
Computational Treatment of Temporal Notions

The CTTN-System

Hans Jürgen Ohlbach

Institut für Informatik, Universität München
email: ohlbach@lmu.de

Abstract. The CTTN-system is a computer program which provides
advanced processing or temporal notions. The basic data structures of
the CTTN-system are time points, crisp and fuzzy time intervals, labelled
partitionings of the time line, durations, and calendar systems. The la-
belled partitionings are used to model periodic temporal notions, quite
regular ones like years, months etc., partially regular ones like timeta-
bles, but also very irregular ones like, for example, dates of a conference
series. These data structures can be used in the temporal specification
language GeTS (GeoTemporal Specifications). GeTS is a functional spec-
ification and programming language with a number of built-in constructs
for specifying customized temporal notions.
CTTN is implemented as a Web server and as a C++ library. This
paper gives a short overview over the current state of the system and its
components.

Category C

1 Introduction and Motivation

In the CTTN-project we aim at a very detailed modelling of the temporal no-
tions which can occur in semi-structured data. The CTTN-system consists of a
kernel and several modules around the kernel. The kernel itself consists of several
layers. At the bottom layer there are a number of basic datatypes for elementary
temporal notions. These are time points, crisp and fuzzy time intervals [4, 5] and
partitionings for representing periodical temporal notions like years, months,
semesters etc. [6, 7]. The partitionings can be specified algorithmically or alge-
braically. The algorithmic specifications allows one to encode phenomena like
leap seconds, daylight savings time regulations, the Easter date, which depends
on the moon cycle etc. Partitionings can be arranged to form ‘durations, e.g. ‘2
year + 1 month, but also ‘2 semester + 1 month, where semester is a user de-
fined partitioning. Sets of partitionings, together with certain procedures, form
a calendar. The Gregorian calendar in particular can be formalized with the
partitionings for years, months, weeks, days, hours, minutes and seconds.

The second layer uses the functions and relations of the first layer as building
blocks in the specification language GeTS (‘GeoTemporal Specifications [8]). It is

Dagstuhl Seminar Proceedings 05151
Annotating, Extracting and Reasoning about Time and Events
http://drops.dagstuhl.de/opus/volltexte/2005/311

essentially a functional programming language with certain additional constructs
for this application area. A flex/bison type parser and an abstract machine for
GeTS has been implemented as part of the CTTN-system. GeTS is the first
specification and programming language with such a rich variety of built-in data
structures and functions for geotemporal notions.

The third layer consists of a command interface to the CTTN-system which
can be accessed via IP/TCP. Other interfaces, RMI, CORBA, SOAP etc. are in
principle possible, but not yet realized.

CTTN is not the implementation of a theoretical temporal logic, but it models
the flow of time as it is perceived on our planet. It realizes the main concepts
and operations underlying many temporal notions in natural language.

2 Time Points and Time Intervals

The flow of time underlying most calendar systems corresponds to a time axis
which is isomorphic to the real numbers R. Therefore CTTN takes as time points
just real numbers. Since the most precise clocks developed so far, atomic clocks,
measure the time in discrete units, it is sufficient to restrict the representation
of concrete time points to integers. In the standard setting these integers count
the seconds from the Unix epoch, which is January 1st 1970. Nothing signifi-
cant changes, however, if the meaning of these integers is changed to count, for
example, femtoseconds from the year 1.

The next important datatype is that of time intervals. Time intervals can be
crisp or fuzzy. With fuzzy intervals one can encode notions like ‘around noon
or ‘late night etc. This is more general and more flexible than crisp intervals.
Therefore the CTTN-system uses fuzzy intervals as basic interval datatype.

Fuzzy Intervals are usually defined through their membership functions [10,
3]. A membership function maps a base set to real numbers between 0 and 1.
The base set for fuzzy time intervals is a linear time axis, isomorphic to the real
numbers.

-

6

R
0

1

Crisp and Fuzzy Intervals

The fuzzy intervals can also be infinite. For example, the term ‘after tonight
may be represented as a fuzzy value which rises from fuzzy value 0 at 6 pm until
fuzzy value 1 at 8 pm and then remains 1 ad infinitum.

