
Tales of ER and RE Syntax and Semantics

Martin Gogolla

July 22, 2005

Dagstuhl Seminar Proceedings 05161
Transformation Techniques in Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2006/425

Abstract

This paper explains how four model transformations between database models work:
(1) An ER (Entity-Relationship) database schema is transformed into a collection of
ER database states, (2) a RE (Relational) database schema into a collection of RE
database states, (3) an ER database schema into a RE database schema, and (4) a
collection of ER database states into a collection of RE database states. These four
separate transformations may be viewed as a single transformation between the ER
datamodel and the RE datamodel.

The schemas are regarded as determining the syntax of the datamodels, and the set
of associated states is regarded as being the semantics of the datamodels, because
the states associate meaning with the schemas. When one usually considers database
models, one formally only treats syntactical aspects, i.e., schemas, and handles the
semantics merely informally. Our approach allows to formally handle syntax and se-
mantics of database models and their transformation within a single and uniform
framework. The approach thus allows to precisely describe properties of the data-
models and properties of the transformation.

The method behind our approach is to divide a language into a syntax and semantics
part and to describe a transformation between two languages as a direction-neutral
affair. Formal properties of the languages to be transformed and formal properties of
the transformation are described uniformly. Transformation properties can be proper-
ties regarding syntax and semantics. The method can be applied not only to database
languages but to transformations between common computer science languages.

Contents

1 Introduction 1

2 Overview by Class and Package Diagrams 3

2.1 Package Diagram with Class Names . 3

2.2 Modeling ER and RE Syntax and Semantics 5

2.3 Transformation between ER and RE 6

3 Exploration by Object Diagrams 8

3.1 Base . 9

3.2 ER Syntax . 10

3.3 ER Semantics . 11

3.4 RE Syntax . 14

3.5 RE Semantics . 14

3.6 Common Datamodel Concerns . 15

3.7 Transformation . 17

4 Details of Textual Constraints 18

4.1 Base . 18

4.2 ER Syntax . 19

4.3 ER Semantics . 21

4.4 RE Syntax . 26

4.5 RE Semantics . 27

4.6 Common Datamodel Concerns . 28

i

4.7 Transformation . 29

4.8 Operation Definitions . 35

4.9 Classification of Constraints . 36

5 Modeling Method 39

5.1 Basic Modeling Method . 39

5.2 Other Examples . 40

5.3 Tool support . 42

6 Conclusion 43

ii

List of Figures

2.1 Package Diagram with Class Names . 4

2.2 Class Diagram Modeling the ER and RE Datamodel 4

2.3 Class Diagram Modeling the Transformation between ER and RE . . . 7

3.1 Example Scenario Diana marries Charles 8

3.2 Object Diagram with Data Types and Values 9

3.3 Object Diagram with ER Schema . 10

3.4 Object Diagram with ER State . 11

3.5 Object Diagram for Interplay between Syntax and Semantics 12

3.6 Object Diagram for Diana moves from Wembley to Windsor 13

3.7 Object Diagram for Diana moves and marries 13

3.8 Object Diagram with RE Schema . 14

3.9 Object Diagram with RE State . 15

3.10 Object Diagram for Attribute and AttrMap Owners 16

3.11 Object Diagram with Transformation 17

4.1 InstanceAttrMap, LinkAttrMap, RelendMap, and TupleAttrMap 22

4.2 Overview on DataMods Constraints . 29

4.3 Overview on Transformation Constraints 30

4.4 alpha, beta, and gamma Attributes . 32

4.5 Overview on Classification of Constraints 37

iii

5.1 Package Structure of Underlying Modeling Method 39

5.2 Transformation of Hierarchical Statecharts into Flat Statecharts 41

5.3 Compilation of a Programming Language into Assembler 41

iv

Chapter 1

Introduction

Within the database community the Entity-Relationship (ER) and the Rela-
tional (RE) database models have been studied and used for decades. Both models
are subject to introductory courses in database and software engineering education.
A typical course will introduce the main concepts of both database models in an in-
formal way, explain how to translate ER schemas into Relational database schemas
and will deepen the matter by practical exercises using a design tool and a database
system.

Recently, metamodeling has gained much attention, in particular in connection with
the Unified Modeling Language (UML) and the Model Driven Architecture (MDA).
This paper proposes another metamodel formulated with UML and OCL for the
ER and RE database models. In contrast to known approaches, this paper however
describes with its metamodel not only the concepts of the database schemas but
also gives a formal interpretation, i.e., a formal semantics, to ER and RE database
schemas: The paper formally connects database states to the schemas. Furthermore,
the translation between the database models is also described in a formal way, and
semantical properties of the translation are expressed based on the formal semantics
of the database models. We are not aware of another approach handling these two
classical database models with respect to syntax and semantics and their translation in
a rigorous and uniform way. In particular, we are not aware of an approach expressing
the ultimate goal of the schema translation process, namely the equivalence between
the database state spaces for the different models, in a formal and explicit way.

The above two paragraphs made use of the notion model in two different meanings:
Database model and metamodel. A database model denotes a collection of interrelated
concepts for describing certain classes of databases: The ER database model knows, for
example, entities, relationships, and instances; the Relational database model talks, for
example, about Relational schemas, attributes, and tuples. The metamodel which we
develop in this paper is a collection of UML classes, associations, and OCL constraints.
This metamodel covers the two database models and their transformation.

The rest of paper is structured as follows. Chapter 2 will give an overview on the
used metamodel. First, a package diagram will state the overall metamodel structure.

1

Second, both database models are sketched. Third, the concepts for the transformation
are introduced.

Chapter 3 and 4 show the same first seven sections: After treating common concepts
from the ER and RE database models, the ER syntax and the ER semantics and
afterwards the RE syntax and the RE semantics are handled; then common datamodel
concerns and thereafter the transformation is studied. Chapter 3 discusses the topics in
form of object diagrams. Chapter 4 discusses the same topics by considering textual
constraints. Chapter 4 finally shows the operations needed in the metamodels and
explains a classification of the constraints.

Chapter 5 turns to the basic idea behind the modeling method used in this paper,
gives other examples and discusses the role of tool support. Chapter 6 closes the paper
with a conclusion.

2

Chapter 2

Overview by Class and Package

Diagrams

2.1 Package Diagram with Class Names

Figure 2.1 shows the packages we have used and their dependencies. The package Base
contains fundamental classes, associations, and constraints with elements common to
both the ER and RE datamodel. The package ErSyn includes elements describing
the syntax of the ER datamodel whereas the package ErSem covers elements relevant
for the semantics of the ER datamodel. Analogously the package RelSyn and RelSem
are responsible for the syntax and semantics of the RE datamodel. The package Data-
Mods contains remaining syntactical and semantical elements only expressible for both
datamodels together. In DataMods further invariants but no new classes or associa-
tions are introduced. The package Er2Rel describes modeling elements relevant for the
transformation of between the ER datamodel and the RE datamodel.

A closer look at the dependencies in Fig. 2.1 should help in understanding the inter-
connections between and the structure of the packages. The package Base contains
modeling elements for ER and RE attributes and data types and describes syntacti-
cal as well as semantical aspects. Both modeling elements, attributes and data types,
occur in the ER and in the RE datamodel. Therefore these elements are considered
separately. In order to describe the semantics of both data models one has to know
their syntax beforehand, thus the semantic packages ErSem and RelSem rely on the
syntax packages ErSyn and RelSyn. The packages DataMods and Er2Rel finally unite
the two different lines for the ER and RE model in order (1) to express restrictions
that each apply to both datamodels together and (2) to express the transformation
between the datamodels.

3

Base

ErSyn

ErSem

RelSyn

RelSem

DataMods

Er2Rel

Trans

ErState, Instance,
Link, RelendMap

ErSchema, Entity,
Relship, Relend

Attribute, DataType,
AttrMap, Value, Named

RelDBSchema,
RelSchema

RelDBState,
Tuple

no classes,
only invariants

Packages with dependencies
and introduced classes

Figure 2.1: Package Diagram with Class Names

Entity

Relend

Relship

Attribute

DataType Value

ErState

RelendMap

Instance Link

ErSchema

AttrMap

RelSchema

RelDBState

Tuple

RelDBSchema

1

1..*

1

0..*

1

0..*

2..*
1

0..1
0..1

0..* 0..*

0..*
1

0..*1 0..*1

0..*1

0..*1

1..* 1..*

0..* 0..*

1

1

0..*

0..*

0..1

0..*

1
0..*

1
1

0..* 2..* 0..1

0..*

1

1..*

0..1

1..*

0..*1

0..*1
1..*

0..*

0..1

1..*

0..*

0..* 0..1

1

0..*

0..1

Figure 2.2: Class Diagram Modeling the ER and RE Datamodel

4

2.2 Modeling ER and RE Syntax and Semantics

The class diagram in Fig. 2.2 gives an overview on central classes and associations
by showing four clouds: In the left part a solid grey and a solid black cloud, in the
right part a dashed grey and a dashed black cloud. The two solid left clouds model
the syntax of the datamodels, the two dashed right clouds the semantics. The top
grey clouds describe the ER datamodel, the lower black clouds the RE datamodel.
The ER and the RE datamodel share some concepts, namely the parts in the middle
talking about data types, attributes and their semantics. The four clouds correspond
to five packages in Fig. 2.1, namely to Base, ErSyn, ErSem, RelSyn, and RelSem. The
intersection of the clouds corresponds to Base, the remaining part of the solid grey
cloud to ErSyn, the remaining part of the dashed grey cloud to ErSem, the remaining
part of the solid black cloud to RelSyn, and the remaining part of the dashed black
cloud to RelSem. We have used only binary associations because our description is
supposed to be a MOF-compliant one and MOF only knows binary associations.

