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Abstract. In this paper Logic Programming with Ordered Disjunction (LPOD), 

an extension of answer set programming for handling preferences, is used for 

representing and solving combinatorial vote problems. Various vote rules, used 

as procedures for determining optimal candidate for a group of voters, are de-

fined by means of preference relations between answer sets of a program, rep-

resenting a vote problem. Moreover, we present lexicographic extensions of 

some vote procedures, making these procedures more decisive.  

1   Introduction 

Vote theory is a well-known filed of research in social sciences, and voting problems 

have been extensively investigated in social choice community [7], [5], [11]. Roughly 

speaking, Social Choice Theory is concerned with the aggregation of individuals' 

preferences into a collective preference. Based on this social preference a collective 

decision can be taken. One of the most popular applications of Social Choice are vot-

ing scenarios. Here preferences (over candidates) are aggregated to elect one of the 

candidates. It is important to note that the set of candidates contains individuals and 

preferences of voters are expressed in terms of a preference relation (usually a weak 

order) or quantitatively, by means of a score function. However, the choice may de-

pend on the method of aggregation. Methods used to find an optimal candidate are 

called vote rules (procedures) and much of work have been done to investigate prop-

erties of various types of such procedures. For example a (simple) majority voting 

rule may lead to a different candidate than application of a so called ``scoring rule'', in 

which the voters may assign votes of different weight to different candidates.   

Social choice methods are directly applicable, when candidates are individuals – 

then such candidates may be explicitly listed and ordered by voters. However, in 

some problems, listing and ordering of all possible candidates may be a complex and 

tedious task.  

Consider as an example the following problem: voters have to agree on a common 

acceptable work-team containing experts of different domains (attributes), for in-

stance in case of IT experts, domains may be: a set of programmers, net administra-

tors, database administrators etc. In this case, each domain consists of individuals 

(experts of a domain) and a set of possible candidates (teams) may be equal to all pos-

sible combination of experts from all domains, i.e. it may be a Cartesian product of 

sets of the given domains. In case of our example, a possible candidate may be a 
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work-team containing: John, who is programmer, Steven, who is database expert and 

Marry, who is net admin.  

The similar problems are: committees’ recruitment problems, product configura-

tion problems, and multicriteria decision problems in general. It is well-known fact 

that in most of these problems, the set of candidates has a size exponential in the num-

ber of the attributes being considered (domains of experts in our case), and it is not 

reasonable asking the voters to rank all candidates directly. The problem is more com-

plex, if the domains are preferentially dependent, e.g. when preferences over a set of 

values of one attribute are dependent on values of different attributes.  

In order to avoid the above difficulties, various preference representation lan-

guages have been investigated in AI: logic-based approaches [9],[10], CP-nets [1] etc. 

The main advantage of such languages is that they enable a concise and succinct rep-

resentation of the preference structures such that a preference ranking of the alterna-

tives is deduced automatically. Moreover, preferences in the languages are expressed 

in a more human-like form, close to natural language expressions, hence providing a 

good readability and simplicity.  

In this paper, we study logic programming approach to combinatorial voting. Logic 

programming with ordered disjunction has been invented by Brewka [2] as an exten-

sion of answer set programming [11] to represent priority among literals and rules in a 

program. From a practical perspective, ordered disjunction has been recognized as a 

useful tool for modeling and solving a wide range of knowledge representation prob-

lems [2], [3], for instance qualitative decision making under uncertainty [6], explain-

ing unexpected observations that would otherwise lead to inconsistency [13], among 

others.  

We show how LPOD may be used to represent and solve vote problems, in which a 

set of candidates has a combinatorial structure. Note that in case of combinatorial vot-

ing two complex problems must be solved: combinatorial search problem, since a set 

of possible candidates is not given explicitly and must be generated from a set of at-

tributes’ values and optimization problem, since preferences of voters must be aggre-

gated into a group preference. Answer set programming with preferences seems to be 

a promising approach to such vote problems from at least two reasons: its applicabil-

ity to solve combinatorial, search and constraint satisfaction problems, which has 

been exampled by means of various AI problems (diagnosis, planning, cryptography 

etc.). Secondly, because LPODs have been recognized as an expressive preference 

representation language, being able to express defeasible, conditional, partial prefer-

ences as well as meta-preference information.  

2   Formal Background 

2.1   Answer Set Programming 

Answer Set Programming (ASP) is a declarative approach to knowledge represen-

tation and reasoning [11]. Consider a propositional language L, with atomic symbols 

called atoms. A literal is an atom or a negated atom (by classical negation ¬). Symbol 

not is called epistemic negation and the expression not a is true, if there is no reason 
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to believe, that a is the case. The symbol ∨ is called epistemic disjunction. Formally, 

rule r is an expression of the form: 

c1 ∨…∨ ck ← a1, …,am , not b1 , … , not bn (1) 

where k ≥ 0, n ≥ m ≥ 0, ci, al, bk are literals, Body
─(r) = {bm+1 , …, bn}, Body

+(r) ={a1, 

…,am} are conjunctions of literals and the disjunction {c1 ∨ … ∨ ck} is a Head(r) of 

the rule r. A rule with an empty Head (← Body) is usually referred to as an integrity 

constraint. A logic program is a finite set of rules.  

