
Answer Set Programming and Combinatorial Voting

Rafał Graboś

University of Leipzig, Dept. of Computer Science,

Augustus Platz 10/11, 04109 Germany

grabos@informatik.uni-leipzig.de

Abstract. In this paper Logic Programming with Ordered Disjunction (LPOD),

an extension of answer set programming for handling preferences, is used for

representing and solving combinatorial vote problems. Various vote rules, used

as procedures for determining optimal candidate for a group of voters, are de-

fined by means of preference relations between answer sets of a program, rep-

resenting a vote problem. Moreover, we present lexicographic extensions of

some vote procedures, making these procedures more decisive.

1 Introduction

Vote theory is a well-known filed of research in social sciences, and voting problems

have been extensively investigated in social choice community [7], [5], [11]. Roughly

speaking, Social Choice Theory is concerned with the aggregation of individuals'

preferences into a collective preference. Based on this social preference a collective

decision can be taken. One of the most popular applications of Social Choice are vot-

ing scenarios. Here preferences (over candidates) are aggregated to elect one of the

candidates. It is important to note that the set of candidates contains individuals and

preferences of voters are expressed in terms of a preference relation (usually a weak

order) or quantitatively, by means of a score function. However, the choice may de-

pend on the method of aggregation. Methods used to find an optimal candidate are

called vote rules (procedures) and much of work have been done to investigate prop-

erties of various types of such procedures. For example a (simple) majority voting

rule may lead to a different candidate than application of a so called ``scoring rule'', in

which the voters may assign votes of different weight to different candidates.

Social choice methods are directly applicable, when candidates are individuals –

then such candidates may be explicitly listed and ordered by voters. However, in

some problems, listing and ordering of all possible candidates may be a complex and

tedious task.

Consider as an example the following problem: voters have to agree on a common

acceptable work-team containing experts of different domains (attributes), for in-

stance in case of IT experts, domains may be: a set of programmers, net administra-

tors, database administrators etc. In this case, each domain consists of individuals

(experts of a domain) and a set of possible candidates (teams) may be equal to all pos-

sible combination of experts from all domains, i.e. it may be a Cartesian product of

sets of the given domains. In case of our example, a possible candidate may be a

Dagstuhl Seminar Proceedings 05171
Nonmonotonic Reasoning, Answer Set Programming and Constraints
http://drops.dagstuhl.de/opus/volltexte/2005/262

work-team containing: John, who is programmer, Steven, who is database expert and

Marry, who is net admin.

The similar problems are: committees’ recruitment problems, product configura-

tion problems, and multicriteria decision problems in general. It is well-known fact

that in most of these problems, the set of candidates has a size exponential in the num-

ber of the attributes being considered (domains of experts in our case), and it is not

reasonable asking the voters to rank all candidates directly. The problem is more com-

plex, if the domains are preferentially dependent, e.g. when preferences over a set of

values of one attribute are dependent on values of different attributes.

In order to avoid the above difficulties, various preference representation lan-

guages have been investigated in AI: logic-based approaches [9],[10], CP-nets [1] etc.

The main advantage of such languages is that they enable a concise and succinct rep-

resentation of the preference structures such that a preference ranking of the alterna-

tives is deduced automatically. Moreover, preferences in the languages are expressed

in a more human-like form, close to natural language expressions, hence providing a

good readability and simplicity.

In this paper, we study logic programming approach to combinatorial voting. Logic

programming with ordered disjunction has been invented by Brewka [2] as an exten-

sion of answer set programming [11] to represent priority among literals and rules in a

program. From a practical perspective, ordered disjunction has been recognized as a

useful tool for modeling and solving a wide range of knowledge representation prob-

lems [2], [3], for instance qualitative decision making under uncertainty [6], explain-

ing unexpected observations that would otherwise lead to inconsistency [13], among

others.

We show how LPOD may be used to represent and solve vote problems, in which a

set of candidates has a combinatorial structure. Note that in case of combinatorial vot-

ing two complex problems must be solved: combinatorial search problem, since a set

of possible candidates is not given explicitly and must be generated from a set of at-

tributes’ values and optimization problem, since preferences of voters must be aggre-

gated into a group preference. Answer set programming with preferences seems to be

a promising approach to such vote problems from at least two reasons: its applicabil-

ity to solve combinatorial, search and constraint satisfaction problems, which has

been exampled by means of various AI problems (diagnosis, planning, cryptography

etc.). Secondly, because LPODs have been recognized as an expressive preference

representation language, being able to express defeasible, conditional, partial prefer-

ences as well as meta-preference information.

2 Formal Background

2.1 Answer Set Programming

Answer Set Programming (ASP) is a declarative approach to knowledge represen-

tation and reasoning [11]. Consider a propositional language L, with atomic symbols

called atoms. A literal is an atom or a negated atom (by classical negation ¬). Symbol

not is called epistemic negation and the expression not a is true, if there is no reason

2

to believe, that a is the case. The symbol ∨ is called epistemic disjunction. Formally,

rule r is an expression of the form:

c1 ∨…∨ ck ← a1, …,am , not b1 , … , not bn (1)

where k ≥ 0, n ≥ m ≥ 0, ci, al, bk are literals, Body
─(r) = {bm+1 , …, bn}, Body

+(r) ={a1,

…,am} are conjunctions of literals and the disjunction {c1 ∨ … ∨ ck} is a Head(r) of

the rule r. A rule with an empty Head (← Body) is usually referred to as an integrity

constraint. A logic program is a finite set of rules.

