioral level a gain of two to five. The following 
subsections discuss models at different levels of abstractions and their system boundaries.  

3.1 Functional  System-level Models 

In general, functional system-level models depend on the type of application. Applications have to 
be classified as data-dominant, control-dominant, or a combination of them. According to this 
classification and the model of computation the modeling language and tools can be selected [5]. To 
determine these aspects the basic behavior has to be analyzed and implementation details have to be 
abstracted. Because of the focus of this work on power consumption and performance system 
components with the highest impact on these design parameters have to be identified and represented 
in a model.  

At highest level of abstraction a typical smart card application can be seen as a data flow model, 
which is presented in Fig. 2. A message is received by the I/O interface and forwarded to the 
communication protocol analyzer. The protocol analyzer forwards relevant parts of the message to the 
decryption unit and the control unit processes the message and stores relevant data. But the terminal 
can also request some data items which have to be forwarded from the control unit to the encryption 
unit and further to the protocol and I/O unit. Such a model focuses only on the functionality and thus 
is only useful in a system simulation comprising the background system, terminal and smart card. The 
data transfer volume on the serial link and the resulting delay times can be determined and required 
computation power for message de/encryption and necessary data memory utilization can be 
estimated. UML can be used to model the behavior at this level of abstraction and Java, Mat-
lab/Simulink, C++, or any other appropriate language can be used to implement it. This level of 
abstraction is appropriate for application designers to get a behavioral, executable model. The 
drawback of this model is the large gap between the modeling style and the final implementation. 
Several frameworks were presented for this level of abstraction [5].  
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In smart card development, optimized code is required due to the strictly limited resources, which 
is written by specialists. Object oriented design was chosen for modeling.  
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Figure 2: Functional smart card data-flow model embedded into a system model in a homogeneous environment.  

C is the main programming language for smart card micro-controllers and therefore C++ was 
chosen as implementation language to avoid rewriting code for the target processor. This decision 
allows the smart card programmers to write their optimized code with the final programming 
language. Parallel processes and system-level modeling constructs are provided by SystemC™ [9] 
which is used as simulation engine.  

Smart card functionality is divided into communicating SystemC modules. Two different types of 
modules are supported: (i) Application Program Interface (API) modules, and (ii) user-defined 
modules. API modules provide basic smart card functionality with a programming interface at 
operating-system level. The main API modules are: 

• Different memory technologies (RAM, EEPROM, Flash) 
• Serial interface to send and receive messages 
• Timer with different modes of operation 
• Cryptographic algorithms 

API modules are implemented in C++ and their programming interfaces are defined by C++ 
interfaces. All API modules implement their functional interface and an energy control interface. The 
implementation of the energy interface depends on the modules’ functionality and the energy model. 

User defined modules implement the business logic and access API modules using SystemC ports. 
They also communicate among each other over SystemC interfaces. Due to the missing energy and 
performance pre-characterization of user-defined modules only estimated execution delay times are 
supported which have to be provided by the designer. The system boundary is the communication 
interface (UART) between the smart card and the reader, which can be realized by standard C++ 
communication channels. Figure 3 shows an example for a functional model. The active process is 
defined by the module System Control and accesses the UART to receive and send messages. Module 
M1 only accesses an EEPROM module. In real applications M1 can represent non-volatile memory 
management. An Energy Sample Unit accesses the energy interfaces of the API modules to sample the 
energy values and to calculate the total energy dissipation.  
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Figure 3: Example for a functional smart card model using API and user-defined modules. 

As discussed above, optimization at this level of abstraction should have the highest impact on 
power and performance. Several techniques have been developed to support system optimization. To 
reveal more information about power and performance additional analysis units are integrated, which 
are called interface adapters (IA). IAs are positioned between two modules and trace the actual 
parameters of a method call and delay one simulation cycle. The delay is necessary to get the right 
order of function calls due to the un-timed, sequential execution. Based on the traces memory access 
patterns and data transfer statistics between modules can be determined. Based on this information 
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memory locality can be increased and algorithmic transformations can be used to reduce the number of 
memory accesses.  

Also coupling between modules can be calculated based on the traces of function calls. Coupling 
can be increased or decreased by moving functionality between modules. Strong coupled modules are 
defined as modules with high intercommunication bandwidth. Weak coupled modules implemented on 
different processing elements do not stress the communication system as much as strong coupled 
modules. Tracing of actual method parameters is necessary to determine the data behavior. Important 
are average values, standard deviation, and minimum and maximum values. The minimum bit number 
of variables can be calculated to reduce operand size based on quality of service constraints.  