Syntax of the ER datamodel: This part introduces the classes ErSchema, Entity,
Relship, Relend, Attribute, and DataType. ErSchema objects consist of Entity
and Relship objects which in turn may possess Attribute objects typed through
DataType objects. Relend objects represent the connection points between the
Relship objects and the Entity objects. All elements on the syntax side require an
attribute expressing their name. Therefore, we have factored out this attribute,
build an abstract class Named and made all classes on the syntax side subclasses
of this class Named. The class Named is not shown in Fig. 2.2.

Semantics of the ER datamodel: In this part we set up the classes ErState, In-
stance, Link, RelendMap, AttrMap, and Value. The interpretation is as follows.
An ErSchema object is interpreted by possibly many ErState objects. An Entity
is given semantics by a set of Instance objects, and a Relship by a set of Link
objects. DataType objects are given life through a set of Value objects. Relend
and Attribute objects are interpreted by a set of RelendMap objects and AttrMap
objects, respectively.

Syntax of the Relational datamodel: This part shows the classes RelDBSchema,
RelSchema, Attribute, and DataType. RelDBSchema objects consist of RelSchema
objects which possess Attribute objects typed through DataType objects. The
difference in the notions RelDBSchema (Relational database schema) and
RelSchema (Relational schema) is that a RelDBSchema consists of several
RelSchemas or in other words that a collection of RelSchemas constitutes a
RelDBSchema.

Semantics of the Relational datamodel: This last part utilizes the classes
RelDBState, Tuple, AttrMap, and Value. RelDBSchema objects are interpreted
by a set of RelDBState objects. Each RelDBState object consists of a set of Tuple
objects. Tuple objects in turn consist of a set of AttrMap objects assigning a
Value object to an Attribute within a Tuple and a RelDBState. A Tuple belongs
to exactly one RelSchema as the multiplicity 1 on the association to RelSchema
guarantees.

5

The class diagram and the resulting textual description follows certain naming
and layout conventions apart from the principles Syntax-Left-Semantics-Right and
ER-Top-RE-Bottom. Role names are not stated explicitly, but are always determined
by the UML and OCL rule that unspecified role names consist of the respective class
name with the first letter being given as a lower case letter. All associations within
the syntax side are displayed with straight lines and the same holds for the associa-
tions within the semantics side, but the associations between syntax and semantics
are shown with bent lines. These bent associations always have multiplicity 1 0..* and
express that for every syntactical class in the left there is a semantical class in the
right and that one syntactical object from the left is interpreted by a set of seman-
tical objects from the right. These associations may be seen as a typing mechanism,
because a semantical object is always associated with exactly one syntactical object,
its type. Exactly as a syntax class from the left possesses a corresponding semantics
class on the right, each syntax association from the left has a corresponding semantics
association on the right. In addition the semantics side on the right has three asso-
ciations between ErState and RelendMap, between ErState and AttrMap and between
RelDBState and AttrMap which do not have corresponding syntactical parts on the
left.

A further observation concerns implicitly present part-of relationships. Due to the
multiplicities and constraints on the syntax side, every object on the left will be
connected to a schema, and due to the multiplicities and constraints on the semantics
side every object on the right will be connected to a state. This means any object
originating from the left side will be connected directly or indirectly to either an
ErSchema or a RelDBSchema object, and any object originating from the right side
will be linked directly or indirectly to an ErState or a RelDBState object. The only
exception to this rule are DataType and Value objects which may exist independently
from schema objects.

2.3 Transformation between ER and RE

The class diagram in Fig. 2.3 describes the transformation between the ER datamodel
and RE datamodel and shows the constituents of the package Er2Rel. It introduces one
additional class Trans which represents transformation objects. A transformation ob-
ject can express with its links that one ErSchema is transformed into a RelDBSchema
together with the corresponding ErState objects transformed into RelDBState objects
via the association between Trans and ErState and the association between Trans and
RelDBState as well as via the association between ErState and RelDBState. This addi-
tion association between ErState and RelDBState expresses which ER state correspond
to which RE state. This is not already expressed in the pure set of states associated
with the transformation. Indeed, this last association could also more precisely be ex-
pressed as a ternary association with Trans as an additional class. Remember however,
we use MOF, which offers only binary associations for modeling, and then this situ-
ation would have to be modeled with an additional class making the scenario much
more complicated than the simpler class diagram which we have chosen.

6

ErSchema

RelDBSchema

ErState

RelDBState

Trans

1

0..1

0..1

1 0..*

0..1

0..1

0..*

0..1

0..1

Figure 2.3: Class Diagram Modeling the Transformation between ER and RE

By expressing the transformation by a transformation class and intentionally not, e.g.,
by operations we do not introduce any direction into the transformation. One tends to
think of the connection between the ER and RE model as translating an ER schema
into a RE database schema (see our package name Er2Rel), but the opposite direction
is worth to be considered for re-engineering purposes as well. Our design decision to
represent transformations as classes together with appropriate associations does not
impose any transformation direction. Forward and backward engineering techniques
are covered in principle by this direction-neutral design.

Thus it is only one view on the class diagram in Fig. 2.3 that it represents a trans-
formation from the top part to the lower part. Another view is that a transformation
from the lower part to the top part is described. But one can view the class diagram
also as describing a transformation from left part to the right part. That transforma-
tion is a relationship between syntactical elements, in this case pairs of schemas, and
semantical elements, in this case pairs of states.

7

Chapter 3

Exploration by Object Diagrams

Figure 3.1 shows a simple scenario which we want to study in this chapter. Put in
simple words, the scenario says: Diana marries Charles. The figure is structured into
four parts starting on the top: The two top parts show the ER version of the scenario,
the lower two parts the Relational version; for the ER version as well as the Relational
version first a database schema and afterwards a state is shown.

----------+---------------+------------------+--------------

Person | passport | gender
--------+----------+----------

| 123 | ’female’
| 456 | ’male’

Marriage | wife_passport | husband_passport | date

| 123 | 456 | ’1981/07/29’

diana charlesMarriage

123 ’female’ 456 ’male’’1981/07/29’

wife husband

Person Marriage

passport:Integer

gender:String

date:String

husband

wife

Person(passport:Integer,gender:String)

Marriage(wife_passport:Integer,husband_passport :Integer,date:String)

Figure 3.1: Example Scenario Diana marries Charles

8

The ER database schema displays one entity Person having two attributes, namely
passport number and gender, with the key attribute passport being underlined and one
reflexive relationship Marriage with indicated relationship end names wife and husband
and one relationship attribute date. The ER state has two instances for entity Person,
diana and charles, and assigns a passport and a gender value to both. The ER state also
pictures a link between the two instances expressing that their marriage took place
on 1981/07/29.

The Relational database schema possesses two Relational schemas originating from the
translation of the ER database schema. The entity Person is described by a Relational
schema Person having the same attributes as the entity. The relationship is represented
by a Relational schema Marriage having in particular two attributes, one for each
relationship end, where the attribute names must utilize the relationship end names
and the name of the key attribute: wife passport and husband passport. The facts from
the ER state, i.e., two instances and one link, are represented in the Relational state
by three tuples.

3.1 Base

We now want to represent the four parts from Fig. 3.1 as instantiations of the meta-
model we have sketched before. We start with the package Base. Since the ER database
schema and the RE database schema both utilize the data types Integer and String,

Figure 3.2: Object Diagram with Data Types and Values

we first introduce these data types. Both data types are pictured in Fig. 3.2 as ob-
jects of class DataType. In Fig. 3.2 also Value objects are shown which represent the
semantical interpretation of DataType objects. One data type can have a set of values
associated with it. The five Value objects have been given object identifiers which

9

already indicate their Content attribute. Alternatively, we could have denoted these
objects, for example, with object identifiers value1 to value5. Then, we had to use
these object identifiers in the object rectangles before the colons instead of the object
identifiers from Fig. 3.2, but the Content attribute would be as in Fig. 3.2.

Constraints have to restrict the possible object diagrams allowed by the class diagram
in the package Base. For example, there will be a constraint guaranteeing a unique
representation of each value. Thus it will be forbidden to have another Value object
called i 123B being also linked to data type Integer and having also content=’123’. In
the package Base also the class Attribute and AttrMap are present. Thus, for example,
the attribute passport from the ER schema or the attribute passport from the RE
schema belong to this package. Concrete objects for this part will be displayed later
in connection with the database schemas and database states.

3.2 ER Syntax

The ER database schema is shown as an object diagram in Fig. 3.3. All object iden-
tifiers (the part before the colon in the object rectangles) end with Er whereas the
forthcoming RE database schema will show Rel as endings. The ER schema itself being

Figure 3.3: Object Diagram with ER Schema

not explicitly present in Fig. 3.1 is called PMEr as a shorthand for Person-Marriage.
This object diagram introduces one ErSchema object, one Entity object, two Attribute
objects for the entity, one Relship object, two Relend objects for the relationship ends,

10

and one relationship Attribute object. Links establish proper connections so that the
graphically represented ER schema is captured formally as an object diagram.