Intuitively, the above rule r means that if the Body
+
(r) of that rule is believed to be

true and it is not the case that Body
─
(r) is believed to be true, then at least one literal

of Head(r) must be believed to be true.

The semantics of ASP is defined by means of minimal set of literals satisfying all

rules of the program. Let us assume now, that LitP is a set of all literals being present

in the extended logic program P and I is an interpretation of P, I ⊆ LitP. We say that a

set of literals I satisfies a rule of the form (1), if {a1, …,am} ⊆ I and {bm+1 , …, bn}∩ I

= ∅ imply that {c1, …,ck} ∩ I ≠ ∅. The Gelfond-Lifschitz (GL) transformation of P

with respect to I is a positive logic program P′ which is obtained in two steps:

• deletion of all rules r of P, for which Body
─
 (r) ∩ I ≠ ∅

• deletion of the negative bodies (Body
─
 (r)) from the remaining rules of P

Then, I is an answer set of the logic program P, if I is a minimal model of the posi-
tive (without not) logic program P′; i.e. I is a minimal set of literals satisfying every
rule in P' or if I contains a pair of complementary literals l and ¬ l, then I = LitP.

Although answer set programs are basically propositional, it is possible to use rule

schemata containing variables. These schemata are representations of their ground in-

stances, and answer set solvers, like Smodels [17], use intelligent ground instantiation

techniques before the actual answer set computation takes place.

2.2 Logic Programming with Ordered Disjunction

Consider now an extended logic program (with two negations), where the ordered dis-

junction × is allowed in head part of a rule. A logic program with ordered disjunction

(LPOD), introduced in [2] consists of rules of the form:

c1 ×…× ck ← a1, …,am , not b1 , … , not bn (2)

where k ≥ 0, n ≥0, m ≥ 0, ci, al, bk are literals and the ordered disjunction {c1 × … ×

ck} is Head(r) of the rule r. The rule is originally to be read: if possible c1, if c1 is not

possible, then c2,…, if all of c1,…, ck-1 are not possible, then ck.

Answer set semantics is submitted to the LPOD. In order to use the standard ASP

semantics, a split technique w.r.t. LPOD rules is applied, resulting in programs with-

out the ordered disjunction
1
. In order to distinguish, which answer set is preferred

one, the notion of the degree of satisfaction of an ordered disjunctive rule by answer

set is introduced. Let S be an answer set of an LPOD P. An ordered disjunctive rule r:

1 Details may be found in [3].

3

c1 ×…× ck ← a1, …,am , not bm+1 , … , not bn (3)

is satisfied by S to degree:

• 1, if aj ∉ S for some j or bi ∈ S, for some i

• d (1 ≤ d ≤ k), if aj ∈ S for all j, and bi ∉ S, for all i, and d = min {r | cr ∈ S}.

Note that the degrees of satisfaction are treated as penalties, the smaller the degree

the better the answer set is. Moreover, priority (meta-preferences) between preference

rules can be expressed with the meaning: in case when it is not possible to satisfy all

rules to the lowest degree, rules with the higher priorities must be satisfied first.

A problem to be solved is represented as a LPOD and answer sets of the program

are ranked, according to the degrees of satisfaction of ordered disjunctive rules. In this

way a global ranking of answer sets is obtained2. The following criteria have been

proposed in [3] to build this ranking: cardinality optimal criterion- maximizing a

number of rules satisfied to the lowest degree, inclusion optimal criterion, based on

set inclusion of the rules satisfied to the certain degree and Pareto optimal criterion

favoring the answer set satisfying all ordered disjunctive rules not worse, than any

other answer set does, and one rule strictly better.

Consider as an example an LPOD P, representing a preferred dessert:

coffee × tea.

ice-cream × pancake × tiramisu.

← coffee, pancake. ¬ ice-cream.

Cardinality preferred answer set of P is S1 = {coffee, tiramisu}, since only S1 satis-

fies the rule to degree 1 (the first rule), while multiple Pareto and Inclusion optimal

answer sets are obtained: S1 = {coffee, tiramisu} and S2 = {tea, pancake}, since none

of them satisfy all the rules best.

Computational complexity of LPODs under Pareto and inclusion preferences is

proved to be in the same complexity class as disjunctive logic programs, namely in

∑P
2
-complete, while in ∆

2
P under the cardinality criterion.

Psmodels is a prototype implementation of logic programming with ordered dis-

junction under the above criteria3. Since in this paper several new criteria, suitable for

voting applications are defined, they may be implemented in a similar way as pre-

sented in [3].