2

-

6

R
0

1

after tonight
6 8

Fuzzy time intervals are realized in the FuTI-library. Besides the pure datatype
definitions (the membership function of a fuzzy interval is realized as a polygon
with integer coordinates), it provides a large collection of operations on these
intervals. There are methods for accessing information about the intervals, the
location of various parts of an interval, its size (which is the integral over the
membership function), its components etc. There are methods for transforming
the intervals, for example hull computations, integration functions, fuzzification
functions etc. There are also very general unary and binary transformation func-
tions which can be parameterized with functions operating on the fuzzy values.
All the set operations on fuzzy intervals, for example, are realized as transfor-
mations with functions on the fuzzy values.

3 Partitionings

The CTTN-system uses the concept of partitionings of the real numbers to model
periodical temporal notions. In particular, the basic time units years, months etc.
are realized as partitionings. Other periodical temporal notions, for example
semesters, school holidays, sunsets and sunrises etc. can also be modelled as
partitionings.

A partitioning of the real numbers R may be, for example, (..., [−100, 0[,
[0, 100[, [100, 101[, [101, 500[, ...). The intervals in the partitionings need not be
of the same length (because time units like years are not of the same length
either). The intervals can, however, be enumerated by natural numbers (their
coordinates). For example, we could have the following enumeration

... [−100 0[[0 100[[100 101[[101 500[...

... −1 0 1 2 ...

Calendar Systems
A calendar in the CTTN-system is a set of partitionings, for example the par-
titionings for seconds, minutes, hours, weeks, months and years, together with
some extra data and methods. Dershowitz and Reingolds ‘calendrical calcula-
tions are used here [2]. The calendar systems in CTTN model all the nasty
features of real calendar systems, in particular leap seconds and daylight saving
time schemes.

The partitionings in CTTN can represent infinite partitionings of the real
numbers. This is suitable to model, for example, years. They can, however, also

3

be used to represent finite sequences of intervals. Examples are the school hol-
idays in Bavaria from 1970 until 2006. CTTN extrapolates these intervals in a
certain way to get an infinite partitioning. This simplifies the algorithms consid-
erably, but it may yield unwanted results for time points where the partitioning
is not meant for.

Therefore one can define boundaries for the validity of the partitionings.
These boundaries have no influence on the computations, but they can be
checked with special functions in the GeTS language.

The CTTN-system uses labelled partitionings. The labels are names for the
partitions. They can be used for two purposes. The first purpose is to get access
to the partitions via their names (labels). For example, the labels for the ‘day
partitioning can be ‘Monday, ‘Tuesday etc., and one can use these names in
various GeTS functions. The second purpose is to use the labels to group parti-
tions together to so called granules [1]. The concept of ‘working day, for example,
can be modelled by taking an ‘hour partitioning, and attach labels ‘working hour
and ‘gap to the hour partitions. Groups of hour partitions labelled ‘working hour
yield a working day. The working days can be interrupted by ‘gap partitions, for
example to take ‘lunch time out of a ‘working day.

Definition 1 (Labels and Granules). A labelling L is a finite sequence of
strings l0, . . . , ln−1. The label gap has a special meaning.

A labelling L can now be very easily attached to a partitioning: the partition
with coordinate i gets label L(i mod n).

A granule is a sequence pi, . . . , pi+k of partitions such that: (1) the labels of
pi and pi+k are not gap; (2) the labels of pi, . . . , pi+k which are not gap are the
same, and (3) i mod n < (i + k) mod n.

Example 1 (The Labelling of Days). The origin of the reference time is again
January 1st 1970. This was a Thursday. Therefore we choose as labelling for the
day partitioning

L =def Th, Fr, Sa, Su, Mo, Tu, We.

The following correspondences are obtained:

time : . . . [−86400, 0[[0, 86400[[86400, 172800[. . .
coordinate : . . . −1 0 1 . . .
label : . . . We Th Fr . . .

This means, for example, L(−1) = We, i.e. December 31 1969 was a Wednesday.

The partitionings are the mathematical model of periodic time units, such
as years, months etc. This offers the possibility to define durations. A duration
may, for example, be ‘3 months + 2 weeks. Months and weeks are represented as
partitionings, and 3 and 2 denote the number of partitions in these partitionings.
The numbers need not be integers, but they can be arbitrary real numbers.

A duration can be interpreted as the length of an interval. In this case the
numbers should not be negative. A duration, however, can also be interpreted

4

as a time shift. In this interpretation negative numbers make perfect sense.
d = −2 week + 3 month, for example, denotes a backward shift of 2 weeks
followed by a forward shift of 3 months.