3.2 Transaction-level Models 
The functional models proposed above describe memory organization and module intercommuni-

cation in detail. But this model is independent of the underlying hardware architecture. Therefore 
transaction-level architecture models are used for an efficient design space exploration. SystemC and 
SpecC [10] introduced programming constructs for transaction-level communication modeling but no 
design methodologies. This subsection presents the way of modeling and exploration of architectures, 
the mapping of functional models on architectures, and power/performance optimization techniques. 

Architectural models exist of two types of components: (i) processing elements (PE) and (ii) 
communication units. Processing elements are containers for functionality which abstract processors, 
co-processors, and all other types of processing element. A basic processing element provides only a 
configurable bus interface to the functional blocks. Specific models can provide an abstract view of 
the programming model of a processor. This can be an interrupt system, additional I/O ports, or 
important parts of the memory system. Due to the encapsulation of the functionality within the 
processing elements no cross-compilation of code can be performed and therefore no representation of 
program code memory or instruction paths is available. 

Communication units represent all types of communication structures used in embedded systems. 
They can be single signals or transaction-level representations of bus systems. The presented approach 
supports the open core protocol international partnership [1] protocol (ocp-ip) and uses it for 
communication structure exploration. The ocp-ip is defined for point-to-point connections, which 
always requires some sort of bus controller. The provided ocp-ip models do not provide any energy 
estimation, but bus models for smart card processors with energy estimation features have been 
developed [12]. These models have an accuracy of around 10%. 

Figure 4(a) depicts an example for a transaction-level architecture. It contains three processing 
elements and five communication units (3 ocp-ip connections, one signal and one bus controller). PE2 
can set an interrupt signal which triggers an interrupt process of PE1. This is a simple example for a 
more specific processing element with interrupt system. These architectures do not contain any 
functionality. Functionality is inserted by mapping of a functional model to the architecture. The 
mapping can be done with different granularities. Coarse grained mapping is done by mapping entire 
functional modules. Fine grained mapping can be done at method level, where each method is mapped 
on an own processing element.  

Interface synthesis is necessary to implement the mapping. If the designer decides to implement 
both modules on the same PE, the interface has to be replaced by software function calls or otherwise 
by a hardware interface. If they are mapped on different processing elements interface calls have to be 
propagated over the communication system to the target processing element. Therefore, master module 
adapters (MMA) are necessary to connect a functional module port to the bus port of a PE. At the 
slave side a slave module adapter (SMA) is necessary to handle bus requests and forward function 
calls. Figure 4(b) presents a functional module structure where M1 calls a function of M2. Figure 4(c) 
shows the mapped solution whereby M1 is mapped to PE1 and M2 is mapped to PE2.  
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Figure 4: Mapping process: (a) Example of a transaction-level architecture model; (b) functional model; (c) 

functional model mapped on the processing elements PE1 and PE3. 

MMA transmits all function parameters word by word to the SMA which collects all data and 
performs the function call to M2 after a control byte is sent to SMA. The MMA has to reveal the result 
from SMA after the function call was performed successfully which is indicated by a status bit in the 
SMA.  

Energy characterization of API modules is performed in the same way as at functional level. Due to 
the availability of hardware components and software solutions for different processor platforms, 
performance, energy and code size for a target processor can be estimated with high accuracy. 

Architecture selection and optimization have a high potential to increase performance and decrease 
energy dissipation with regard to chip size. Several optimization techniques were developed by other 
authors to optimize bus systems and memory hierarchies [2] at register-transfer-level. The presented 
methodology has been developed to explore these techniques fast and automatically. As presented 
above each functional model can instantiate and control its own memory blocks which leads to several 
small blocks of the same memory technology. These blocks have to be merged to larger blocks. An 
optimizer calculates the best TL memory architecture based on memory access patterns generated by 
IAs. Fine tuning of the memory map and memory access patterns is supported by transaction-level 
trace adapters similar to IAs.  

The optimal bus encoding can be calculated based on the memory traces. Tools have been 
developed to determine the energy dissipation for binary bus encoding, T0 code [7] and bus-invert 
coding [8]. This allows a fast exploration of different bus encodings for a given application without 
implementing them at RTL. Based on these traces also memory mapped control registers of 
peripherals can be optimized. The number of registers to control peripherals, the position of control 
and data-bits within a register and their relative addresses can be optimized to reduce switching 
activity on the system bus.  

 
3.3 Cycle-Accurate Platform 

The most accurate supported level of abstraction is the cycle-accurate platform. Commercial 
hardware estimators are used to estimate application specific hardware energy consumption. This 
section describes the developed estimation techniques for transaction-level system bus and software 
energy estimation. 