2.3 Extended LPOD

In the folllwong we propose a notion of an extended LPOD
e
, which is a set of rules of

the form:

C1 ×… × Ck ← a1, …,am , not b1 , … , not bn.

where aj and bk are literals and Ci is more complex formula where conjunc-

tion:{a1,…,an} or disjunction: {a1∨ …. ∨ an} of literals may appear. We use a meta-

translation from an extended LPOD
e to an LPOD such that the standard formal se-

mantics is used to a resulting program. Instead of giving a formal description of the

2 Different preference handling approaches in ASP may be found in [5].
3 http://www.tcs.hut.fi/Software/smodels/priority/

4

translation, we exampled it as follows: let’s assume that LPOD
e
 P contains an ex-

tended rule r of the form:

(a1∨…∨ an) × (b1,…, bm) ∨ (c1,…, cj) × head ← body.

Where aj, bk and ci are literals, “,” is conjunction and ∨ denote disjunction. Then, in

the first step the rule r is translated into a program:

A × (B ∨ C) × head ← body.

a1∨…∨ an ← A.

b1 ← B.

…

bm← B.

c1 ← C.

…

cj← C.

which is finally translated into a standard LPOD P′ containing no extended syntax:

A × (BE) × head ← body.

a1∨…∨ an ← A.

B ∨ E ← BE.

b1 ← B.

…

bm← B.

c1 ← C.

…

cj← C.

where C, B, E, BE ∉ Lit(P) are new atoms.

Since the syntax of a translated program is now equivalent to the syntax of LPODs,

the formal semantics of LPOD is applied. Intuitively, by use if an extended programs,

we can express preferential equality among literals of a program (weak order), as well

as preference between sets of literals. Note that although one may extend LPOD syn-

tax by adding conjunction and disjunction connectives in head part of rules directly,

instead of using a meta-translation, it requires changing the semantics of the ordered

disjunction.

In section 2.2 formal semantics of the ordered disjunction has been presented.

However, when deal with partial preferences, this semantics leads to unintuitive re-

sults. A common problem in the filed of MCDM is of partial preferences given by

DM. A traditional solution to this problem consists in using a partial order relation for

expressing preferences. Originally, the ordered disjunction is a complete relation.

Consider a problem where a set of alternatives A = {a1, a2, a3, a4}, is encoded by the

LPOD P3:

c1: a1 × a2.

c2: a3 × a4.

c3: a1 × a4.

1{a1, a2, a3, a4}1.

Unfortunately, there is no answer sets for this program, since no set of literals satis-

fies all rules of the program. In order to avoid this effect we propose a technique from

the field of logic programming. Let A = {a1,...,an} denote a set of literals representing

5

alternatives under consideration. For each rule r' representing a partial order over al-

ternatives, a new rule is obtained as given in the below program LPOD P′:

a1 × a2 ← not r_1.

r_1 ← not a1, not a2.

a3 × a4 ← not r_2.

r_2 ← not a3, not a4.

a1 × a4 ← not r_3.
r_3 ← not a1, not a4.

1{a1, a2, a3, a4}1.

The method requires putting the literals present in each of incomplete LPOD’s rule

to the body of the r_i rule, denoting ith partial rule, thus the manual search for the lit-

erals not present in this rule is avoided. However, this method has a major drawback

when assuming the standard formal semantics of ordered disjunctive rule. In case of

the program P′, the cardinality optimal decision is alternative a2, although it is domi-

nated on the first criterion by a1 and it is not even present in terms of the remaining

criteria. In order to avoid such undesirable effects, we introduce a modified semantics

of LPOD rule:

Let S be an answer set of an LPOD P. An ordered disjunctive rule r:

c1 ×…× ck ← a1, …,am , not bm+1 , … , not bn (4)

is satisfied by S to degree:

• ir, if aj ∉ S for some j or bi ∈ S, for some i

• d (1 ≤ d ≤ k), if aj ∈ S for all j, and bi ∉ S, for all i, and d = min {r | cr ∈ S}.

Then, ir = const. and ∀ r ∈ P, ir > max {k | ck ∈ head(r)}. In other words, the value of

ir is greater than any possible degree of satisfaction of any rule of P by any answer set

of P. By this means it is guaranteed that answer sets not containing any literal of the

head part of a rule gets the equal degree of satisfaction, but smaller than any satisfac-

tion’s degree of this rule by a relevant answer set. It is not the case, if we would put

an arbitrary unsatisfied literal at the end of every partial preference rule, just in case if

no literals of this rule are satisfied.

3 LPOD for Combinatorial vote problems

Representation of a vote problem G is divided into two parts:

1. Logic program P, representing the descriptive part of the problem G: (possible

candidates, voters etc).

2. A set of vote profiles of the form: Vi = (LPOD Pi, P), where Pi represents prefer-

ences of ith voter over candidates and P is of the form given above

3.1 Vote problem

Given a vote problem G, in which A = (X1,…,Xn) is a set of attributes (dimensions,

criteria) and Dom = (D(X1),…, D(Xn)) is a set of domains of the attributes, then a de-

scriptive part of G is a logic program P consists of rules of the form:

6

ri l {a ,… an}u ←

where rule ri indicates ith attribute {a1,…, an} are value atoms, representing values

of the domain of ith attribute, i.e. D(Xi) = {a1,…, an}, l and u are the upper and the

lower bounds expressing desirable constraints on number of values of ith attribute. In-

tuitively, a rule of the form above represents for each attribute the domain of its pos-

sible values, while the upper and the lower bounds determine constraints on number

of values. Note that the number of rules is equal to the number of attributes, i.e. the

cardinality of the set A.