Constraints have to restrict the class diagram so that only meaningful object diagrams
are allowed to be drawn. For example, with respect to the class diagram only it would
be allowed to have an additional link in Fig. 3.3 between the attribute dateER and
the entity PersonER. This has to be excluded.

3.3 ER Semantics

Following the overview diagrams in Fig. 3.1 we now come to the ER state being given
in Fig. 3.4. First, we identify the objects: One ErState object, two Instance objects,
one Link object, two RelendMap objects for the link ends, and five AttrMap objects for
the attribute values. Second, links establish the proper connections.

Figure 3.4: Object Diagram with ER State

As before, constraints must restrict the possible object diagrams. For example, the
above object diagram would become invalid, if the link between dianaPassportEr and
i 123 would be replaced by a link between dianaPassportEr and s female: Attribute
typing restrictions would be violated.

The lower part of the object diagram with objects of class Attribute and Value belongs
to the package Base. Remember that data types and values as well as attributes and

11

attribute maps are also used by the RE datamodel. The object diagram shows seman-
tical objects only, but remember that all semantical objects are typed by syntactical
objects. Thus all objects in the above ER state diagram possess links not shown here,
but present in the complete object diagram. This fact is emphasized in Fig. 3.5.

Figure 3.5: Object Diagram for Interplay between Syntax and Semantics

In the left of Fig. 3.5, part of the objects belonging to the ER schema are shown and,
in the right of the figure, part of the objects belonging to the complete ER state are
displayed. The links in the middle are all typing links. For example, the semantical
object stateER is typed by the syntactical object PMEr, the semantical object dianaEr
is typed by the syntactical object PersonEr and the semantical object i 123 is typed
by the syntactical object Integer. Now this figure also allows to explain the AttrMap
objects and their links: The AttrMap object dianaPassportEr with its links to stateER,
dianaEr, passportER, and i 123 expresses that in the given ER state the instance diana
receives with respect to the attribute passport the value 123. An analogous modeling
is chosen for RelendMap objects.

Up to now we have considered scenarios where an ER schema is associated with a
single state only. But in general, an ER schema may be interpreted by many ER states.
Figure 3.6 shows an object diagram involving one ER schema and two ER states. The
Instance object diana as well the AttrMap object assigning the name attribute are
shared between the two states. This object diagram also explains why each AttrMap
object must be linked to its four connected objects, i.e., an ErState, an Instance, an
Attribute, and a Value. One can check: If one of these four links would be missing, one
could not express the change of Diana’s address properly under the assumption that
a single Instance object has to represent Diana in both states.

Figure 3.7 shows a variation of the previous scenario. The ER schema is the same as
before (except the object identifiers), however the two states are different. As before,
the two different states share one Instance object, but both attribute values have

12

Figure 3.6: Object Diagram for Diana moves from Wembley to Windsor

changed between the first and the second state, even the key attribute value. Although
both states show completely different values, both states share the common Instance
object and thus Diana is present in both states, in the first state under the name
’Diana Spencer’, in the second state under the name ’Diana Mountbatten-Windsor’.

Figure 3.7: Object Diagram for Diana moves and marries

13

3.4 RE Syntax

Next we come to the Relational database schema which is pictured in Fig. 3.8. As in
the case of the ER database schema respective objects are shown, in this case, one
RelDBSchema object, two RelSchema objects, and five Attribute objects. Recall that a
Relational database schema can consist of many Relational schemas. Proper links are
established the correct object connections. All object identifiers in the RE part end
with Rel in contrast to the objects in the ER part which all ended with Er.

Figure 3.8: Object Diagram with RE Schema

In order to sketch an example for a needed constraint, imagine we would not have
name=’wife passport’ and name=’husband passport’ for wifeRel and husbandRel but we
would have name=’passport’ for both objects. Then one would have two different
attributes with the same name in one RE schema. This has to be excluded.

Comparing the ER database schema and RE database schema one finds that both
are represented by ten objects and twelve links, however the RE schema has a flat
structure with two Relational schemas whereas the ER database schema exhibits its
non-flat structure because the relationship depends on the entity.

3.5 RE Semantics

The last part in the overview diagram in Fig. 3.1 was the RE state. The corresponding
screenshot showing the RE semantics is displayed in Fig. 3.9. Analogously to the flat
RE schema structure, the RE state represents the two Instance objects and the single

14

Link object from the ER state homogeneously with three Tuple objects in a flat,
hierarchical manner.

Figure 3.9: Object Diagram with RE State

To point out once again the need of textual constraints, imagine the link between
charlesPassportRel and i 456 would be replaced by a link between charlesPassportRel
and i 123 (different passport number for Charles). Then one would have two different
Tuple objects in the same relation (Person) with the same key value. This must be
avoided.

Comparing the ER state and RE database state one finds that both are represented
by 16 objects and 17 links. However, the ER state has a greater degree of indirection
and with this a better shelter against possible update errors and a better shelter
against inconsistency: If, e.g., Charles receives a new passport number, this would be
reflected in the ER state by updating a single AttrMap link, whereas this would induce
the update of two AttrMap links in the RE state. This higher degree of indirection
can be seen as one of the reasons for calling the ER datamodel a semantic datamodel
in comparison to the RE datamodel which is classified as value-based.

3.6 Common Datamodel Concerns

The package DataMods introduces new invariants but no new classes. One of these
invariants will guarantee on the schema side that an attribute either belongs to an
ER entity or an ER relship or a RE schema. The other invariants will require on the

15

state side (1) that an attribute map is either linked to an ER instance or an ER link
or a RE tuple and (2) that an attribute map is either linked to an ER database state
or a RE database state.

Figure 3.10: Object Diagram for Attribute and AttrMap Owners

Figure 3.10 captures this for the example scenario. As usual, the left side displays
schema aspects whereas the right side captures state aspects, the top part covers
the ER datamodel and the bottom part the RE datamodel. The left side shows for
each Attribute object to which Entity, Relship, or RelSchema object it is linked to. The
right side explains to which Instance, Link, or Tuple each AttrMap object is connected
to. There are no attributes connected to more than one schema element, and there

16

are no attribute maps connected to more than one state. Thus, if we would, for
example, replace the link between genderEr and PersonEr by a link between genderRel
and PersonEr, we would have a constraint violation, because genderRel would have
two associated schema objects and genderEr would be connected to no schema object.
Figure 3.10 does not show the ErState or RelDBState objects to which the AttrMap
objects are connected to.

3.7 Transformation

What is now still missing is the transformation object which connects the schemas
and the states by proper links. The corresponding screenshot displaying the ErSchema
object, the ErState object, the RelDBSchema object, the RelDBState object, and the
Trans object can be found in Fig. 3.11. In this simple scenario with only one state for
the ER and RE datamodel the additional link between the states seems unnecessary.
However, if more than two states were captured such links are needed.

Figure 3.11: Object Diagram with Transformation

A constraint violation would occur, if we would drop, for example, the link between
PMEr2PMRel and stateRel, because then there would be a RE state connected via the
ER state to the transformation object, but not connected directly to the transforma-
tion object.

17

Chapter 4

Details of Textual Constraints

We now show the details of all constraints. Some of the constraint have been mentioned
before when we discussed the object diagrams. We will explain all constraints in
a systematic manner. Thus this presentation has more the character of a reference
description than being regular running text.

We cover the seven packages in the order we have handled them before. On first read-
ing, the reader may turn to the first constraint in the package only which represents
a typical package constraint or to one of the following typical constraints:

1. Base::Base Value::differentContentOrDataType

2. ErSyn::ErSyn ErSchema::uniqueEntityNamesWithinErSchema

3. ErSem::ErSem Instance::keyMapUnique

4. RelSyn::RelSyn RelSchema::relSchemaKeyNotEmpty

5. RelSem::RelSem Tuple::keyMapUnique

6. DataMods::Base Attribute::linkedToOneOfInstanceLinkTuple

7. Er2Rel::Er2Rel Trans::forTupleExistsOneInstanceXorLink

The naming convention is:

PackageDefiningTheConstraint::PackageDefiningTheClass Class::Constraint.

4.1 Base

Naming restriction: Names are defined, have a non-zero length, and consist of letters,
digits and the underscore.

18

context self:Base_Named inv nameOk:

let small:Set(String)=

Set{’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,

’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’} in

let capital:Set(String)=

Set{’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,’M’,

’N’,’O’,’P’,’Q’,’R’,’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’} in

let digit:Set(String)=

Set{’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’} in

self.name.isDefined and self.name.size>0 and

Set{1..self.name.size}->forAll(i |

Set{’_’}->union(small)->union(capital)->union(digit)->

includes(self.name.substring(i,i)))

Distinguishability of values: Different Values have different content or are linked to
different DataTypes.

context self:Base_Value inv differentContentOrDataType:

Base_Value.allInstances->forAll(self2 |

self<>self2 implies

(self.content<>self2.content or self.dataType<>self2.dataType))

Commutativity restriction: The DataType of the Attribute of an AttrMap is identical
to the DataType of the Value of the AttrMap.