Intuitively, the above rule r means that if the Body
+
(r) of that rule is believed to be 

true and it is not the case that Body
─
(r) is believed to be true, then at least one literal 

of Head(r) must be believed to be true.  

The semantics of ASP is defined by means of minimal set of literals satisfying all 

rules of the program. Let us assume now, that LitP is a set of all literals being present 

in the extended logic program P and I is an interpretation of P, I ⊆ LitP. We say that a 

set of literals I satisfies a rule of the form (1), if {a1, …,am} ⊆ I and {bm+1 , …, bn}∩ I 

= ∅ imply that {c1, …,ck} ∩ I ≠ ∅. The Gelfond-Lifschitz (GL) transformation of P 

with respect to I is a positive logic program P′ which is obtained in two steps:   

• deletion of all rules r of P, for which Body
─
 (r) ∩ I ≠ ∅ 

• deletion of the negative bodies (Body
─
 (r)) from the remaining rules of P 

Then, I is an answer set of the logic program P, if I is a minimal model of the posi-
tive (without not) logic program P′; i.e. I is a minimal set of literals satisfying every 
rule in P' or if I contains a pair of complementary literals l and ¬ l, then I = LitP. 

Although answer set programs are basically propositional, it is possible to use rule 

schemata containing variables. These schemata are representations of their ground in-

stances, and answer set solvers, like Smodels [17], use intelligent ground instantiation 

techniques before the actual answer set computation takes place.  

2.2   Logic Programming with Ordered Disjunction 

Consider now an extended logic program (with two negations), where the ordered dis-

junction × is allowed in head part of a rule. A logic program with ordered disjunction 

(LPOD), introduced in [2] consists of rules of the form: 

c1 ×…× ck ← a1, …,am , not b1 , … , not bn (2) 

where k ≥ 0, n ≥0, m ≥ 0, ci, al, bk are literals and the ordered disjunction {c1 × … × 

ck} is Head(r) of the rule r. The rule is originally to be read: if possible c1, if c1 is not 

possible, then c2,…, if all of c1,…, ck-1 are not possible, then ck.  

Answer set semantics is submitted to the LPOD. In order to use the standard ASP 

semantics, a split technique w.r.t. LPOD rules is applied, resulting in programs with-

out the ordered disjunction
1
. In order to distinguish, which answer set is preferred 

one, the notion of the degree of satisfaction of an ordered disjunctive rule by answer 

set is introduced. Let S be an answer set of an LPOD P. An ordered disjunctive rule r: 

                                                           
1 Details may be found in [3].  
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c1 ×…× ck ← a1, …,am , not bm+1 , … , not bn (3) 

is satisfied by S to degree: 

• 1, if aj ∉ S for some j or bi ∈ S, for some i 

• d (1 ≤ d ≤ k), if aj ∈ S for all j, and bi ∉ S, for all i, and d = min {r | cr ∈ S}.  

Note that the degrees of satisfaction are treated as penalties, the smaller the degree 

the better the answer set is. Moreover, priority (meta-preferences) between preference 

rules can be expressed with the meaning: in case when it is not possible to satisfy all 

rules to the lowest degree, rules with the higher priorities must be satisfied first.  

A problem to be solved is represented as a LPOD and answer sets of the program 

are ranked, according to the degrees of satisfaction of ordered disjunctive rules. In this 

way a global ranking of answer sets is obtained2. The following criteria have been 

proposed in [3] to build this ranking: cardinality optimal criterion- maximizing a 

number of rules satisfied to the lowest degree, inclusion optimal criterion, based on 

set inclusion of the rules satisfied to the certain degree and Pareto optimal criterion 

favoring the answer set satisfying all ordered disjunctive rules not worse, than any 

other answer set does, and one rule strictly better.  

Consider as an example an LPOD P, representing a preferred dessert: 

coffee ×  tea. 

ice-cream × pancake × tiramisu. 

← coffee, pancake. ¬ ice-cream. 

Cardinality preferred answer set of P is S1 = {coffee, tiramisu}, since only S1 satis-

fies the rule to degree 1 (the first rule), while multiple Pareto and Inclusion optimal 

answer sets are obtained: S1 = {coffee, tiramisu} and S2 = {tea, pancake}, since none 

of them satisfy all the rules best. 

Computational complexity of LPODs under Pareto and inclusion preferences is 

proved to be in the same complexity class as disjunctive logic programs, namely in 

∑P
2
-complete, while in ∆

2
P under the cardinality criterion.     

Psmodels is a prototype implementation of logic programming with ordered dis-

junction under the above criteria3. Since in this paper several new criteria, suitable for 

voting applications are defined, they may be implemented in a similar way as pre-

sented in [3]. 