Proposition 1. Set of candidates C is a set of interpretations of the logic program P

satisfying all rules of P. Therefore, C = Ans(P).

Let’s assume that Vot = {1,…,m} is a set of voters under consideration, and A =

(X1,…,Xn) is a set of attributes with the domains Dom = (D(X1),…, D(Xn)), where

D(Xi) = {a1,…, an} represents values of the domain of an attribute i and P = {r1,..., rn}

is a logic program consists of rules representing domains of the attributes and con-

straints on the domains. Answer sets of the program constitutes a set of possible can-

didates. In order to find a common acceptable candidate, preferences of voters must

be taken into account. As already mentioned, voters are asked to express preferences

not over elements of a set of candidate, which is in our case a set of answer sets of the

program P, but over elements of sets of domains of attributes. In other words, a voter

orders values of some attributes, possibly expressing some preferential dependencies

between different domains.

Formally, preferences of voter i are represented by rules of the form:

C1 ×…× Ck ← a1, …,am , not b1 , … , not bn

where 1 ≤ k and m ≥ 0 and n ≥ 0, Ci may be of the disjunctive form only and for

all i, Ci ⊆ D(Xk) represent disjunctive sets of values literals of a domain D and D(Xk) ⊂

Dom but ak , bj ∈ ∪ Dom are values literals of arbitrary domains. Intuitively, the head

part of the rule represents preference order of value of an attribute, while the body of

this rule is satisfied. Note that no values have to be totally ordered; hence partial pref-

erences can be represented.

Each voter is asked to specify his preferences and then they are represented by

rules of the form given above. The next task is to aggregate such individual prefer-

ence into a social preferences in order to obtain optimal candidate. Most of vote rules,

used for aggregation purposes, assume counting the number of voters in order to de-

termine optimal candidate. In the context of LPOD approach, preference criteria, used

to identify a ranking of answer sets of a program, rely on the notion of the degree of

satisfaction of rule by answer set and they exploit this concept to count the number of

rules satisfied to a certain degree.

The problem with such method is the following: if possibly partial and conditional

preferences of a voter are expressed by LPOD’s rules, trivially the number of rules

does not have to be equal to the number of voters, i.e. number of rules should not af-

fect a result of voting.. Therefore, instead of one aggregation problem, two such

problems arise:

− aggregation of each voter’s preferences over values of attributes into a ranking of

candidates

− aggregation of individual preference ordering of candidates into a common accept-

able preference ordering of candidates

7

Therefore we assume that each preference profile is represented as a separated

LPOD and the number of such programs is equal to the numbers of voters under con-

sideration. Formally, Vi = (LPOD Pi, P) denotes a vote profile of ith voter, containing

the descriptive part, constraining all configurations of values of attributes to admissi-

ble ones, and the preference part, consisting in rules expressing preferences of voters

over values of attributes. Note that the following relation holds:

Ans(Vi) ⊂ Ans(P) for all i

Then each LPOD, representing a voter’s preference profile, leads to a ranking of its

answer sets, thus a weak order over a set of candidates, according to a given vote

method is obtained. By use of this procedure we obtain partial rankings of candidates,

where the number of these rankings is equal to the number of voters. Then, a crucial

task is to aggregate such rankings into one common ordering of candidates. To do

this, we define below some vote rules in the context of LPOD approach.

3.2 Voting procedure
The procedure is as follows, given a logic P representing a problem’s description

and a preference profile Vi, for all i do:

1. Compute a ranking of answer sets of Vi, representing a ranking of candidates of

a vote problem: if Ans(Vi) denotes answer sets of Vi, then

S1 ≥…≥ Sn

where Sj ∈ Ans(Vi) for all j, n = | Ans(Vi) | represents a weak order of answer sets

of Vi obtained by use of a particular preference criteria (e.g. lexicographic ordering).

The problem of appropriate preference criterion used for aggregating preference rules

to ordering of answer sets depends on the commensurability assumption, i.e. if de-

grees of satisfaction of rules by an answer set are commensurate across the rules.

Let’s assume that we use lexicographic way of ordering and exploit the cardinality

criterion. However, any other criterion may be applied instead.

2. The order of answer sets of Vi: S1 ≥…≥ Sn, s.t. Si ∈ Ans(Vi) for all i, is the order

of sets of literals of the form:

S1 = {a1,…,ai}1 ≥…≥ Sn = {a1,…,ai}n

Since each answer set contains literals interpreted conjunctively, we can represent

such conjunctions by an extended ordered disjunctive rule, containing these conjunc-

tions as its elements:

αi (a1,…,ai)1 ×…× (a1,…,ai)n ←

Then LPOD
e
 Pv = {α1,…,αn} represents a vote problem, where n denotes the number

of voters under consideration. According to the meta-translation, given in the 3 sec-

tion, the extended LPOD
e Pv is translated into the normal LPOD Pv containing rules

with literals, instead of conjunctions, only.