Remark: All commutativity restriction constraint names will start with c and will
mention the visited classes in the constraint name.

context self:Base_AttrMap inv c_AttrMap_Attribute_Value_DataType:

self.attribute.dataType=self.value.dataType

Naming restriction: Different DataTypes have different names.

context self:Base_DataType inv uniqueDataTypeNames:

Base_DataType.allInstances->

forAll(self2 | self.name=self2.name implies self=self2)

4.2 ER Syntax

Commutativity restriction: The ErSchema of the Entity of a Relend is identical to the
ErSchema of the Relship of the Relend.

19

context self:ErSyn_Relend inv c_Relend_Entity_Relship_ErSchema:

self.entity.erSchema=self.relship.erSchema

Naming restriction: Different ErSchemas have different names.

context self:ErSyn_ErSchema inv uniqueErSchemaNames:

ErSyn_ErSchema.allInstances->

forAll(self2 | self.name=self2.name implies self=self2)

Naming restriction: Within one ErSchema, different Entities have different names.

context self:ErSyn_ErSchema inv uniqueEntityNamesWithinErSchema:

self.entity->forAll(e1,e2 | e1.name=e2.name implies e1=e2)

Naming restriction: Within one ErSchema, different Relships have different names.

context self:ErSyn_ErSchema inv uniqueRelshipNamesWithinErSchema:

self.relship->forAll(r1,r2 | r1.name=r2.name implies r1=r2)

Naming restriction: Within one ErSchema, Entities and Relships have different names.

context self:ErSyn_ErSchema

inv differentEntityAndRelshipNamesWithinErSchema:

self.entity->forAll(e | self.relship->forAll(r | e.name<>r.name))

Naming restriction: Within one Relship, different Relends have different names.

context self:ErSyn_Relship inv uniqueRelendNamesWithinRelship:

self.relend->forAll(re1,re2 | re1.name=re2.name implies re1=re2)

Naming restriction: Within one Entity, different Attributes have different names.

context self:ErSyn_Entity inv uniqueAttributeNamesWithinEntity:

self.attribute->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

Naming restriction: Within one Relship, different Attributes have different names.

context self:ErSyn_Relship inv uniqueAttributeNamesWithinRelship:

self.attribute->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

20

Naming restriction: Within one Entity, opposite side Relends and Attributes have
different names.

context self:ErSyn_Entity

inv differentOsRelendAndAttributeNamesWithinEntity:

self.osRelend()->forAll(re | self.attribute->forAll(a |

re.name<>a.name))

Naming restriction: Within one Relship, Relends and Attributes have different names.

context self:ErSyn_Relship

inv differentRelendAndAttributeNamesWithinRelship:

self.relend->forAll(re | self.attribute->forAll(a | re.name<>a.name))

Naming restriction: Within one Entity, different opposite side Relends have different
names.

context self:ErSyn_Entity inv uniqueOsRelendNamesWithinEntity:

self.osRelend()->forAll(re1,re2 | re1.name=re2.name implies re1=re2)

Key restriction: The set of key attributes of an Entity is not empty.

context self:ErSyn_Entity inv entityKeyNotEmpty:

self.key()->notEmpty

Key restriction: The set of key attributes of a Relship is empty.

context self:ErSyn_Relship inv relshipKeyEmpty:

self.attribute->select(a | a.isKey)->isEmpty

4.3 ER Semantics

The most difficult but probably also the most interesting modeling concept on the
semantics side are Maps. They occur in the class diagram in Fig. 2.2 in form of the
classes AttrMap and RelendMap. AttrMaps are specialized in the ER database model
part to InstanceAttrMaps and to LinkAttrMaps, and in the Relational datamodel part
to TupleAttrMaps. Figure 4.1 shows these specializations as subdiagrams of the original
class diagram in Fig. 2.2. In contrast to the original class diagram in Fig. 2.2, Maps
are shown as four-ary associations.

21

InstanceAttrMaps describe that an Attribute evaluates in an ErState with respect to
an Instance to a particular Value.

LinkAttrMaps describe that an Attribute evaluates in an ErState with respect to a Link
to a particular Value.

RelendMaps describe that a Relend evaluates in an ErState with respect to an Link to
a particular Instance.

TupleAttrMaps describe that an Attribute evaluates in a RelDBState with respect to a
Tuple to a particular Value.

A set of Map objects determines a function with three arguments. Each argument is
represented by one arm of the relationship. The result class of the function is the class
of the fourth remaining arm. We have pictured the Maps in Figure 4.1 as relationships
and have indicated the result class of the underlying function with an arrow. The
constraints to follow formally guarantee the functional restrictions and assure that
two different Map objects differ in their argument arms. For example, two different
InstanceAttrMap objects differ already in their Attribute, Instance, or ErState arm. The
diagrams in Figure 4.1 have merely illustrating character. They are not valid UML
class diagrams, among other reasons, due to the multiplicities on the diamond side
of the association arms. It is the aim of the following constraints to realize the intent
explained before.

Attribute

Value

ErState

Instance

AttrMap Attribute

Value

ErState

Link

AttrMap

Relend

ErState

Instance Link

RelendMap

Attribute

Value

RelDBState

Tuple

AttrMap

11

1

1

0..1 0..1

1

0..1

1 1

1

1

0..1 0..1

0..11

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*

InstanceAttrMap LinkAttrMap

RelendMap TupleAttrMap

Figure 4.1: InstanceAttrMap, LinkAttrMap, RelendMap, and TupleAttrMap

22

Functional restriction: An InstanceAttrMap, i.e., an AttrMap being linked to an In-
stance, represents a non-redundant, functional assignment of a Value to an Attribute
of an Entity within an ErState for the given Instance.

context self:Base_AttrMap inv instanceAttrMapIsFunction:

Base_AttrMap.allInstances->forAll(self2 |

(self<>self2 and self.instance->size=1 and self2.instance->size=1)

implies

((self.attribute=self2.attribute and self.instance=self2.instance)

implies

(self.erState<>self2.erState and self.value<>self2.value)))

Functional restriction: A LinkAttrMap, i.e., an AttrMap being linked to a Link, repre-
sents a non-redundant, functional assignment of a Value to an Attribute of a Relship
within an ErState for the given Link.

context self:Base_AttrMap inv linkAttrMapIsFunction:

Base_AttrMap.allInstances->forAll(self2 |

(self<>self2 and self.link->size=1 and self2.link->size=1)

implies

((self.attribute=self2.attribute and self.link=self2.link)

implies

(self.erState<>self2.erState and self.value<>self.value)))

Functional restriction: A RelendMap represents a non-redundant, functional assign-
ment of an Instance to a Relend within an ErState for a given Link.

context self:ErSem_RelendMap inv relendMapIsFunction:

ErSem_RelendMap.allInstances->forAll(self2 | self<>self2 implies

((self.relend=self2.relend and self.link=self2.link)

implies

(self.erState<>self2.erState and self.instance<>self.instance)))

Remark: A whole bunch of commutativity restrictions follow. First, we show commu-
tativity restrictions touching ErSem and ErSyn classes. Second, we show commutativity
restrictions touching only ErSem classes.

Commutativity restriction: The Attributes of the Entity of an Instance are identical
to the Attributes of the AttrMaps of the Instance; in other words, there are Attribute
assignments for all Attributes of an Instance.

context self:ErSem_Instance inv c_Instance_Entity_AttrMap_Attribute:

self.entity.attribute=self.attrMap.attribute->asSet

23

Commutativity restriction: The Attributes of the Relship of a Link are identical to
the Attributes of the AttrMaps of the Link; in other words, there are Attribute as-
signments for all Attributes of a Link.

context self:ErSem_Link inv c_Link_Relship_AttrMap_Attribute:

self.relship.attribute=self.attrMap.attribute->asSet

Commutativity restriction: The Relends of the Relship of a Link are identical to the
Relends of the RelendMaps of the Link; in other words, there are Relend assignments
for all Relends of a Link.

context self:ErSem_Link inv c_Link_Relship_RelendMap_Relend:

self.relship.relend=self.relendMap.relend->asSet

Commutativity restriction: The Entity of the Relend of a RelendMap is identical to
the Entity of the Instance of the RelendMap.

context self:ErSem_RelendMap inv c_RelendMap_Relend_Instance_Entity:

self.relend.entity=self.instance.entity

Commutativity restriction: The Relship of the Relend of a RelendMap is identical to
the Relship of the Link of the RelendMap.

context self:ErSem_RelendMap inv c_RelendMap_Relend_Link_Relship:

self.relend.relship=self.link.relship

Commutativity restriction: The ErSchema of the ErState of an Instance is identical
to the ErSchema of the Entity of the Instance.

context self:ErSem_Instance inv c_Instance_Entity_ErState_ErSchema:

Set{self.entity.erSchema}=self.erState.erSchema->asSet

Commutativity restriction: The ErSchema of the ErState of a Link is identical to the
ErSchema of the Relship of the Link.

context self:ErSem_Link inv c_Link_Relship_ErState_ErSchema:

Set{self.relship.erSchema}=self.erState.erSchema->asSet

Commutativity restriction: The Entity of the Instance of an AttrMap being an In-
stanceAttrMap is identical to the Entity of the Attribute of the AttrMap.

24

context self:Base_AttrMap inv c_AttrMap_Attribute_Instance_Entity:

self.attribute.entity=self.instance.entity

Commutativity restriction: The Relship of the Link of an AttrMap being a LinkAt-
trMap is identical to the Relship of the Attribute of the AttrMap.

context self:Base_AttrMap inv c_AttrMap_Attribute_Link_Relship:

self.attribute.relship=self.link.relship

Remark: The commutativity restrictions touching only ErSem classes follow.