2.3   Extended LPOD 

In the folllwong we propose a notion of an extended LPOD
e
, which is a set of rules of 

the form: 

C1 ×… × Ck ← a1, …,am , not b1 , … , not bn. 

where aj and bk are literals and Ci is more complex formula where conjunc-

tion:{a1,…,an} or disjunction: {a1∨ …. ∨ an} of literals may appear. We use a meta-

translation from an extended LPOD
e to an LPOD such that the standard formal se-

mantics is used to a resulting program. Instead of giving a formal description of the 

                                                           
2 Different preference handling approaches in ASP may be found in [5]. 
3 http://www.tcs.hut.fi/Software/smodels/priority/ 

4



translation, we exampled it as follows: let’s assume that LPOD
e
 P contains an ex-

tended rule r of the form: 

(a1∨…∨ an) × (b1,…, bm) ∨ (c1,…, cj) × head   ← body. 

Where aj, bk and ci are literals, “,” is conjunction and ∨ denote disjunction. Then, in 

the first step the rule r is translated into a program: 

A × (B ∨ C) × head   ← body. 

a1∨…∨ an ← A. 

b1 ←  B. 

… 

bm←  B. 

c1 ←  C. 

… 

cj←  C. 

which is finally translated into a standard LPOD P′ containing no extended syntax:  

A × (BE) × head   ← body. 

a1∨…∨ an ← A. 

B ∨ E ← BE. 

b1 ←  B. 

… 

bm←  B. 

c1 ←  C. 

… 

cj←  C. 

where C, B, E, BE ∉ Lit(P) are new atoms. 

Since the syntax of a translated program is now equivalent to the syntax of LPODs, 

the formal semantics of LPOD is applied. Intuitively, by use if an extended programs, 

we can express preferential equality among literals of a program (weak order), as well 

as preference between sets of literals. Note that although one may extend LPOD syn-

tax by adding conjunction and disjunction connectives in head part of rules directly, 

instead of using a meta-translation, it requires changing the semantics of the ordered 

disjunction. 

In section 2.2 formal semantics of the ordered disjunction has been presented. 

However, when deal with partial preferences, this semantics leads to unintuitive re-

sults. A common problem in the filed of MCDM is of partial preferences given by 

DM. A traditional solution to this problem consists in using a partial order relation for 

expressing preferences. Originally, the ordered disjunction is a complete relation. 

Consider a problem where a set of alternatives A = {a1, a2, a3, a4}, is encoded by the 

LPOD P3: 

c1: a1 × a2. 

c2: a3 × a4. 

c3: a1 × a4. 

1{a1, a2, a3, a4}1.  

Unfortunately, there is no answer sets for this program, since no set of literals satis-

fies all rules of the program. In order to avoid this effect we propose a technique from 

the field of logic programming. Let A = {a1,...,an} denote a set of literals representing 
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alternatives under consideration. For each rule r' representing a partial order over al-

ternatives, a new rule is obtained as given in the below program LPOD P′: 

a1 × a2 ← not r_1. 

r_1 ← not a1, not a2. 

a3 × a4 ← not r_2. 

r_2 ← not a3, not a4. 

a1 × a4 ← not r_3.  
r_3 ← not a1, not a4. 

1{a1, a2, a3, a4}1.  

The method requires putting the literals present in each of incomplete LPOD’s rule 

to the body of the r_i rule, denoting ith partial rule,  thus the manual search for the lit-

erals not present in this rule is avoided. However, this method has a major drawback 

when assuming the standard formal semantics of ordered disjunctive rule. In case of 

the program P′, the cardinality optimal decision is alternative a2, although it is domi-

nated on the first criterion by a1 and it is not even present in terms of the remaining 

criteria. In order to avoid such undesirable effects, we introduce a modified semantics 

of LPOD rule: 

Let S be an answer set of an LPOD P. An ordered disjunctive rule r: 

c1 ×…× ck ← a1, …,am , not bm+1 , … , not bn (4) 

is satisfied by S to degree: 

• ir, if aj ∉ S for some j or bi ∈ S, for some i 

• d (1 ≤ d ≤ k), if aj ∈ S for all j, and bi ∉ S, for all i, and d = min {r | cr ∈ S}.  

Then, ir = const. and ∀ r ∈ P, ir > max {k | ck ∈ head(r)}. In other words, the value of 

ir is greater than any possible degree of satisfaction of any rule of P by any answer set 

of P. By this means it is guaranteed that answer sets not containing any literal of the 

head part of a rule gets the equal degree of satisfaction, but smaller than any satisfac-

tion’s degree of this rule by a relevant answer set. It is not the case, if we would put 

an arbitrary unsatisfied literal at the end of every partial preference rule, just in case if 

no literals of this rule are satisfied.   

3   LPOD for Combinatorial vote problems 

Representation of a vote problem G is divided into two parts: 

1. Logic program P, representing the descriptive part of the problem G: (possible 

candidates, voters etc). 