4 The GeTS Language

The design of the GeTS language was influenced by the following considerations:

1. Although the GeTS language has many features of a functional programming
language, it is not intended as a general purpose programming language. It
is a specification language for temporal notions, however, with a concrete
operational semantics.

2. The parser, compiler, and in particular the underlying GeTS abstract ma-
chine are not standalone systems. They must be embedded into a host system
which provides the data structures and algorithms for time intervals, par-
titionings etc., and which serves as the interface to the application. GeTS
provides a corresponding application programming interface (API).

3. The language should be simple, intuitive, and easy to use. It should not
be cluttered with too many features which are mainly necessary for general
purpose programming languages.

4. The last aspect, but even more the point before, namely that GeTS is to
be integrated into a host system, were the main arguments against an easy
solution where GeTS is only a particular module in a functional language
like SML or Haskell. The host system was developed in C++. Linking a
C++ host system to an SML or Haskell interpreter for GeTS would be more
complicated than developing GeTS in C++ directly. The drawback is that
features like sophisticated type inferencing or general purpose data structures
like lists or vectors are not available in the current version of GeTS.

5. Developing GeTS from scratch instead of using an existing functional lan-
guage has also an advantage. One can design the syntax of the language in
a way which better reflects the semantics of the language constructs. This
makes it easier to understand and use. As an example, the syntax for a time
interval constructor is just [expression1, expression2].

The GeTS language is a strongly typed functional language with a few imperative
constructs. Here we can give only a flavour of the language. The technical details
are in [8].

Example 2 (tomorrow). The definition

tomorrow = partition(now(),day,1,1)

specifies ‘tomorrow as follows: now() yields the time point of the current point
in time. day is the name of the day partitioning. Let i be the coordinate of
the day-partition containing now(). partition(now(),day,1,1) computes the
interval [t1, t2[where t1 is the start of the partition with coordinate i + 1 and
t2 is the end of the partition with coordinate i + 1. Thus, [t1, t2[is in fact the
interval which corresponds to ‘tomorrow.

In a similar way, we can define

5

this_week(Time t) = partition(t,week,0,0).

The time point t, for which the week is to be computed, is now a parameter of
the function.

Example 3 (Christmas). The definition

christmas(Time t) =

dLet year = date(t,Gregorian_month) in

[time(year|12|25,Gregorian_month),

time(year|12|27,Gregorian_month)]

specifies Christmas for the year containing the time point t.

date(t,Gregorian month) computes a date representation for the time point t
in the date format Gregorian month (year/month/day/hour/minute/second).
Only the year is needed. dLet year = ... therefore binds only the year to the
integer variable year. If, for example, in addition the month is needed one can
write dLet year|month = date(....

time(year|12|25,Gregorian month) computes t1 = begin of the 25th of
December of this year. time(year|12|27,Gregorian month) computes t2 =
begin of the 27th of December of this year. The expression [...,...] denotes
the half-open interval [t1, t2[.

1 The result is therefore the half-open interval from
the beginning of the 25th of December of this year until the end of the 26th of
December of this year.

Example 4 (Point–Interval Before Relation). The function

PIRBefore(Time t, Interval I) =

if (isEmpty(I) or isInfinite(I,left)) then false

else (t < point(I,left,support))

specifies the standard crisp point–interval ‘before relation in a way which works
also for fuzzy intervals.

If the interval I is empty or infinite at the left side then PIRBefore(t,I) is
false, otherwise t must be smaller than the left boundary of the support of I.

Now we define a parameterized fuzzy version of the interval–interval before re-
lation.

Example 5 (Fuzzy Interval–Interval Before Relation). A fuzzy version of an interval–
interval before relation could be

1 Crisp intervals in CTTN are always half-open intervals [. . . , . . . [. Sequences of such
intervals, for example sequences of days, can therefore be used to partition a time
period. The syntactic representation of these intervals in GeTS is [...,...] and not
[...,...[because this simplifies the grammar and the parser considerably.