Commutativity restriction: The ErStates of the Instance of an AttrMap being an
InstanceAttrMap include the ErStates of the AttrMap.

context self:Base_AttrMap inv c_AttrMap_Instance_ErState:

self.instance->size=1 implies

self.instance.erState->includesAll(self.erState)

Commutativity restriction: The ErStates of the Link of an AttrMap being a LinkAt-
trMap include the ErStates of the AttrMap.

context self:Base_AttrMap inv c_AttrMap_Link_ErState:

self.link->size=1 implies

self.link.erState->includesAll(self.erState)

Commutativity restriction: The ErStates of an Instance of a RelendMap include the
ErStates of the RelendMap.

context self:ErSem_RelendMap inv c_RelendMap_Instance_ErState:

self.instance.erState->includesAll(self.erState)

Commutativity restriction: The ErStates of a Link of a RelendMap include the Er-
States of the RelendMap.

context self:ErSem_RelendMap inv c_RelendMap_Link_ErState:

self.link.erState->includesAll(self.erState)

Commutativity restriction: The ErStates of an Instance of a RelendMap include the
ErStates of the Link of the Relendmap.

context self:ErSem_RelendMap inv c_RelendMap_Instance_Link_ErState:

self.instance.erState->includesAll(self.link.erState)

25

Remark: This ends the list of commutativity restrictions. Uniqueness restrictions for
keys follow.

Uniqueness restriction for keys: Two different Instances of one Entity can be distin-
guished in every ErState where both Instances occur by a key Attribute of the Entity.

context self:ErSem_Instance inv keyMapUnique:

ErSem_Instance.allInstances->forAll(self2 |

self<>self2 and self.entity=self2.entity

implies

self.erState->intersection(self2.erState)->forAll(s |

self.entity.key()->exists(ka |

self.applyAttr(s,ka)<>self2.applyAttr(s,ka))))

Uniqueness restriction for Relend maps: Two different Links of one Relship can be
distinguished in every ErState where both Links occur by a Relend of the Relship.

context self:ErSem_Link inv relendMapUnique:

ErSem_Link.allInstances->forAll(self2 |

self<>self2 and self.relship=self2.relship

implies

self.erState->intersection(self2.erState)->forAll(s |

self.relship.relend->exists(re |

self.applyRelend(s,re)<>self2.applyRelend(s,re))))

4.4 RE Syntax

Name restriction: Different RelDBSchemas have different names.

context self:RelSyn_RelDBSchema inv uniqueRelDBSchemaNames:

RelSyn_RelDBSchema.allInstances->forAll(self2 |

self.name=self2.name implies self=self2)

Name restriction: Within one RelDBSchema, different RelSchemas have different
names.

context self:RelSyn_RelDBSchema

inv uniqueRelSchemaNamesWithinRelDBSchema:

self.relSchema->forAll(r1,r2 | r1.name=r2.name implies r1=r2)

Name restriction: Within one RelSchema, different Attributes have different names.

26

context self:RelSyn_RelSchema inv uniqueAttributeNamesWithinRelSchema:

self.attribute->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

Key restriction: The set of key Attributes of a RelSchema is not empty.

context self:RelSyn_RelSchema inv relSchemaKeyNotEmpty:

self.key()->notEmpty

4.5 RE Semantics

Functional Restriction: A TupleAttrMap, i.e., an AttrMap being linked to a Tuple,
represents a non-redundant, functional assignment of a Value to an Attribute of a
RelSchema within an ErState for the given Tuple.

context self:Base_AttrMap inv tupleAttrMapIsFunction:

Base_AttrMap.allInstances->forAll(self2 |

(self<>self2 and self.tuple->size=1 and self2.tuple->size=1)

implies

((self.attribute=self2.attribute and self.tuple=self2.tuple)

implies

(self.relDBState<>self2.relDBState and self.value<>self2.value)))

Remark: A whole bunch of commutativity restrictions follow. First, we show com-
mutativity restrictions touching RelSem and RelSyn classes. Second, we show commu-
tativity restrictions touching only RelSem classes.

Commutativity restriction: The Attributes of the RelSchema of a Tuple are identical
to the Attributes of the AttrMaps of the Tuple; in other words, there are Attribute
assignments for all Attributes of a Tuple.

context self:RelSem_Tuple inv c_Tuple_RelSchema_AttrMap_Attribute:

self.relSchema.attribute=self.attrMap.attribute->asSet

Commutativity restriction: The RelDBSchema of the RelDBState of a Tuple is iden-
tical to the RelDBSchema of the RelSchema of the Tuple.

context self:RelSem_Tuple inv c_Tuple_RelSchema_RelDBState_RelDBSchema:

Set{self.relSchema.relDBSchema}=self.relDBState.relDBSchema->asSet

Commutativity restriction: The RelSchema of the Tuple of an AttrMap being a Tu-
pleAttrMap is identical to the RelSchema of the Attribute of the Tuple.

27

context self:Base_AttrMap inv c_AttrMap_Attribute_Tuple_RelSchema:

self.attribute.relSchema=self.tuple.relSchema

Remark: One commutativity restriction touching only RelSem classes follows.

Commutativity restriction: The RelDBStates of the Tuple of an AttrMap being a
TupleAttrMap include the RelDBStates of the AttrMap.

context self:Base_AttrMap inv c_AttrMap_Tuple_RelDBState:

self.tuple->size=1 implies

self.tuple.relDBState->includesAll(self.relDBState)

Key restriction: Two different Tuples of one RelSchema can be distinguished in every
RelDBState where both Tuples occur by a key Attribute of the RelSchema.

context self:RelSem_Tuple inv keyMapUnique:

RelSem_Tuple.allInstances->forAll(self2 |

self<>self2 and self.relSchema=self2.relSchema

implies

self.relDBState->intersection(self2.relDBState)->forAll(s |

self.relSchema.key()->exists(ka |

self.applyAttr(s,ka)<>self2.applyAttr(s,ka))))

4.6 Common Datamodel Concerns

Figure 4.2 visualizes the three invariants of the package DataMods. The formal con-
straints are given below. The figure indicates that these constraints are xor constraints
between associations. In contrast to the UML convention that xor constraints are
shown as straight lines, the layout in the class diagram requires to draw them by
curved lines.

Ownership restriction: An Attribute is either an Entity Attribute or a Relship At-
tribute or a RelSchema Attribute.

context self:Base_Attribute inv linkedToOneOfEntityRelshipRelSchema:

(self.entity->size)+(self.relship->size)+(self.relSchema->size)=1

Ownership restriction: An AttrMap belongs to either an Instance or a Link or a Tuple,
i.e., is an InstanceAttrMap or a LinkAttrMap or a TupleAttrMap.

context self:Base_AttrMap inv linkedToOneOfInstanceLinkTuple:

(self.instance->size)+(self.link->size)+(self.tuple->size)=1

28

linkedToOneOfEntity
RelshipRelSchema

linkedToOneOf
RelDBStateErState

Entity

Relend

Relship

Attribute

DataType Value

ErState

RelendMap

Instance Link

ErSchema

AttrMap

RelSchema

RelDBState

Tuple

RelDBSchema

1

1..*

1

0..*

1

0..*

2..*
1

0..1
0..1

0..* 0..*

0..*
1

0..*1 0..*1

0..*1

0..*1

1..* 1..*

0..* 0..*

1

1

0..*

0..*

0..1

0..*

1
0..*

1
1

0..* 2..* 0..1

0..*

1

1..*

0..1

1..*

0..*1

0..*1
1..*

0..*

0..1

1..*

0..*

0..* 0..*
0..*

0..*

1..*

linkedToOneOfInstance
LinkTuple

Figure 4.2: Overview on DataMods Constraints

Ownership restriction: An AttrMap lives either in a RelDBState or an ErState.

context self:Base_AttrMap inv linkedToOneOfRelDBStateErState:

self.relDBState->size>0 xor self.erState->size>0

4.7 Transformation

Figure 4.3 gives an overview on the invariants in the package Trans. This overview
classifies the constraints according to datamodel and whether syntax or semantics is
touched. The classification also involves a direction. For example, the two constraints
forEntityExistsOneRelSchema and forRelshipExistsOneRelSchema are visualized with an
arrow from ErSyn to RelSyn because the constraints assures that an ER schema element
requires a Relational database schema element to be present.

Remark: The first collection of constraints concerns the syntax part of the transfor-
mation, i.e., these constraints touch ErSyn and RelSyn classes only.