2. A set of vote profiles of the form: Vi = (LPOD Pi, P), where Pi represents prefer-

ences of ith voter over candidates and P is of the form given above  

3.1   Vote problem 

Given a vote problem G, in which A = (X1,…,Xn) is a set of attributes (dimensions, 

criteria) and Dom = (D(X1),…, D(Xn)) is a set of domains of the attributes, then a de-

scriptive part of G is a logic program P consists of rules of the form: 
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ri  l {a ,… an}u ← 

 

where rule ri indicates ith attribute {a1,…, an} are value atoms, representing values 

of the domain of ith attribute, i.e. D(Xi) = {a1,…, an}, l and u are the upper and the 

lower bounds expressing desirable constraints on number of values of ith attribute. In-

tuitively, a rule of the form above represents for each attribute the domain of its pos-

sible values, while the upper and the lower bounds determine constraints on number 

of values. Note that the number of rules is equal to the number of attributes, i.e. the 

cardinality of the set A. 

Proposition 1. Set of candidates C is a set of interpretations of the logic program P 

satisfying all rules of P. Therefore, C = Ans(P).   

Let’s assume that Vot = {1,…,m} is a set of voters under consideration, and A = 

(X1,…,Xn) is a set of attributes with the domains Dom = (D(X1),…, D(Xn)), where  

D(Xi) = {a1,…, an} represents values of the domain of an attribute i and P = {r1,..., rn} 

is a logic program consists of rules representing domains of the attributes and con-

straints on the domains. Answer sets of the program constitutes a set of possible can-

didates. In order to find a common acceptable candidate, preferences of voters must 

be taken into account. As already mentioned, voters are asked to express preferences 

not over elements of a set of candidate, which is in our case a set of answer sets of the 

program P, but over elements of sets of domains of attributes. In other words, a voter 

orders values of some attributes, possibly expressing some preferential dependencies 

between different domains.  

Formally, preferences of voter i are represented by rules of the form: 

C1 ×…× Ck ← a1, …,am , not b1 , … , not bn  

where 1 ≤ k and m ≥ 0 and n ≥ 0,  Ci may be of the disjunctive form only and  for 

all i, Ci ⊆ D(Xk) represent disjunctive sets of values literals of a domain D and D(Xk) ⊂ 

Dom but ak , bj ∈ ∪ Dom  are values literals of arbitrary domains. Intuitively, the head 

part of the rule represents preference order of value of an attribute, while the body of 

this rule is satisfied. Note that no values have to be totally ordered; hence partial pref-

erences can be represented.  

Each voter is asked to specify his preferences and then they are represented by 

rules of the form given above. The next task is to aggregate such individual prefer-

ence into a social preferences in order to obtain optimal candidate. Most of vote rules, 

used for aggregation purposes, assume counting the number of voters in order to de-

termine optimal candidate. In the context of LPOD approach, preference criteria, used 

to identify a ranking of answer sets of a program, rely on the notion of the degree of 

satisfaction of rule by answer set and they exploit this concept to count the number of 

rules satisfied to a certain degree.  

The problem with such method is the following: if possibly partial and conditional 

preferences of a voter are expressed by LPOD’s rules, trivially the number of rules 

does not have to be equal to the number of voters, i.e. number of rules should not af-

fect a result of voting..  Therefore, instead of one aggregation problem, two such 

problems arise:  

− aggregation of each voter’s preferences over values of attributes into a ranking of 

candidates 

− aggregation of individual preference ordering of candidates into a common accept-

able preference ordering of candidates   
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Therefore we assume that each preference profile is represented as a separated 

LPOD and the number of such programs is equal to the numbers of voters under con-

sideration. Formally, Vi = (LPOD Pi, P) denotes a vote profile of ith voter, containing 

the descriptive part, constraining all configurations of values of attributes to admissi-

ble ones, and the preference part, consisting in rules expressing preferences of voters 

over values of attributes. Note that the following relation holds: 

Ans(Vi) ⊂ Ans(P) for all i 

Then each LPOD, representing a voter’s preference profile, leads to a ranking of its 

answer sets, thus a weak order over a set of candidates, according to a given vote 

method is obtained. By use of this procedure we obtain partial rankings of candidates, 

where the number of these rankings is equal to the number of voters. Then, a crucial 

task is to aggregate such rankings into one common ordering of candidates. To do 

this, we define below some vote rules in the context of LPOD approach. 

3.2   Voting procedure 
The procedure is as follows, given a logic P representing a problem’s description 

and a preference profile Vi, for all i do: 

1. Compute a ranking of answer sets of Vi, representing a ranking of candidates of 

a vote problem: if Ans(Vi) denotes answer sets of Vi, then  

S1 ≥…≥ Sn 

where Sj ∈ Ans(Vi) for all j,  n = | Ans(Vi) | represents a weak order of answer sets 

of Vi obtained by use of a particular preference criteria (e.g. lexicographic ordering). 

The problem of appropriate preference criterion used for aggregating preference rules 

to ordering of answer sets depends on the commensurability assumption, i.e. if de-

grees of satisfaction of rules by an answer set are commensurate across the rules. 

Let’s assume that we use lexicographic way of ordering and exploit the cardinality 

criterion. However, any other criterion may be applied instead.     