It is clear that Pv contains rules representing partial orders of candidates w.r.t. all vot-

ers, therefore the aggregation of preferences over values of attributes into preference

ordering of candidates has been done. Then, the original vote problem remains: the

aggregation voters’ preferences of candidates into a social preference of candidates.

Several vote rules have been define in the social choice literature. The idea is to de-

fine some of them in the context of LPOD formalism, such that we can take the ad-

8

vantage of properties of these rules in our framework. In this paper four vote proce-

dures are being studied: Condorcet ruel, Pliurality procedure, Veto and Borda rules.

3.2.1 Plurality rule
Intuitively, plurality winner is a candidate which dominates other candidates for

maximal number of voters. Plurality optimal selects the candidate maximizing the

number of voters who ranked it at the first position. Then, candidate C1 is plurality

preferred to C2 if C1 is not dominated for n number of voters, C2 is not dominated for

m number of voters, and n > m.

Since very often multiple Plurality optimal candidates exist (ties), we propose a

lexicographic extension of the plurality rule. Intuitively, candidate C1 and C2 are not

dominated candidates for maximal number of voters but none of them is plurality pre-

ferred, we count the number of voters for whom C1 and C2 are ranked at the second

positions (dominated by only one candidate), and so on. Although even this method

does not guarantee a unique optimal candidate, it is much more decisive than pure

plurality rule. Moreover, we propose the notion of weak optimal plurality candidate,

such that a candidate is weak plurality winner if and only if there is no candidate, who

is plurality preferred to it. Note that candidates being not dominated for the same

number of voters may exist, however. In this case, multiple weak plurality optimal

candidates may be obtained.

In order to definenthe notion of lex-plurality preferred answer set, we recall the no-

tion of cardianlty preferred answer set, presented in [2]. Let’s denote Si(P) = { r∈ P|

deg(r) = i}.

Given LPOD P and S1, S2 ∈ Ans(P), S1 is g-plurality (global plurality) preferred to S2

(S1 >g-p S 2) iff there is i such that |Si
1(P)| > | Si

 2(P)| and for all j < i, |Si
 1(P)) | = | Si

 2(P)

|. Intuitively, answer set is cardinality preferred if it satisfied maximal number of rules

to the minimal degree.

Definition 2. Given LPOD PD representing a vote problem D, and S ∈ C of D, S is

lex-plurality optimal candidate of D iff S ∈ Ans(Pv) and ∀S′ ∈ Ans(Pv), S >c S′.

Definition 3. Given LPOD PD representing a vote problem D, and S ∈ C of D, S is

weak lex-plurality optimal candidate of D iff S ∈ Ans(Pv) and ∀S′ ∈ Ans(Pv), S >w-c

S′.

Note that in order to obtain the following result, the modified semantics of ordered

disjunction must be applied to Pv, since answer sets being irrelevant to some rules are

not interpreted as obtaining 1 degree of satisfaction. By this means partial preferences

are handled properly.

3.2.2 Condorcet rule
A candidate S is Condorcet winner if S can defeat all other candidates in separate
pairwise contests, where defeating means that S is strictly preferred to any other can-
didate w.r.t. the maximal number of voters. Note that the Condorcet optimal candidate
does not have to be not dominated solution for any of voter, since the rule counts the
number of victories in pairwise comparisons only. Since Condorcet winner often does
not exist (but if does, it is unique), we define the notion of weak Condorcet winner
(WCW). A candidate S1 is the WCW if it can defeat or draw all other candidates in
pairwise comparison.

9

Let's assume that degS1(r) denotes degree of satisfaction of a rule r by an answer set
S1 and CP (S1, S2) = {r ∈ P | degS1(r) < degS2(r)}. Then:
• Given LPOD P and S1, S2 ∈ Ans(P), S1 is Condorcet preferred to S2 (S1 >c-p S2) iff

|CP (S1, S2) | > | CP (S2, S1) |.
Originally, the Condorcet winner is a candidate which defeats all other candidates in

pairwise comparison, which means in our case, that:

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is Condorcet

optimal candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S >c-p S′.

However, very often no answer set satisfies this requirement, i.e. no answer set

wins against all other answer set. Therefore, we introduce a weaker version of Con-

dorcet winner by defining the Condorcet score of answer set S of LPOD P as follows:

let S ∈ Ans(P), then CP(S) denote the Condorcet score of S obtained from the below

formula:

CP(S) = | CP
+
(S) | − | CP

−
(S) |

where:

CP
+
(S) = {k | S >c-p Sk, where Sk ∈ Ans(P)}

CP
−
(S) = {k | S <c-p Sk, where Sk ∈ Ans(P)}

Intuitively, CP
−(S) denotes a set of answer sets of logic program P which are Condor-

cet preferred to answer set S , while CP
+
(S) denotes a set of answer sets of P being

Condorcet dominated by answer set S. Then, the Condorcet score of S is the ratio of

cardinalities of the two sets. We define now the notion of weak Condorcet preferred

answer set:

• Given LPOD P and S1, S2 ∈ Ans(P), S1 is weak Condorcet preferred to S2 (S1 >wc-p

S2) iff CP(S1) ≥ CP(S2).