Transaction-level layer 1 and layer 2 bus models 
Bus models have a high impact on the total energy dissipation. Therefore accurate estimation 

techniques are needed. As discussed before, switching activity is an indicator for energy dissipation. In 
top-down design no information about the final implementation is available and therefore only 
indicators can be used and optimization is performed based on the indicators. But if an existing 
platform is used to implement a design the parameters (e.g. parasitics) of this design can be used for 
bus characterization. 

With every new level of abstraction details are lost and the effects of abstraction are unknown. 
Thus this section describes the abstraction of a dedicated bus system and discusses the effects of 
abstraction [70]. The design characterization has been done with a gate-level energy estimation tool 
which also considers parasitics back annotated from the layout. The considered bus model is based on 
a 32-bit unidirectional bus with separated address, data read, and data write buses. The bus protocol 
supports splitted and outstanding transactions. 
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The first model was implemented at transaction-level layer 1, which means pin abstraction but 
timing accuracy. The bus protocol state machine can be implemented as a pure functional model 
which provides functional object interfaces for bus accesses. The bus state machine has to be triggered 
once per simulated clock cycle to be compliant with the timing accuracy. The structural model and 
data-flow model of a transaction-level layer 1 bus representation shows Figure   . Because of possible 
outstanding transactions bus request queues are necessary and separate queues for incoming, outgoing 
(finished), read, and write request. The internal bus process has to check all the slave states and further 
has to update the protocol state machines. The finish queue is necessary to return an error state to the 
caller. 
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Figure 5: Transaction-level layer 1 bus model: (a) structural model: (b) data-flow model. 

The energy estimation unit can be designed as a separate component and can be deactivated to 
increase simulation performance. The actual state of the bus model has to be passed to the energy 
estimation unit. The energy estimation unit consists of two parts. The first part translates bus requests 
into signal activity and the second contains the energy model which is driven by the signal activity. 
Thus a register transfer-level energy model for the system bus can be used. The model itself depends 
on the bus and process technology. The structure of the energy estimation unit is presented in Figure   . 
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Figure 6: Coupling between bus model and bus power model. 

It is also possible to abstract the bus model to transaction-level layer two. This model is not pin and 
timing accurate. Data items are passed by pointers and burst bus accesses are handled as single 
transactions. Thus a timing estimation is needed. The general bus representation is similar to the 
transaction-level layer one model but a simplified interface is provided to master and slave processing 
elements.  
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The energy estimation is divided into two phases, the address phase and data phase energy estimation. 
The dissipated energy is estimated for each phase in a single step because the necessary data and 
delays are in the bus request data structure. There are some more sources of inaccuracies additional to 
the layer one model. This model does not allow an accurate count of transitions of control signals due 
to a missing interaction with the slave. Also the energy model considers each transaction on its own 
and does not consider interactions between subsequent transactions.  

Energy Model for Secure Software Development  
The intention of this software energy estimation model is a flexible and accurate combination of 

the instruction-level energy model and data dependent models. The proposed model decouples 
instruction dependencies and data dependencies as presented in the next equation. The total energy Eto-

tal consumed by a program is the sum of the energy consumption per cycle Ecycle of all clock cycles 
ntotal. The energy per clock cycle can be decomposed into four parts: instruction dependent energy 
dissipation Ei, data dependent energy dissipation Ed, energy dissipation of the cache system Ec, and 
finally the dissipation of all external components Ee containing the bus system, memories and 
peripherals. This also leads to an independent instruction and data characterization process and enables 
a model refinement based on the requirements for accuracy. 
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The instruction dependent part of this model is based on the instruction-level energy model defined 
by Tiwari [16]. It defines base costs (BC) for each instruction and considers switching activity 
between different consecutive instructions by the use of a circuit state overhead (CSO). The 
instruction dependent energy dissipation per cycle Ei(n) is the sum of the base costs EBC and the circuit 
state overhead ECSO. Base costs and circuit state overhead are calculated based on the next equations. 
Where ns is the number of pipeline stages and i[j] is the instruction executed in stage j. 
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Base costs are characterized in the same way as proposed in [16]. To characterize a particular 
instruction a loop is used which is small enough to fit in the instruction cache and large enough to 
minimize the effect of the needed branch instruction. But the difference to the original approach is the 
selection of operands. The same operands are used for the entire loop and source values are mostly set 
to zero. This choice minimizes switching activity due to operand and data dependencies like source 
register switches or switching activity in the ALU. The pipeline aware model [17] is used for cycle by 
cycle estimation. The main idea of this approach is to distribute the measured base costs among all 
pipeline stages. A uniform distribution is used for this model, the general context between the 
measured base costs and the base costs for one stage describes the following equation: 

i

istallstallijnopnopiii

N
BCNBCNBCT

jiBC
α−×−×−×

= ,,,),(  

BC(i,j) is the power consumed by stage j when executing instruction i, BCi is the base cost value 
measured for instruction i, BCstall is the base cost value for stalling, Ti is the number of clock cycles, 
Ni,nop is the number of stages executing nop, Ni,stall is the number of stages in stall state, Ni is the 
number of active stages for instruction i and  is a constant factor caused by stalling of instruction i. 