2. The order of answer sets of Vi: S1 ≥…≥ Sn, s.t. Si ∈ Ans(Vi) for all i, is the order 

of sets of literals of the form: 

S1 = {a1,…,ai}1 ≥…≥ Sn = {a1,…,ai}n 

Since each answer set contains literals interpreted conjunctively, we can represent 

such conjunctions by an extended ordered disjunctive rule, containing these conjunc-

tions as its elements:  

αi (a1,…,ai)1 ×…× (a1,…,ai)n ← 

 

Then LPOD
e
 Pv = {α1,…,αn} represents a vote problem, where n denotes the number 

of voters under consideration. According to the meta-translation, given in the 3 sec-

tion, the extended LPOD
e Pv is translated into the normal LPOD Pv containing rules 

with literals, instead of conjunctions, only.  

It is clear that Pv contains rules representing partial orders of candidates w.r.t. all vot-

ers, therefore the aggregation of preferences over values of attributes into preference 

ordering of candidates has been done. Then, the original vote problem remains: the 

aggregation voters’ preferences of candidates into a social preference of candidates.  

Several vote rules have been define in the social choice literature. The idea is to de-

fine some of them in the context of LPOD formalism, such that we can take the ad-
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vantage of properties of these rules in our framework. In this paper four vote proce-

dures are being studied: Condorcet ruel, Pliurality procedure, Veto and Borda rules.  

3.2.1   Plurality rule  
Intuitively, plurality winner is a candidate which dominates other candidates for 

maximal number of voters. Plurality optimal selects the candidate maximizing the 

number of voters who ranked it at the first position. Then, candidate C1 is plurality 

preferred to C2 if C1 is not dominated for n number of voters, C2 is not dominated for 

m number of voters, and n > m.  

Since very often multiple Plurality optimal candidates exist (ties), we propose a 

lexicographic extension of the plurality rule. Intuitively, candidate C1 and C2 are not 

dominated candidates for maximal number of voters but none of them is plurality pre-

ferred, we count the number of voters for whom C1 and C2 are ranked at the second 

positions (dominated by only one candidate), and so on. Although even this method 

does not guarantee a unique optimal candidate, it is much more decisive than pure 

plurality rule. Moreover, we propose the notion of weak optimal plurality candidate, 

such that a candidate is weak plurality winner if and only if there is no candidate, who 

is plurality preferred to it. Note that candidates being not dominated for the same 

number of voters may exist, however. In this case, multiple weak plurality optimal 

candidates may be obtained. 

In order to definenthe notion of lex-plurality preferred answer set, we recall the no-

tion of cardianlty preferred answer set, presented in [2]. Let’s denote Si(P) = { r∈ P| 

deg(r) = i}. 

Given LPOD P and S1, S2 ∈ Ans(P), S1 is g-plurality (global plurality) preferred to S2 

(S1 >g-p S 2) iff there is i such that |Si
1(P)| > | Si

 2(P)| and for all j < i, |Si
 1(P)) | = | Si

 2(P) 

|. Intuitively, answer set is cardinality preferred if it satisfied maximal number of rules 

to the minimal degree.  

Definition 2. Given LPOD PD representing a vote problem D, and S ∈ C of D, S is 

lex-plurality optimal candidate of D iff S ∈ Ans(Pv) and ∀S′ ∈ Ans(Pv), S >c S′. 

Definition 3. Given LPOD PD representing a vote problem D, and S ∈ C of D, S is 

weak lex-plurality optimal candidate of D iff S ∈ Ans(Pv) and ∀S′ ∈ Ans(Pv), S >w-c 

S′. 

Note that in order to obtain the following result, the modified semantics of ordered 

disjunction must be applied to Pv, since answer sets being irrelevant to some rules are 

not interpreted as obtaining 1 degree of satisfaction. By this means partial preferences 

are handled properly. 

3.2.2   Condorcet rule 
A candidate S is Condorcet winner if S can defeat all other candidates in separate 
pairwise contests, where defeating means that S is strictly preferred to any other can-
didate w.r.t. the maximal number of voters. Note that the Condorcet optimal candidate 
does not have to be not dominated solution for any of voter, since the rule counts the 
number of victories in pairwise comparisons only. Since Condorcet winner often does 
not exist (but if does, it is unique), we define the notion of weak Condorcet winner 
(WCW). A candidate S1 is the WCW if it can defeat or draw all other candidates in 
pairwise comparison.  
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Let's assume that degS1(r) denotes degree of satisfaction of a rule r by an answer set 
S1 and CP (S1, S2) = {r ∈ P | degS1(r) < degS2(r)}. Then: 
• Given LPOD P and S1, S2 ∈ Ans(P), S1 is Condorcet preferred to S2 (S1 >c-p S2) iff 

|CP (S1, S2) | > | CP (S2, S1) |. 
Originally, the Condorcet winner is a candidate which defeats all other candidates in 

pairwise comparison, which means in our case, that: 

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is Condorcet 

optimal candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S >c-p S′. 