Gven the concept og weak Condorcet preferred answer set we can formally define the

notion of weak Condorcet optimal candidate:

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is weak Con-

dorcet optimal candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S >wc-p S′.

3.2.3 Veto rule
Intuitively, for each candidate a veto score is computed such that candidate C obtains

a score 1 w.r.t. voter V iff C dominates at least one other candidate. Hence, a candi-

date who maximizes the number of voters for whom it is not dominated is the Vote

winner. Since counting the voters for whom a candidate dominates at least one candi-

date is inversely proportional to counting the voters for whom this candidate is domi-

nated w.r.t. all other candidate (in this case veto to this candidate is given), we use the

former procedure to find the Veto optimal candidate.

Let assume that S is an answer set of LPOD P, i.e. S ∈ Ans(P) .Then the veto set of S

w.r.t. P, denoted by VP(S), is obtained as follows:

VP(S) = {r ∈ P | there is no k s. t. degS(r) < degSk(r)} and there is some i s.t. degSi(r)

< degS(r)}.

Intuitively, the veto set of answer set S of LPOD P is the set of rules of P satisfied by

S to the maximal degree. The second condition of the above definition guarantees,

that given rule r ∈ P, which is satisfied by S to the maximal degree but there is no

other S' ∈ Ans(P) satisfying r strictly better, then r does not belong to the veto set of

S, although the first condition of the definition is fulfilled.

10

Intuitively, such situation takes place if only one literal of the head(r) is applicable,

i.e. only one literal of the head(r) belongs to any answer set of P. It is worth to note

that the veto set of irrelevant answer set S is equal to the number of rules, w.r.t. which

S is irrelevant.

We define now the notion of weak and strict veto preferred answer set:

• Given LPOD P and S1, S2 ∈ Ans(P), S1 is veto preferred to S2 (S1 >v S2) iff | VP

(S1) | < | VP (S2) |.

• Given LPOD P and S1, S2 ∈ Ans(P), S1 is weak veto preferred to S2 (S1 >w-v S2) iff

| VP (S1) | ≤ | VP (S2) |.

Let’s consider our approach to combinatorial vote problems. We want to find veto op-

timal candidates of a given veto problem. The following holds:

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is veto optimal

candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S >v S′.

In case of weak veto optimality, we change the relation from >v to >w-v, as expected.

Since many veto preferred answer sets is usually obtained, due to weak restrictions,

we introduce now the lexicographic extension of the veto procedure. Intuitively, this

vote method may be seen as inversion of lex-plurality procedure, since instead of

counting rules satisfied to the minimal degree we start from the opposite direction and

count the number of rules satisfied to the maximal degree. Threfore, we built a rank-

ing of the most unpreferred answer sets, and then by reversing the scale we obtain

lex-veto optimal candidates. Formally:

• Given LPOD P and S1, S2 ∈ Ans(P), S1 lex-veto unpreferred to S2 (S1 >v-lex S2) iff

there is i such that | S1
i
 (P) | > | S2

i
 (P) | and for all j > i, | S1

j
 (P) | = | S2

j
 (P) |.

Then, Given LPOD P and S ∈ Ans(P), S is called pessimal answer set of P iff ∀S'

∈ Ans(P), S >v-lex S'.

Then, in order to find lex-veto optimal candidate, we must reverse the order of pes-

simality, such that the least pessimal answer set becomes the lex-veto optimal answer

set.

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is lex-veto op-

timal candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S′ > v-lex S.

3.2.4 Borda rule
Borda voting procedure may be seen as a semi-qualitative vote method, since it con-

sists in assigning to ranked candidates numbers, reflecting their positions, such that

the lowest-ranked candidate receives 0 point, the next lowest 1 point etc. Then, the

points are summed across all voters and the candidate with the most points wins.

It has been showed in the Social Choice literature that Borda system is very syntax-

sensitive and therefore easy to manipulate due to:

• preference truncation (incomplete rankings) in which not ranked candidates by

some voters may change positions of these candidates in an overall ranking

• dependence of irrelevant alternatives: by adding a new candidate, which does

not change the voters rankings on remaining candidates, the result of voting may

be changed

• syntax- manipulation: changing positions of some not highest-ranked candidates

may change the effect of a vote procedure

Borda preference relation on answer sets may be define as foolows:

11

• Given LPOD P and S1, S2 ∈ Ans(P), S1 is Borda preferred to S2 (S1 >b S2) iff ∑ⁿi

=1degS1 (ri) < ∑ⁿi =1degS2 (ri), where n = |P|

In order to obtain a weaker notion of min-sum preferences, we change < by ≤.

Originally, Borda rule interpret not listed candidates by not assigning them any num-

ber reflecting their attractiveness for a voter. In our approach, degrees of satisfaction

of rules by answer sets are treated as penalties, and the smaller the degree the better

answer sets are. Since we assign to irrelevant answer sets the degree of satisfaction

greater than any degree of satisfaction, but equal in all cases, we punish irrelevant an-

swer sets instead of not rewarding them. Then:

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is Borda opti-

mal candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S >b S′.