Exists constraint: For every Entity in the ErSchema there is a RelSchema having the
same name and Attributes with the same properties, i.e., name, DataType, and key
property.

context self:Er2Rel_Trans inv forEntityExistsOneRelSchema:

self.erSchema.entity->forAll(e |

self.relDBSchema.relSchema->one(rl |

e.name=rl.name and

29

ErSyn

ErSem

RelSyn

RelSem

forEntityExistsOneRelSchema
forRelshipExistsOneRelSchema

forRelSchemaExistsOneEntityXorRelship

forInstanceExistsOneTuple
forLinkExistsOneTuple

forErStateExistsOneRelDBState

forTupleExistsOneInstanceXorLink
forRelDBStateExistsOneErState

c_Trans_ErState_
ErSchema

c_Trans_RelDBState_
RelDBSchema

Figure 4.3: Overview on Transformation Constraints

e.attribute->forAll(ea |

rl.attribute->one(ra |

ea.name=ra.name and ea.dataType=ra.dataType and

ea.isKey=ra.isKey))))

Exists constraint: For every Relship in the ErSchema there is a RelSchema having the
same name, Relends representing the arms of the relationship, and Attributes with
the same properties, i.e., name, DataType, and key property.

context self:Er2Rel_Trans inv forRelshipExistsOneRelSchema:

self.erSchema.relship->forAll(rs |

self.relDBSchema.relSchema->one(rl |

rs.name=rl.name and

rs.relend->forAll(re | re.entity.key()->forAll(rek |

rl.attribute->one(ra |

re.name.concat(’_’).concat(rek.name)=ra.name and

rek.dataType=ra.dataType and ra.isKey))) and

rs.attribute->forAll(rsa |

rl.attribute->one(ra |

rsa.name=ra.name and rsa.dataType=ra.dataType and

ra.isKey=false))))

Exists constraint: For every RelSchema there is either an Entity or a Relship with
the same properties and name; if the RelSchema corresponds to an Entity, both have
Attributes with the same names, DataTypes, and key properties; if the RelSchema

30

corresponds to a Relship, the RelSchema has Attributes corresponding to the arms of
the Relship and both have Attributes with the same properties.

context self:Er2Rel_Trans inv forRelSchemaExistsOneEntityXorRelship:

self.relDBSchema.relSchema->forAll(rl |

self.erSchema.entity->one(e |

rl.name=e.name and

rl.attribute->forAll(ra |

e.attribute->one(ea |

ra.name=ea.name and ea.dataType=ra.dataType and

ra.isKey=ea.isKey)))

xor

self.erSchema.relship->one(rs |

rl.name=rs.name and

rl.attribute->forAll(ra |

rs.relend->one(re |

re.entity.key()->one(rek |

ra.name=re.name.concat(’_’).concat(rek.name) and

ra.dataType=rek.dataType and ra.isKey))

xor

rs.attribute->one(rsa |

ra.name=rsa.name and ra.dataType=rsa.dataType and

ra.isKey=false))))

In Fig. 4.4 we have pictured classified the attributes of a RE database schema as
alpha, beta, and gamma attributes: alpha attributes are attributes of RE schemas
representing entities, beta attributes are attributes in RE schemas for ordinary rela-
tionship attributes, and gamma attributes are attributes in RE schemas representing
relationship arms. These classifications will appear in the constraints to follow.

Remark: The second collection of constraints concerns the semantics part of the
transformation, i.e., these constraints touch also ErSem and RelSem classes.

Exists constraint: For every Instance in a ErState there is exactly one Tuple in one
RelDBState such that for every AttrMap of the Instance there is exactly one AttrMap
of the Tuple having the same attribute name and Value.

Condensed, informal version:

forAll(erSt | one(relSt |

forAll(i | one(t |

forAll(amEr | one(amRel | equiv(amEr,amRel))))))) -- alpha

Formal constraint:

context self:Er2Rel_Trans inv forInstanceExistsOneTuple:

31

----------+---------------+------------------+--------------

Person | passport | gender
--------+----------+----------

| 123 | ’female’
| 456 | ’male’

Marriage | wife_passport | husband_passport | date

| 123 | 456 | ’1981/07/29’

diana charlesMarriage

123 ’female’ 456 ’male’’1981/07/29’

wife husband

alpha alpha beta

gammagamma

Figure 4.4: alpha, beta, and gamma Attributes

self.erState->forAll(erSt | self.relDBState->one(relSt |

erSt.instance->forAll(i | relSt.tuple->one(t |

i.attrMap->forAll(amEr | -- alpha

t.attrMap->one(amRel |

amEr.attribute.name=amRel.attribute.name and

amEr.value=amRel.value))))))

Exists constraint: For every Link in a ErState there is exactly one Tuple in one
RelDBState such that (A) for every AttrMap of the Link there is exactly one AttrMap
of the Tuple having the same attribute name and Value and (B) for every RelendMap
of the Link and every AttrMap of a key Attribute of the Instance referred to in the
Link there is exactly one AttrMap of the Tuple having a corresponding attribute name
and Value.

Condensed, informal version:

forAll(erSt | one(relSt |

forAll(l | one(t |

forAll(amEr | one(amRel | equiv(amEr,amRel))) -- beta

and

forAll(rm | forAll(amEr | -- gamma

one(amRel | equiv(amEr,amRel))))))))

Formal constraint:

context self:Er2Rel_Trans inv forLinkExistsOneTuple:

self.erState->forAll(erSt | self.relDBState->one(relSt |

erSt.link->forAll(l | relSt.tuple->one(t |

l.attrMap->forAll(amEr | -- beta

32

t.attrMap->one(amRel |

amEr.attribute.name=amRel.attribute.name and

amEr.value=amRel.value))

and

l.relendMap->forAll(rm | -- gamma

rm.instance.attrMap->

select(amEr | amEr.attribute.isKey)->forAll(amEr |

t.attrMap->select(amRel | amRel.attribute.isKey)->one(amRel |

amRel.attribute.name =

rm.relend.name.concat(’_’).concat(amEr.attribute.name) and

amRel.value=amEr.value)))))))

Exists constraint: For every Tuple in a RelDBState (1) there is either exactly one
Instance such that for every attrMap of the Tuple there is exactly one attrMap in
the Instance holding the same information or (2) there is exactly one link such that
for every attrMap of Tuple the following holds: (A) if the attrMap belongs not to a
key Attribute, there is exactly one attrMap in the Link holding the same information,
and (B) if the attrMap belongs to a key Attribute, there is exactly one RelendMap in
the Link and exactly one attrMap of the RelendMap such that the attrMap from the
Tuple and the attrMap from the Link hold the same information.

Condensed, informal version:

forAll(relSt | one(erSt |

forAll(t |

one(i | -- alpha

forAll(amRel | one(amEr | equiv(amRel,amEr))))

xor

one(l | forAll(amRel |

(amRel.notKey implies -- beta

one(amEr | equiv(amRel,amEr)))

and

(amRel.isKey implies -- gamma

one(rm | one(amEr | equiv(amRel,amEr)))))))))

Formal constraint:

context self:Er2Rel_Trans inv forTupleExistsOneInstanceXorLink:

self.relDBState->forAll(relSt | self.erState->one(erSt |

relSt.tuple->forAll(t |

erSt.instance->one(i | -- alpha

t.attrMap->forAll(amRel |

i.attrMap->one(amEr |

amEr.attribute.name=amRel.attribute.name and

amEr.value=amRel.value)))

xor

erSt.link->one(l |

33

t.attrMap->forAll(amRel |

(amRel.attribute.isKey=false implies -- beta

l.attrMap->one(amEr |

amEr.attribute.name=amRel.attribute.name and

amEr.value=amRel.value))

and

(amRel.attribute.isKey=true implies -- gamma

l.relendMap->one(rm |

rm.instance.attrMap->select(amEr | amEr.attribute.isKey)->

one(amEr |

amRel.attribute.name =

rm.relend.name.concat(’_’).concat(amEr.attribute.name)

and amRel.value=amEr.value))))))))

Exists constraint: In a transformation, there is exactly one RelDBState for every
ERState.

context self:Er2Rel_Trans inv forErStateExistsOneRelDBState:

self.erState->forAll(erSt |

self.relDBState->one(relSt | erSt.relDBState=relSt))

Exists constraint: In a transformation, there is exactly one ErState for every RelDB-
State.

context self:Er2Rel_Trans inv forRelDBStateExistsOneErState:

self.relDBState->forAll(relSt |

self.erState->one(erSt | relSt.erState=erSt))

Commutativity constraint: The ErSchemas of the translated ErStates of a transfor-
mation are identical to the ErSchema of the transformation.

context self:Er2Rel_Trans inv c_Trans_ErState_ErSchema:

self.erState->notEmpty implies

self.erState.erSchema->asSet=Set{self.erSchema}

Commutativity constraint: The RelDBSchemas of the translated RelDBStates of a
transformation are identical to the RelDBSchema of the transformation.

context self:Er2Rel_Trans inv c_Trans_RelDBState_RelDBSchema:

self.relDBState->notEmpty implies

self.relDBState.relDBSchema->asSet=Set{self.relDBSchema}

34

4.8 Operation Definitions

The operation ErSyn Entity::key() determines the set of key attributes of an entity.

ErSyn_Entity::key():Set(Base_Attribute) = -- key attributes

self.attribute->select(a | a.isKey)

The operation ErSyn Entity::osRelend() yields for an entity the set of relationship ends
lying on the opposite side of an association in which the entity participates, i.e., the
set of all relationship ends which may be applied to an instance of the entity.

ErSyn_Entity::osRelend():Set(ErSyn_Relend) = -- other side relends

self.relend->collect(re | re.relship.relend->excluding(re))->

flatten->asSet

The operation ErSem ErState::findInstance(...):ErSem Instance detects in an ER state
the instance which is determined by the key values and the entity name given as
parameters.