The use of this equation can be illustrated with the target smart card processor. An abstract view of 
the pipeline architecture gives Figure 7. The architecture comprises an integer unit (IU) and a separate 
multiply-/divide unit (MDU) pipeline. The first and second pipeline stages are shared between both 
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pipelines. If an instruction stays in a pipeline stage longer than one cycle, the control unit stalls only 
the previous pipeline stages and does not affect subsequent stages. 
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Figure 7: Instruction path energy model for a pipeline architecture. 

A loop with two alternating instructions is used to measure the circuit state overhead CS between 
subsequent instructions. The CS between two consecutive pipeline stages j and j+1 executing 
instructions i1 and i2 is given in the following equation. nMDU and nIU are the numbers of pipeline 
stages for MDU and IU pipeline, respectively. γj is the specific weight for each pipeline transition. In 
this example γj is specified equal for all transitions, but this can be changed to get a more realistic 
behaviour. 
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The data dependent energy consumption per cycle Ed(n) is the sum of the energy consumption of 
all pipeline stages. The energy consumption of a particular pipeline stage E(i[j],j) is determined by the 
instruction i[j] executed in this stage j: 
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Each instruction is responsible for the calculation of its energy consumption for the pipeline stages. 
A micro-architectural energy model shared between all instructions is used to consider data dependent 
switching activity of buses and functional units. An instruction can select shared buses and functional 
units out of this model, but bit patterns and specific properties are calculated with its own instruction 
energy model. 

The characterization of the basic behaviour of each instruction is the first step to get a data depend-
ent model. A loop containing pairs of the same instruction with different source and target registers is 
used for this. The basic power consumption of this loop is determined by using the same source 
operand values as for base cost characterization. An additional power consumption compared to the 
base cost loop can be measured due to source and target register switching. This power value Pbase is 
used as reference for all following measurements P. During the next step the source operand values of 
the first instruction are the same as in step one, but the source operands of the second instruction are 
changed. Thus the data path is brought back to an initial state every second instruction. The data 
dependent power consumption Pd is the difference between the measured power value P and Pbase. A 
footprint of each instruction can be drawn up by using this methodology. The footprints can be used to 
identify instructions sharing the same functional units. For example, the instructions add, add 
immediate and sub have the same power behaviour due to sharing the same adder. Of course, the 
mathematical functionality has to be taken into consideration. All instructions with the same behaviour 
are arranged in groups. 

The next step is the identification of internal buses shared among different groups of instructions. 
Again a loop of alternating pairs of instructions is used. First, the first source operands of the two 
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instructions are the same (e.g. 0xaa...) and second, they differ with maximum hamming distance (e.g. 
0xaa... and 0x55...). The difference between the power values are used for bus switching characteriza-
tion. 
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Figure 8: A data path energy model based on the instruction set characterization.  

This methodology applied to the considered smart card CPU results in an architectural model for 
the IU-pipeline as presented in Figure 8. This model was integrated into the pipeline model presented 
in Figure 7. Each instruction has its own data dependent energy model, which contains references to 
the used shared energy models for each pipeline stage. This is a very flexible approach because data 
dependent power models can be extended or refined by referencing additional or other shared models. 
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Figure 9: Developed design flow for power aware smart cards. 

4.0 Design Flow 
This section shows the design flow used together with the models presented above. The entry point 

for the design flow presented in Fig. 4 is an arbitrary non-executable behavioral description. During 
the first step an executable functional model has to be developed. This model can be optimized and 
tested until it fulfills all requirements. Because of the golden model character for further 
implementation this is an important milestone. 

The purpose of the following stage is the mapping of the functional model on a transaction-level 
architecture, which has to be done by the user. Partitioning comprises mapping of functional modules, 
global memory map definition, and configuration of master and slave adapters. A synthesis system 
processes the functional model, the architecture description, and configuration information and 
produces an executable SystemC model. The design space can be explored by changing the target 
architecture, transforming the functional mapping, and reconfiguring the system mapping. When an 
architecture and mapping configuration with a high potential to meet the constraints have been found, 
integrated tools for software [15] and hardware power estimation can be used to get accurate energy 
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results. The best solution can be selected out of a set of solutions which acts as a golden model for the 
further implementation. Subsequent stages are the standard SW and HW design flows.  
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Figure 10: Synthesis system to process SystemC models and transaction-level architectures. 