3.3 Example

Let’s consider the following vote problem as an example: 3 agents want to recruit IT

experts from the following domains: net administrators, database admins, program-

mers. Since many applicants are applying for the position (let’s assume that 3 applica-

tions for each position have been submitted), they must specify the number of experts

of every domain to be recruited. For simplicity, let’s assume that the agents want to

have one representative of every domain in the workgroup, i.e. one programmer, one

net administrator and one database expert. Therefore, a candidate is not a particular

expert, but a group of individuals.

Then, they have some preferences concerning particular experts and possibly pref-

erence dependencies between some domains may hold. Since for each position 3 indi-

viduals are applying, the number of possible workgroup is 3
3
, which amounts to 27

possible configurations of experts. In case of some preferential dependencies, the

problem becomes even more complex.

Let’s assume that following sets are given: A = (N, B, Pr) is a set of attributes con-

taining sets of net administrators, database administrators and programmers under

considerations, respectively with the following domains: D(N) = {a, b, c}, D(B) = {e,

f, g} and D(Pr) = {h, j, k}, hence the set of domains is Dom = (D(N), D(B), D(Pr)).

Moreover, a set of voters Vot = (1, 2, 3) is given. According to the two layers archi-

tecture of our framework, we represent the descriptive part of the problem as a logic

program P containing 3 rules, since | A| = 3, of the form:

r1 1{a, b, c}1 ←

r2 1{e, f, g}1 ←

r3 1{h, j, k}1 ←

Then, the set of possible candidates of the vote problem is the set of answer sets of

the above program, i.e. C = Ans(P). In fact, we do not have to list all such candidates,

due to the compact preference language enabling concise representation of preference

structures.

Next step is to represent preferences of voter in vote profile programs such that a

vote profile of ith voter is the pair: Vi = (LPOD Pi, P) containing descriptive part of

the problem and preferences of ith voter. The preference layer is as follows:

Let’s assume that the following preference profiles are given:

V1:

12

a × b ←

e × f ← a.

j × h.

r1 1{a, b, c}1 ←

r2 1{e, f, g}1 ←

r3 1{h, j, k}1 ←

V2:

b × a × c ←

h × j ← a.

f × e ←

r1 1{a, b, c}1 ←

r2 1{e, f, g}1 ←

r3 1{h, j, k}1 ←

V3:

b × a ← h.

f × e ← j.

h × j ←

r1 1{a, b, c}1 ←

r2 1{e, f, g}1 ←

r3 1{h, j, k}1 ←

• Ans(V1) = { {a, e, j}, {b, f, j} ,{b, g, j},{b, e, j}, {a, e, h},{a, f, j}, {b, g, h}, {b, e,

h} ,{b, f, h} ,{a, f, h}}

• Ans(V2) = { {a, f, h},{b, e, h}, {b, e, j}, {b, e, k}, {c, f, j}, {c, f, h}, {c, f, k}, {a, e,

h}, {a, f, j}, {c, e, k}, {c, e, h}, {c, e, j}, {a, e, j}, {b, f, k}, {b, f, j}, {b, f, h} }

• Ans(V3) = { {b, g, h}, {b, e, h}, {b, f, h}, {a, f, j}, {b, f, j}, {c, f, j}, {a, g, h}, {a, e,

h}, {a, f, h}, {c, e, j}, {a, e, j}, {b, e, j} }

Let’s assume now that the preference order of candidates of each voter is obtained

by use of the cardinality criterion, presented in the previous section. It is worth to note

that in this case, to answer sets not satisfying the body of a rule 1 degree of satisfac-

tion is given. Below we present rankings of answer sets, ipso facto the candidates of

every voter:

• V1: {a, e, j} >c {b, f, j} ~ c{b, g, j} ~c{b, e, j} ~c{a, e, h} ~c{a, f, j} >c {b, g, h}~c

{b, e, h} ~c {b, f, h} ~ c{a, f, h}

• V2: {a, f, h} ~c{b, e, h} ~c{b, e, j} ~c{b, e, k}>c {c, f, j} ~ c{c, f, h} ~ c{c, f, k}>c{a,

e, h} ~ c {a, f, j}>c{c, e, k} ~ c{c, e, h} ~ c{c, e, j} > c{a, e, j} ~ c{b, f, k} ~ c{b, f, j}

~ c{b, f, h}

• V3: {b, g, h} ~c{b, e, h} ~c{b, f, h} >c{a, f, j} ~c{b, f, j} ~c{c, f, j} ~c{a, g, h} ~c{a,

e, h} ~c{a, f, h} >c{c, e, j} ~c{a, e, j} ~c{b, e, j}

Note that since preferences of voters are partial, the ordering of candidates of P is

not total, i.e. only candidates considers by particular voters as “interesting” are or-

13

dered. The interesting candidates are candidates listed in some preference rule of a

voter.

Next step is to represent the order of answer sets of each voter by an extended or-

dered disjunctive rule, containing sets of literals as its elements. Note that any answer

set of a program representing s vote problem must have the same cardinality, due to

the cardinality constraints rules of descriptive program, and this cardinality is equal to

the cardinality of a set of attributes A.