However, very often no answer set satisfies this requirement, i.e. no answer set 

wins against all other answer set. Therefore, we introduce a weaker version of Con-

dorcet winner by defining the Condorcet score of answer set S of LPOD P as follows: 

let S ∈ Ans(P), then CP(S) denote the Condorcet score of S obtained from the below 

formula: 

CP(S) = | CP
+
(S) | − | CP

−
(S) | 

where: 

CP
+
(S) = {k | S >c-p Sk, where Sk ∈ Ans(P)} 

CP
−
(S) = {k | S <c-p Sk, where Sk ∈ Ans(P)} 

Intuitively, CP
−(S) denotes a set of answer sets of logic program P which are Condor-

cet preferred to answer set S , while CP
+
(S) denotes a set of answer sets of P being 

Condorcet dominated by answer set S. Then, the Condorcet score of S is the ratio of 

cardinalities of the two sets. We define now the notion of weak Condorcet preferred 

answer set:     

• Given LPOD P and S1, S2 ∈ Ans(P), S1 is weak Condorcet preferred to S2 (S1 >wc-p 

S2) iff CP(S1) ≥ CP(S2).  

Gven the concept og weak Condorcet preferred answer set we can formally define the 

notion of weak Condorcet optimal candidate:  

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is weak Con-

dorcet optimal candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S >wc-p S′. 

3.2.3   Veto rule 
Intuitively, for each candidate a veto score is computed such that candidate C obtains 

a score 1 w.r.t. voter V iff C dominates at least one other candidate. Hence, a candi-

date who maximizes the number of voters for whom it is not dominated is the Vote 

winner. Since counting the voters for whom a candidate dominates at least one candi-

date is inversely proportional to counting the voters for whom this candidate is domi-

nated w.r.t. all other candidate (in this case veto to this candidate is given), we use the 

former procedure to find the Veto optimal candidate.   

Let assume that S is an answer set of LPOD P, i.e. S ∈ Ans(P) .Then the veto set of S 

w.r.t. P, denoted by VP(S), is obtained as follows:  

VP(S) = {r ∈ P | there is no k s. t. degS(r) < degSk(r)} and there is some i s.t. degSi(r) 

< degS(r)}. 

Intuitively, the veto set of answer set S of LPOD P is the set of rules of P satisfied by 

S to the maximal degree. The second condition of the above definition guarantees, 

that given rule r ∈ P, which is satisfied by S to the maximal degree but there is no 

other S' ∈ Ans(P) satisfying r strictly better, then r does not belong to the veto set of 

S, although the first condition of the definition is fulfilled.  
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Intuitively, such situation takes place if only one literal of the head(r) is applicable, 

i.e. only one literal of the head(r) belongs to any answer set of P. It is worth to note 

that the veto set of irrelevant answer set S is equal to the number of rules, w.r.t. which 

S is irrelevant.   

We define now the notion of weak and strict veto preferred answer set: 

• Given LPOD P and S1, S2 ∈ Ans(P), S1 is veto preferred to S2 (S1 >v S2) iff   | VP 

(S1) |  <  | VP (S2) |.  

• Given LPOD P and S1, S2 ∈ Ans(P), S1 is weak veto preferred to S2 (S1 >w-v S2) iff   

| VP (S1) |  ≤  | VP (S2) |.  

Let’s consider our approach to combinatorial vote problems. We want to find veto op-

timal candidates of a given veto problem. The following holds: 

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is veto optimal 

candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S >v S′. 

In case of weak veto optimality, we change the relation from >v to >w-v, as expected. 

Since many veto preferred answer sets is usually obtained, due to weak restrictions, 

we introduce now the lexicographic extension of the veto procedure. Intuitively, this 

vote method may be seen as inversion of lex-plurality procedure, since instead of 

counting rules satisfied to the minimal degree we start from the opposite direction and 

count the number of rules satisfied to the maximal degree. Threfore, we built a rank-

ing of the most unpreferred answer sets, and then by reversing the scale we obtain 

lex-veto optimal candidates. Formally: 

• Given LPOD P and S1, S2 ∈ Ans(P), S1 lex-veto unpreferred to S2 (S1 >v-lex S2) iff 

there is i such that | S1
i
 (P) |  >  | S2

i
 (P) | and for all j > i, | S1

j
 (P) |  =  | S2

j
 (P) |. 

Then, Given LPOD P and S ∈ Ans(P), S is called pessimal answer set of P iff ∀S' 

∈ Ans(P), S >v-lex S'. 

Then, in order to find lex-veto optimal candidate, we must reverse the order of pes-

simality, such that the least pessimal answer set becomes the lex-veto optimal answer 

set.   

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is lex-veto op-

timal candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S′ > v-lex S. 

3.2.4   Borda rule 
Borda voting procedure may be seen as a semi-qualitative vote method, since it con-

sists in assigning to ranked candidates numbers, reflecting their positions, such that 

the lowest-ranked candidate receives 0 point, the next lowest 1 point etc. Then, the 

points are summed across all voters and the candidate with the most points wins.  