6

IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =

case

isEmpty(I) or isEmpty(J) or

isInfinite(I,right) or isInfinite(J,left) : 0,

(point(I,right,support) <= point(J,left,support)) : 1,

isInfinite(I,left) : integrateAsymmetric(intersection(I,J),B(J))

else integrateAsymmetric(I,B(J))

The input are the two intervals I and J and a function B which maps intervals
to intervals. B is used to compute for the interval J an interval B(J), which
represents the degree of ‘beforeness for the points before J.

The function first checks some trivial cases where I cannot be before J

(first clause in the case statement), or where I definitely is before J (second
clause in the case statement). If I is infinite at the left side then

∫
(I ∩ J)(x) ·

B(J)(x)dx/|I∩J | is computed to get a degree of ‘beforeness, at least for the part
where I and J intersect. If I is finite then

∫
I(x) · B(J)(x)dx/|I | is computed.

This averages the degree of a point-interval ‘beforeness, which is given by the
product I(x) · B(J)(x), over the interval I.

5 The Web-Interface

CTTN is a collection of C++ classes and methods which can be used in any other
C++ program. There is, however, also a command interface which is realized as
a web server. It communicates with a client through a socket. There is a group of
commands for uploading application specific definitions of temporal notions in
the GeTS language and in the specification language for labelled partitionings.
There are also commands for working with instances of these temporal notions,
particular time intervals, particular partitionings, particular calendar systems
etc. The Web interface is currently being developed and not yet documented.

6 Extensions of the CTTN-System

A number of extensions of the CTTN-system are on the agenda. The most
important one is the inclusion of constraint reasoning for ‘floating time intervals.
The expression ‘two weeks between Christmas and Easter, for example, cannot
be represented so far, because the precise location of these two weeks are not
known. Here we need to invoke constraints and constraint reasoning.

Another extension is a context module. A simple example for context infor-
mation which is useful for an application of the CTTN-system are the specifi-
cation of time zones. Timezones are submitted to the current CTTN-system as
offsets to GMT time. It would, however, be much more user friendly, if there
would be an automatic mapping of countries or regions to timezones.

A third extension is a link to a system which represents named entities. The
phrase ‘after the Olympic games in Rome, for example, can only be analysed if

7

some date about the Olympic games in Rome are available. We are currently
working at a link to the EFGT net, which stores named entities in a three
dimensional context of thematic fields, geographic regions and time periods [9].

More details about the CTTN-system will soon be available at the CTTN
homepage: http://www.pms.ifi.lmu.de/CTTN.

References

1. C. Bettini and R.D.Sibi. Symbolic representation of user-defined time granular-
ities. Annals of Mathematics and Artificial Intelligence, 30:53–92, 2000. Kluwer
Academic Publishers.

2. Nachum Dershowitz and Edward M. Reingold. Calendrical Calculations. Cam-
bridge University Press, 1997.

3. Didier Dubois and Henri Prade, editors. Fundamentals of Fuzzy Sets. Kluwer
Academic Publisher, 2000.

4. Hans Jürgen Ohlbach. Geotemporal reasoning: Basic theory. Deliverable D1 of
EU NoE Rewerse Working Group A1, 2004.

5. Hans Jürgen Ohlbach. Relations between fuzzy time intervals. In C. Combi and
G. Ligozat, editors, Proc. of the 11th International Symposium on Temporal Rep-

resentation and Reasoning, pages 44–51, Los Alamitos, California, 2004. IEEE.
6. Hans Jürgen Ohlbach. The role of labelled partitionings for

modelling periodic temporal notions. httpd://www.informatik.uni-
muenchen.de/mitarbeiter/ohlbach/homepage/publications/PRP/abstracts.shtml,
2004. To be published.

7. Hans Jürgen Ohlbach. The role of labelled partitionings for modelling periodic
temporal notions. In C. Combi and G. Ligozat, editors, Proc. of TIME 2004,
pages 60–63, Los Alamitos, California, 2004. IEEE.

8. Hans Jürgen Ohlbach. Implementation: Gets – a specification language for geo-
temporal notions. Deliverable D10a of EU NoE Rewerse Working Group A1, 2005.

9. Klaus U. Schulz and Felix Weigel. Systematics and architecture for a resource
representing knowledge abo ut named entities. In Jan Maluszynski Francois Bry,
Nicola Henze, editor, Principles and Practice of Semantic Web Reasoning, pages
189–208, Berlin, 2003. Springer-Verlag.

10. L. A. Zadeh. Fuzzy sets. Information & Control, 8:338–353, 1965.

8