Consider our example, the vote problem is represented by a new LPOD
e
 Pv = {α 1,

α2, α3} containing the following rules:

α1 (a ,e, j) × (b, f, j) ∨ (b, g, j) ∨ (b, e, j) × (a, e, h) ∨ (a, f, j) × (b, g, h) ∨ (b, e, h) ∨

(b, f, h) ∨ (a, f, h) ← not rest_1.

α2 (a, f, h) ∨ (b, e, h) ∨ (b, e, j) ∨ (b, e, k) × (c, f, j) ∨ (c, f, h) ∨ (c, f, k) × (a, e, h) ∨

(a, f, j) × (c, e, k) ∨ (c, e, h) ∨ (c, e, j) × (a, e, j) ∨ (b, f, k) ∨ (b, f, j) ∨ (b, f, h) ←

not rest_2.

α3 (b, g, h) ∨ (b, e, h) ∨ (b, f, h) × (a, f, j) ∨ (b, f, j) ∨ (c, f, j) ∨ (a, g, h) ∨ (a, e, h)

∨ (a, f, h) × (c, e, j) ∨ (a, e, j) ∨ (b, e, j) ← not rest_3.

r1 1{a, b, c}1 ←

r2 1{e, f, g}1 ←

r3 1{h, j, k}1 ←

r_1 ← not head(α1).

r_2 ← not head(α2).

r_3 ← not head(α3).

The two rules at the bottom express constraints on the number of candidates to be

elected and a domain of values of attributes, respectively. The above program with

extended syntax is then translated to a standard LPOD. Our semantics of the ordered

disjunction assumes that answer sets not containing any atoms of head(r), satisfies r

to the degree ir. Since we want to consider only those candidates, which are listed in

some preference rankings, a candidate not present in such ranking is less preferred

than any listed candidate, independently on its position in this ranking. Therefore, we

use the modified semantics, presented on the previous secitions.

Let’s consider our example again. We present three first positions of each vote rule:

• Lex-plurality voting: {b, e, h} >p {b, e, j} >p {a, f, h}

• Condorcet voting: {b, e, h} >c-p {b, e, j} >c-p {a, f, h} ~c-p {a, e, h} ~c-p {a, f, j} ~c-p

{b, f, j}

• Lex-veto voting: {b, e, j} >p {a, e, h} >p {a, f, j} >p {b, e, h}

• Borda voting (ir = 10): {b, e, h} ~c-p {b, e, j} >c-p {a, f, h} >c-p {a, e, h}

The above result shows that the candidate {b, e, h} is elected by most of the vote

rules, while being the same preferred on the Borda procedure. The candidates ranked

in next positions differ, however. As long as the candidate {b, e, j} is ranked at the

second position by the lex-plurality and Condorcet rules, in case of the lex-veto

method, this candidate takes a further position. Interesting is that the Borda rule,

14

known for its strong decisiveness, results in multiple optimal candidates: {b, e, h} and

{b, e, j}.

Conclusions

In this paper we have proposed logic programming approach to combinatorial vot-

ing. We have shown how logic programming with ordered disjunction framework

may be used to represent and solve vote problems. Various vote rules in the context

of LPOD approach have been defined defined, ass well as some extensions enabling

more decisiveness have been introduced. Finally, we have showed that answer set

programming with preferences may be promising approach to voting problems from

the following reasons: it is suitable for solving combinatorial, search and constraint

satisfaction problems, as well as it is an expressive preference representation lan-

guage, being able to express defeasible, conditional, partial preferences as well as

meta-preference information.

References

1. Boutilier, C. et al.: CP-nets: A Tool for Representing and Reasoning with Conditional Ce-

teris Paribus Preference Statements. Journal of Artificial Intelligence Research 21 (2004)

135–191

2. Brewka, G.: Logic Programs with Ordered Disjunction. Proc. AAAI, Canada (2002) 100-105

3. Brewka, G.: Implementing Ordered Disjunction Using Answer Set Solvers for Normal Pro-

grams. Proc. JELIA’02, Italy (2002) 444-455

4. Brewka, G.: Answer Sets and Qualitative Decision Making, Synthesis, to appear 2004

5. Dummett, M.: Voting Procedures. Oxford, UK (l984). Oxford University Press

6. Grabos, R.: Qualitative Model of Decision Making. Proc. AIMSA’04, Varna (2004) 480-489

7. Kelly, J. S.: Social choice theory. Berlin.(1987) Springer

8. La Mura, P. and Y. Shoham: Expected utility networks. Proc. UAI’99, Sweden (1999) 366-

373

9. Lang, J.: From preference representation to combinatorial vote, Proc. KR’02, France 277-

288

10. Lang, J.: Logical Preference Representation and Combinatorial Vote. Ann. Math. Artif. In-

tell. 42(1-3): 37-71 (2004)

11. Lifschitz, V.: Answer set programming and plan generation. AI 138 (2002) 39-54

12. Moulin, H.: 1988, Axioms of Cooperative Decision Making. Cambridge University Press.

13. Osorio, M. et.al.: Generalized Ordered Disjunction and its Applications, not published

15