It has been showed in the Social Choice literature that Borda system is very syntax-

sensitive and therefore easy to manipulate due to:  

• preference truncation (incomplete rankings) in which not ranked candidates by 

some voters may change positions of these candidates in an overall ranking 

• dependence of irrelevant alternatives: by adding a new candidate, which does 

not change the voters rankings on remaining candidates, the result of voting may 

be changed 

• syntax- manipulation: changing positions of some not highest-ranked candidates 

may change the effect of a vote procedure 

Borda preference relation on answer sets may be define as foolows: 
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• Given LPOD P and S1, S2 ∈ Ans(P), S1 is Borda preferred to S2 (S1 >b S2) iff  ∑ⁿi 

=1degS1 (ri) < ∑ⁿi =1degS2 (ri), where n = |P| 

In order to obtain a weaker notion of min-sum preferences, we change < by ≤.  

Originally, Borda rule interpret not listed candidates by not assigning them any num-

ber reflecting their attractiveness for a voter. In our approach, degrees of satisfaction 

of rules by answer sets are treated as penalties, and the smaller the degree the better 

answer sets are. Since we assign to irrelevant answer sets the degree of satisfaction 

greater than any degree of satisfaction, but equal in all cases, we punish irrelevant an-

swer sets instead of not rewarding them. Then: 

• Given LPOD PD representing a vote problem D, and S ∈ C of D, S is Borda opti-

mal candidate of D iff S ∈ Ans(PD) and ∀S′ ∈ Ans(PD), S >b S′. 

3.3   Example 

Let’s consider the following vote problem as an example: 3 agents want to recruit IT 

experts from the following domains: net administrators, database admins, program-

mers. Since many applicants are applying for the position (let’s assume that 3 applica-

tions for each position have been submitted), they must specify the number of experts 

of every domain to be recruited. For simplicity, let’s assume that the agents want to 

have one representative of every domain in the workgroup, i.e. one programmer, one 

net administrator and one database expert. Therefore, a candidate is not a particular 

expert, but a group of individuals. 

Then, they have some preferences concerning particular experts and possibly pref-

erence dependencies between some domains may hold. Since for each position 3 indi-

viduals are applying, the number of possible workgroup is 3
3
, which amounts to 27 

possible configurations of experts. In case of some preferential dependencies, the 

problem becomes even more complex.  

Let’s assume that following sets are given: A = (N, B, Pr) is a set of attributes con-

taining sets of net administrators, database administrators and programmers under 

considerations, respectively with the following domains: D(N) = {a, b, c}, D(B) = {e, 

f, g} and D(Pr) = {h, j, k}, hence the set of domains is Dom = (D(N), D(B), D(Pr)). 

Moreover, a set of voters Vot = (1, 2, 3) is given. According to the two layers archi-

tecture of our framework, we represent the descriptive part of the problem as a logic 

program P containing 3 rules, since | A| = 3, of the form:  

r1  1{a, b, c}1 ← 

r2  1{e, f, g}1 ← 

r3  1{h, j, k}1 ← 

Then, the set of possible candidates of the vote problem is the set of answer sets of 

the above program, i.e. C = Ans(P). In fact, we do not have to list all such candidates, 

due to the compact preference language enabling concise representation of preference 

structures.  

Next step is to represent preferences of voter in vote profile programs such that a 

vote profile of ith voter is the pair: Vi = (LPOD Pi, P) containing descriptive part of 

the problem and preferences of ith voter. The preference layer is as follows: 

Let’s assume that the following preference profiles are given: 

V1:  
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a × b ← 

e × f ← a. 

j × h. 

r1  1{a, b, c}1 ← 

r2  1{e, f, g}1 ← 

r3  1{h, j, k}1 ← 

 

V2: 

b × a × c  ← 

h × j ← a. 

f × e ← 

r1  1{a, b, c}1 ← 

r2  1{e, f, g}1 ← 

r3  1{h, j, k}1 ← 

 

V3: 

b × a  ← h. 

f × e ← j. 

h × j ← 

r1  1{a, b, c}1 ← 

r2  1{e, f, g}1 ← 

r3  1{h, j, k}1 ← 

 

• Ans(V1) = { {a, e, j}, {b, f, j} ,{b, g, j},{b, e, j}, {a, e, h},{a, f, j}, {b, g, h}, {b, e, 

h} ,{b, f, h} ,{a, f, h}} 

• Ans(V2) = { {a, f, h},{b, e, h}, {b, e, j}, {b, e, k}, {c, f, j}, {c, f, h}, {c, f, k}, {a, e, 

h}, {a, f, j}, {c, e, k}, {c, e, h}, {c, e, j}, {a, e, j}, {b, f, k}, {b, f, j}, {b, f, h} } 

• Ans(V3) = { {b, g, h}, {b, e, h}, {b, f, h}, {a, f, j}, {b, f, j}, {c, f, j}, {a, g, h}, {a, e, 

h}, {a, f, h}, {c, e, j}, {a, e, j}, {b, e, j} } 

 

Let’s assume now that the preference order of candidates of each voter is obtained 

by use of the cardinality criterion, presented in the previous section. It is worth to note 

that in this case, to answer sets not satisfying the body of a rule 1 degree of satisfac-

tion is given. Below we present rankings of answer sets, ipso facto the candidates of 

every voter: 

 

• V1: {a, e, j} >c {b, f, j} ~ c{b, g, j} ~c{b, e, j} ~c{a, e, h} ~c{a, f, j} >c {b, g, h}~c 