The implementation of the synthesis system is shown in Fig. 10. The SystemC model is processed 
by a commercial C++ front end provided by EDG [4]. An analysis unit was integrated into the front 
end to generate a system description in XML. The user front end analyzes the file and generates a 
graphical representation. The same is done for the architectural description which has to be provided 
by the user in XML. Mapping information is written to a system configuration file which is read by 
the synthesis tool. Three main blocks have been implemented to transform the internal representation 
of the SystemC model. The system synthesis unit is able to manipulate the entire system and the 
interface generator is responsible for HW/SW interfaces and corresponding adapters. The last unit, 
called parallel unit, is necessary to replace two modules executed sequential with two parallel 
processes, process synchronization, and process intercommunication. Two back ends allow the 
generation of a new SystemC model and alternative ANSI C code for cross-compilation. 

5.0 Evaluation 
The presented smart card system-level design approach was evaluated using the smart card 

operating system Java Card™ [11]. Java Card is a Java virtual machine customized for smart cards. 
First of all, a functional model was developed, which is presented in Fig. 11.  The command 
dispatcher is the only active module in this model. It receives messages from the UART, processes 
them and calls corresponding methods of other modules. The linker/loader is responsible for post-
installation of Java Card Applets. The applet/system manager initializes and controls the virtual 
machine. A simple software interpreter is used to interpret all Java Card bytecodes. The operand and 
local variables stack was implemented based on a RAM module.  
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Figure 11: Functional Java Card™ model. 

Table 1 shows the results of switching activity optimization at functional level and the effects at 
transaction-level. The results show that there is a strong correlation between the switching activities at 
both levels of abstraction. However, results demonstrate that optimization can be done at functional 
level, where the complexity and necessary effort to change models is low. The large influence of 
EEPROM programming cycles can be demonstrated at functional level.  
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Table 1: Bus switching activity (SA) evaluation for a functional model (Funct, noopt) and an optimized 
version (Funct, opt). These models have been mapped on an architecture (Arch, noopt; Arch, opt). Results are 

shown for binary bus encoding, T0 encoding and bus invert code (I). 

 Memory Accesses Addr SA Addr SA(T0) Data SA Data SA (I) 
Funct, noopt 221071 415333 428627 680335 663747 
Funct, opt 203832 409491 436167 608183 591025 
Arch, noopt 233832 686290 700040 781682 769463 
Arch, opt 215817 636242 651088 672152 654668 

 
Figure 12(a) presents the number of programming cycles necessary to install and execute a Java 

Card applet dependent on the EEPROM page size for all memory blocks. The JC model was mapped 
on two transaction-level architectural models, one containing a single EEPROM block and a second 
with two blocks. The impact on the necessary programming cycles is shown in Fig. 12(b). 
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Figure 12: Exploration of non-volatile memory: (a) programming cycles dependent on EEPROM page size; (b) 
programming overhead due to memory block sharing. 

At functional platform the aim is to minimize energy dissipation by algorithmic exploration and 
architecture-level low energy techniques. At cycle-accurate platform software has to be cross-
compiled to estimate energy dissipation accurately. The effect of energy optimization is small 
compared to the more abstract levels. But at this level software power profile optimizations can be 
performed. As mentioned in the introduction, the power profile is important for the stability of RF-
field powered embedded systems. For instance, a power profile optimization of a part of a DES 
algorithm software implementation shows the following Fig. 13. Optimization results are due to 
instruction re-ordering based on the energy characterization of the instruction-set. The graphical view 
shows the elimination of several peaks and Table 2 depicts the values for the average power 
dissipation and the standard deviation. The result is a more flat power profile which can be seen by the 
reduced standard deviation, but the median power dissipation as reduced insignificantly. 
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Figure 13: Instruction-level power profile optimization for a small part of the DES algorithm. 
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Table 2: Median power dissipation related to the power dissipation of a NOP instruction and standard deviation 
for the example presented in Fig. 13. 

 Median Standard Deviation 
Original Code 191,5% 30,6% 
Optimized Code 184,5% 20,6% 

 
6.0 Conclusions 

This paper has presented the abstraction of smart card designs to get the benefit of system-level 
optimization. Due to the intensive usage of non-volatile memory in smart card applications, the 
memory system is represented in detail. Furthermore the design flow and the basic concept of 
implemented tools were discussed. Preliminary results were presented and discussed.  
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