ErSem_ErState::

findInstance(keyAttrs:Sequence(String),entName:String):ErSem_Instance=

let theEntity:ErSyn_Entity=

self.erSchema.entity->select(name=entName)->any(true) in

self.instance->select(entity=theEntity)->

select(i:ErSem_Instance|Sequence{1..keyAttrs->size div(2)}->

forAll(j:Integer|

let attrName:String=keyAttrs->at(2*(j-1)+1) in

let attrValue:String=keyAttrs->at(2*(j-1)+2) in

let attr:Base_Attribute=theEntity.attribute->

select(name=attrName)->any(true) in

i.applyAttr(self,attr)=attrValue))->any(true)

Remark: The use of any is in this case and the following occurrences a deterministic
use. The constructions are always done in such a way that any is applied to a collection
with exactly one element. The given constraints will guarantee this. Thus the use of
any here can be seen as a type cast from a singleton set to the type of the element
yielding undefined if the set is empty or has more than one element.

The operation ErSem Instance::applyAttr(...):String evaluates in a given state an at-
tribute of an instance.

ErSem_Instance::

applyAttr(aState:ErSem_ErState,anAttr:Base_Attribute):String=

self.attrMap->

select(am|am.erState->includes(aState) and am.attribute=anAttr)->

any(true).value.content

35

The operation ErSem Link::applyRelend(...):ErSem Instance evaluates in a given state
a relationship end of a link.

ErSem_Link::

applyRelend(aState:ErSem_ErState,aRelend:ErSyn_Relend):ErSem_Instance=

self.relendMap->

select(rm | rm.erState->includes(aState) and rm.relend=aRelend)->

any(true).instance

The operation ErSem Link::applyAttr(...):String evaluates in a given state an attribute
of an link.

ErSem_Link::

applyAttr(aState:ErSem_ErState,anAttr:Base_Attribute):String=

self.attrMap->

select(am|am.erState->includes(aState) and am.attribute=anAttr)->

any(true).value.content

The operation RelSyn RelSchema::key():Set(Base Attribute) determines the set of key
attributes of an RE schema.

RelSyn_RelSchema::key():Set(Base_Attribute) =

self.attribute->select(a | a.isKey)

The operation RelSem Tuple::applyAttr(...):String evaluates in a given state an at-
tribute of a tuple.

RelSem_Tuple::

applyAttr(aState:RelSem_RelDBState,anAttr:Base_Attribute):String=

self.attrMap->

select(am | am.relDBState->includes(aState) and

am.attribute=anAttr)->any(true).value.content

4.9 Classification of Constraints

The table in Fig. 4.5 gives an overview on the constraints we have discussed so far
in the order we have mentioned them. The table has one line for each constraint.
In the left of the table we see six classification categories labelled N, C, K, F, L,
and E. Afterwards the defining package of the constraint, the context class of the
constraint, and finally the constraint name are shown. A filled circle in a line classifies
the constraint. The six categories have the following meaning according to their first
letters.

36

N C K F L E

• Base Base Named nameOk

– – – – – – 4 Base Value differentContentOrDataType

• Base AttrMap c AttrMap Attribute Value DataType

• Base DataType uniqueDataTypeNames

• ErSyn ErSyn Relend c Relend Entity Relship ErSchema

• 13 ErSyn ErSchema uniqueErSchemaNames

• ErSyn ErSchema uniqueEntityNamesWithinErSchema

• ErSyn ErSchema uniqueRelshipNamesWithinErSchema

• ErSyn ErSchema differentEntityAndRelshipNamesWithinErSchema

• ErSyn Relship uniqueRelendNamesWithinRelship

• ErSyn Entity uniqueAttributeNamesWithinEntity

• ErSyn Relship uniqueAttributeNamesWithinRelship

• ErSyn Entity differentOsRelendAndAttributeNamesWithinEntity

• ErSyn Relship differentRelendAndAttributeNamesWithinRelship

• ErSyn Entity uniqueOsRelendNamesWithinEntity

• ErSyn Entity entityKeyNotEmpty

• ErSyn Relship relshipKeyEmpty

• ErSem Base AttrMap instanceAttrMapIsFunction

• 19 Base AttrMap linkAttrMapIsFunction

• ErSem RelendMap relendMapIsFunction

• ErSem Instance c Instance Entity AttrMap Attribute

• ErSem Link c Link Relship AttrMap Attribute

• ErSem Link c Link Relship RelendMap Relend

• ErSem RelendMap c RelendMap Relend Instance Entity

• ErSem RelendMap c RelendMap Relend Link Relship

• ErSem Instance c Instance Entity ErState ErSchema

• ErSem Link c Link Relship ErState ErSchema

• Base AttrMap c AttrMap Attribute Instance Entity

• Base AttrMap c AttrMap Attribute Link Relship

• Base AttrMap c AttrMap Instance ErState

• Base AttrMap c AttrMap Link ErState

• ErSem RelendMap c RelendMap Instance ErState

• ErSem RelendMap c RelendMap Link ErState

• ErSem RelendMap c RelendMap Instance Link ErState

• ErSem Instance keyMapUnique

• ErSem Link relendMapUnique

• RelSyn RelSyn RelDBSchema uniqueRelDBSchemaNames

• 4 RelSyn RelDBSchema uniqueRelSchemaNamesWithinRelDBSchema

• RelSyn RelSchema uniqueAttributeNamesWithinRelSchema

• RelSyn RelSchema relSchemaKeyNotEmpty

• RelSem Base AttrMap tupleAttrMapIsFunction

• 6 RelSem Tuple c Tuple RelSchema AttrMap Attribute

• RelSem Tuple c Tuple RelSchema RelDBState RelDBSchema

• Base AttrMap c AttrMap Attribute Tuple RelSchema

• Base AttrMap c AttrMap Tuple RelDBState

• RelSem Tuple keyMapUnique

• DataMods Base Attribute linkedToOneOfEntityRelshipRelSchema

• 3 Base AttrMap linkedToOneOfInstanceLinkTuple

• Base AttrMap linkedToOneOfRelDBStateErState

• Er2Rel Er2Rel Trans forEntityExistsOneRelSchema

• 10 Er2Rel Trans forRelshipExistsOneRelSchema

• Er2Rel Trans forRelSchemaExistsOneEntityXorRelship

• Er2Rel Trans forInstanceExistsOneTuple

• Er2Rel Trans forLinkExistsOneTuple

• Er2Rel Trans forTupleExistsOneInstanceXorLink

• Er2Rel Trans forErStateExistsOneRelDBState

• Er2Rel Trans forRelDBStateExistsOneErState

• Er2Rel Trans c Trans ErState ErSchema

• Er2Rel Trans c Trans RelDBState RelDBSchema

15 22 6 4 3 8 59

Figure 4.5: Overview on Classification of Constraints

37

Naming: A naming constraints is used in a syntax package in order to restrict the
attribute name. Both global and local naming restrictions are covered.

Commutativity: A commutativity constraint expresses that two paths in the class
diagram commute, i.e., that two different expressions having the same source
and target class evaluate to the same result. A commutativity constraint is either
a 2-2 or a 2-1 constraint. In a 2-2 constraint both of the two expression navigate
over two associations, in a 2-1 constraint one expressions navigates over two
associations, the other expression navigates over one association.

Key: A key constraint involves key attributes. A key constraint either touches syn-
tactical issues (the set of key attributes is empty or not empty) or semantical
issues (the value of the key attribute must be unique).

Function: A function constraint expresses that an element which has to be modeled
with MOF as a class together with multiple associations must be interpreted as
an n-ary association which represents a function. Recall that there are no n-ary
associations in MOF.

Link: A link constraint assures that each attribute or attribute map is linked to
exactly one owning element, either a schema element in the syntax or a state
element in the semantics.

Exists: An exists constraint requires in the transformation package that for each
element of a certain domain a unique element of another domain exists.

Each constraint is categorized at most once. There is one with respect to the given six
items non-classifiable constraint: The second constraint. The table in Fig. 4.5 shows
also the number of constraints found in each package and in each category. About two
thirds of the constraints (15+27=37 of totally 59 constraints) handle standard issues,
i.e., naming and commutativity issues.

Although the description of the constraints showed many complicated details, the
table in Fig. 4.5 reveals that many constraints have a similar purpose and with this a
similar structure.

38

Chapter 5

Modeling Method

5.1 Basic Modeling Method

As indicated with the package diagram in Fig. 5.1, the method behind our approach
is to divide a language into a syntax and semantics part and to describe a transforma-
tion between two languages as a direction-neutral affair. All packages will in general

L1Syn

L1Sem

L2Syn

L2Sem

Trans

Figure 5.1: Package Structure of Underlying Modeling Method

include classes, associations, and constraints. We expect that the semantics of the
languages will depend on their syntax. The transformation will rely on the syntax
and the semantics of the two languages. Transformation properties could be further
distinguished into syntax and semantics properties. We regard it as important that
formal properties of

• the syntax of languages to be transformed,

• the semantics of the languages to be transformed and,

• the transformation itself are described in a uniform way within one language.

39

Only with an explicit formulation of the semantics, a transformation can make re-
quirements about the relationship between the semantics of the first language, the
semantics of the second language and the transformation. Apart from a better under-
standing of the underlying domain, a uniform description opens the possibility of a
coherent reasoning mechanism for languages and their transformation.