{b, e, h} ~c {b, f, h} ~ c{a, f, h} 

• V2: {a, f, h} ~c{b, e, h} ~c{b, e, j} ~c{b, e, k}>c {c, f, j} ~ c{c, f, h} ~ c{c, f, k}>c{a, 

e, h} ~ c {a, f, j}>c{c, e, k} ~ c{c, e, h} ~ c{c, e, j} > c{a, e, j} ~ c{b, f, k} ~ c{b, f, j} 

~ c{b, f, h}  

• V3: {b, g, h} ~c{b, e, h} ~c{b, f, h} >c{a, f, j} ~c{b, f, j} ~c{c, f, j} ~c{a, g, h} ~c{a, 

e, h} ~c{a, f, h} >c{c, e, j} ~c{a, e, j} ~c{b, e, j}  

 

Note that since preferences of voters are partial, the ordering of candidates of P is 

not total, i.e. only candidates considers by particular voters as “interesting” are or-
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dered. The interesting candidates are candidates listed in some preference rule of a 

voter. 

Next step is to represent the order of answer sets of each voter by an extended or-

dered disjunctive rule, containing sets of literals as its elements. Note that any answer 

set of a program representing s vote problem must have the same cardinality, due to 

the cardinality constraints rules of descriptive program, and this cardinality is equal to 

the cardinality of a set of attributes A.  

Consider our example, the vote problem is represented by a new LPOD
e
 Pv = {α 1, 

α2, α3} containing the following rules: 

 

α1 (a ,e, j) × (b, f, j) ∨ (b, g, j) ∨ (b, e, j) × (a, e, h) ∨ (a, f, j) × (b, g, h) ∨ (b, e, h) ∨ 

(b, f, h) ∨ (a, f, h) ← not rest_1. 

 

α2 (a, f, h) ∨ (b, e, h) ∨ (b, e, j) ∨ (b, e, k) × (c, f, j) ∨ (c, f, h) ∨ (c, f, k) × (a, e, h) ∨ 

(a, f, j) × (c, e, k) ∨ (c, e, h) ∨ (c, e, j) × (a, e, j) ∨ (b, f, k) ∨ (b, f, j)  ∨ (b, f, h) ← 

not rest_2. 

 

α3 (b, g, h) ∨ (b, e, h) ∨ (b, f, h)  × (a, f, j) ∨ (b, f, j) ∨ (c, f, j) ∨ (a, g, h) ∨ (a, e, h) 

∨ (a, f, h) × (c, e, j) ∨ (a, e, j) ∨ (b, e, j) ← not rest_3. 

 

r1  1{a, b, c}1 ← 

r2  1{e, f, g}1 ← 

r3  1{h, j, k}1 ← 

 

r_1 ← not head(α1). 

r_2 ← not head(α2). 

r_3 ← not head(α3). 

The two rules at the bottom express constraints on the number of candidates to be 

elected and a domain of values of attributes, respectively. The above program with 

extended syntax is then translated to a standard LPOD. Our semantics of the ordered 

disjunction assumes that answer sets not containing any atoms of head(r), satisfies r 

to the degree ir. Since we want to consider only those candidates, which are listed in 

some preference rankings, a candidate not present in such ranking is less preferred 

than any listed candidate, independently on its position in this ranking. Therefore, we 

use the modified semantics, presented on the previous secitions. 

Let’s consider our example again. We present three first positions of each vote rule: 

• Lex-plurality voting: {b, e, h} >p {b, e, j} >p {a, f, h}  

• Condorcet voting: {b, e, h} >c-p {b, e, j} >c-p {a, f, h} ~c-p {a, e, h} ~c-p {a, f, j} ~c-p 

{b, f, j}  

• Lex-veto voting: {b, e, j} >p {a, e, h} >p {a, f, j} >p {b, e, h}  

• Borda voting (ir = 10): {b, e, h} ~c-p {b, e, j} >c-p {a, f, h} >c-p {a, e, h}       

The above result shows that the candidate {b, e, h} is elected by most of the vote 

rules, while being the same preferred on the Borda procedure. The candidates ranked 

in next positions differ, however.  As long as the candidate {b, e, j} is ranked at the 

second position by the lex-plurality and Condorcet rules, in case of the lex-veto 

method, this candidate takes a further position. Interesting is that the Borda rule, 

14



known for its strong decisiveness, results in multiple optimal candidates: {b, e, h} and 

{b, e, j}.    

Conclusions 

In this paper we have proposed logic programming approach to combinatorial vot-

ing. We have shown how logic programming with ordered disjunction framework 

may be used to represent and solve vote problems.  Various vote rules in the context 

of LPOD approach have been defined defined, ass well as some extensions enabling 

more decisiveness have been introduced. Finally, we have showed that answer set 

programming with preferences may be promising approach to voting problems from 

the following reasons: it is suitable for solving combinatorial, search and constraint 

satisfaction problems, as well as it is an expressive preference representation lan-

guage, being able to express defeasible, conditional, partial preferences as well as 

meta-preference information.   
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