Above, we have coined the notion that a transformation is a direction-neutral af-
fair. We expect that transformations are described with the same modeling features
as the languages, i.e., with classes, association, and constraints. Our transformation
between ER and RE was insofar a special case as we needed only a single class in
the transformation package. In general, a transformation package may involve more
classes and associations on its own. We think that in order to be general, it is a good
idea to start with transformation classes and to describe properties of transforma-
tions as invariants. The advantage we see in this is that no direction is imposed for
the transformation. In a later reification step, the transformations may be turned into
appropriate operations.

Our above transformation between ER and RE was also in another respect a special
case of the general situation: Our aim for ER and RE was an equivalence between the
two database state spaces, i.e., between the two semantic domains, and our constraints
exactly required such an equivalence. However, with respect to the transformation
properties, the approach is flexible. If we would like to do so, we could, for example,
require that the semantics of the second language can be embedded in the semantics
of the first language but not necessarily the other way round. The transformation
properties merely depend on what is stated in the transformation constraints.

5.2 Other Examples

The method which we propose can be applied not only to database languages but to
transformations between common computer science languages. We will study some
examples from the modeling area as well as classical compliler technology.

A very popular sub-language of the UML are statecharts. Statecharts are similar to
classical automata, but allow to structure behavior descriptions with states and tran-
sitions where states may possess sub-states in order to compose complex systems into
manageable pieces in a hierarchical fashion. Hierarchical statecharts may be translated
into non-hierarchical, flat statechart without changing the accepted language. This is
captured in Fig. 5.2. The package diagram introduces a package SC-Hier for the syntax
of hierarchical statecharts and a package AccLanHier for describing the semantics, in
this case for describing the accepted languages of the hierarchical statecharts. The
second language is the language of flat statecharts, again described with a syntax de-
scription SC-Flat and a semantics description AccLanFlat. The transformation package
Trans could then model the equivalence between hierarchical and flat statecharts.

Figure 5.3 shows classical compliler technology in the setting we propose. The syntax
packages ProgLang and ASM would describe the syntax of the programming language

40

SCHier

AccLanHier

SCFlat

AccLanFlat

Trans

Figure 5.2: Transformation of Hierarchical Statecharts into Flat Statecharts

ASM-ExecsPL-Execs

ProgLang ASM

Trans

Figure 5.3: Compilation of a Programming Language into Assembler

41

and the assembler. The semantics packages PL-Execs and ASM-Execs model the execu-
tion traces for the programming language and the assembler. The package Trans would
correspond to a classical compiler, where the syntax part would represent the pure
translation and the semantics would state requirements for the compiler correctness.

5.3 Tool support

The last important ingredient for our method is tool support. It is necessary to validate
the underlying class diagram including all constraints. We have done this with our
OCL tool USE. Complex models like the one we have presented cannot be developed
in a paper-and-pencil fashion. There are too many right or wrong design alternatives
which can be taken and there are too many possible dead ends in the development.

You constantly need feedback about the modeling decisions which you have taken.
Our tool (like others) gives support for this in that design decisions can be checked
immediately through instantiation by building an object diagram and checking in
particular whether the object diagram meets the constraints. The object diagram
has not necessarily to be a complete one, it suffices to build an instantiation for the
part you are currently working on. Building such object diagrams gives spontaneous
feedback about the classes, associations, and constraints and helps in error detection
and recovery, i.e., it helps in model debugging. Having tool support in this sense allows
you to trace abstract design decisions down to concrete objects which you can handle
and check on your system.

42

Chapter 6

Conclusion

In this paper have employed UML respectively MOF as a description language for two
classical database approaches and its transformation. We have formally characterized
the syntax of the datamodels, i.e., the database schemas, and we have covered the
semantics of the datamodels, i.e., the database state spaces. We have also formally
described the transformation and required as a correctness criterion the equivalence
of the described database state spaces.

The method behind this concrete model transformation example is general. For a
precise transformation of languages one has to know the syntax and semantics of
both languages. Only if one knows these four ingredients, one can state criteria about
the properties and the correctness of the transformation.

Topics for future research include:

• Formulation of this model transformation example with operations having pre-
and postconditions.

• Formulation of the Relational datamodel as a specialization of the ER data-
model.

• Study of other database models, for example, historical database models like the
Hierarchical or Network database model and newer approaches like the Object-
Oriented datamodel, Semi-Structured, XML-like datamodels or Ontology-Based
database models a la RDF and OWL.

• Incorporation of query features into the metamodel, e.g., incorporation of Rela-
tional algebra and Relational calculi.

• Instantiating the method with further examples, e.g., metamodeling a classical
compiler for a small imperative language.

• Advanced tool support for metamodeling.

43

Bibliography

[AK02] C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM
Trans. Model. Comput. Simul., 12(4):290–321, 2002.

[AK03] C. Atkinson and T. Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, 2003.

[AKP03] D.H. Akehurst, S. Kent, and O. Patrascoiu. A relational approach to
defining and implementing transformations between metamodels. Software
and System Modeling, 2(4):215–239, 2003.

[AT91] P. Atzeni and R. Torlone. Management of Multiple Models: A Metamodel
for Conceptual Models. In P.C. Kanellakis and J.W. Schmidt, editors,
DBPL, pages 169–181. Morgan Kaufmann, 1991.

[CEK01] T. Clark, A. Evans, and S. Kent. The Metamodelling Language Calculus:
Foundation Semantics for UML. In H. Hußmann, editor, FASE, volume
2029 of LNCS, pages 17–31. Springer, 2001.

[CESW04] T. Clark, A. Evans, P. Sammut, and J.S. Willans. Transformation Lan-
guage Design: A Metamodelling Foundation. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg, editors, ICGT, volume 3256 of
LNCS, pages 13–21. Springer, 2004.

[GL03] M. Gogolla and A. Lindow. Transforming Data Models with UML. In
B. Omelayenko and M. Klein, editors, Knowledge Transformation for the
Semantic Web, pages 18–33. IOS Press, Amsterdam, 2003.

[GLRZ02] M. Gogolla, A. Lindow, M. Richters, and P. Ziemann. Metamodel Trans-
formation of Data Models. In J. Bezivin and R. France, editors, Proc.
UML’2002 Workshop in Software Model Engineering (WiSME 2002).
http://www.metamodel.com/wisme-2002, 2002.

[Gog94] M. Gogolla. An Extended Entity-Relationship Model - Fundamentals and
Pragmatics. Springer, Berlin, LNCS 767, 1994.

[Gog95] M. Gogolla. Towards Schema Queries for Semantic Data Models. In
N. Revell and A.M. Tjoa, editors, Proc. 6th Int. Conf. and Workshop on
Database and Expert Systems Applications (DEXA’95), pages 274–283.
ONMIPRESS, San Mateo, 1995.

44

[Gog04] M. Gogolla. (An Example for) Metamodeling Syntax and Seman-
tics of Two Languages, their Transformation, and a Correctness Cri-
terion. In J. Bezivin and R. Heckel, editors, Proc. Dagstuhl Semi-
nar on Language Engineering for Model-Driven Software Development.
Schloss Dagstuhl Int. Conf. and Research Center for Computer Science,
http://www.dagstuhl.de/04101/, 2004.

[Hal04] T.A. Halpin. Comparing Metamodels for ER, ORM and UML Data Mod-
els. In K. Siau, editor, Advanced Topics in Database Research, Vol. 3,
pages 23–44. Idea Group, 2004.

[HR04] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of
”Semantics”?. IEEE Computer, 37(10):64–72, 2004.

[JHPS03] A. Jodlowski, P. Habela, J. Plodzien, and K. Subieta. Extending OO
Metamodels towards Dynamic Object Roles. In R. Meersman, Z. Tari, and
D.C. Schmidt, editors, CoopIS/DOA/ODBASE, volume 2888 of LNCS,
pages 1032–1047. Springer, 2003.

[JJ95] M.A. Jeusfeld and U.A. Johnen. An Executable Meta Model for Re-
Engineering of Database Schemas. Int. J. Cooperative Inf. Syst., 4(2-
3):237–258, 1995.

[LGR01] A. Lindow, M. Gogolla, and M. Richters. Ein formal validiertes Meta-
modell für die Transformation von Schemata in Informationssystemen.
In K. Bauknecht, W. Brauer, and T. Mück, editors, Proc. GI Jahresta-
gung (GI’2001), Band 1, Workshop Integrating Diagrammatic and For-
mal Specification Techniques, pages 662–669. Austrian Computer Society,
Wien, 2001.

[MM97] V.B. Misic and S. Moser. A Formal Approach to Metamodeling: A Generic
Object-Oriented Perspective. In D.W. Embley and R.C. Goldstein, edi-
tors, ER, volume 1331 of LNCS, pages 243–256. Springer, 1997.

[TS92] M.T. Tresch and M. H. Scholl. Meta Object Management and its Ap-
plication to Database Evolution. In G. Pernul and A. M. Tjoa, editors,
11th International Conference on the Entity-Relationship Approach, vol-
ume 645 of LNCS, pages 299–321, Karlsruhe, Germany, October 1992.
Springer-Verlag.

[VP03] D. Varró and A. Pataricza. VPM: A visual, precise and multilevel meta-
modeling framework for describing mathematical domains and UML (The
Mathematics of Metamodeling is Metamodeling Mathematics). Software
and System Modeling, 2(3):187–210, 2003.

[WE93] T. Welzer and J. Eder. Meta data model for database design. LNCS,
720:677–692, 1993.

45

