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Abstract

JEFF (New abstract) We study cardinality-constraint (CC) logic pro-
grams [NSS99]. A CC-logic program is body-normal if for every clause C
of P the body of C consists of atoms and negated atoms, that is cardi-
nality constraints of the form 1{p} or {¢}0. For a class of programs P
whose heads are not of the form X0, we prove that there is a body-normal
program bn(P) such that dbn(P) is in the same language as P and P and
bn(P) have the same stable models. If the heads of the form X0 are ad-
mitted, then we show that in the language with just one additional atom
a similar result can be achieved.

1 Introduction

In this paper we investigate the cardinality-constraint programs. Those are
logic programs that admit, besides of usual atoms, generalized atoms called
cardinality-constraints atoms of the form kX[ where X is a finite set of propo-
sitional atoms and k is a non-negative integers, ¥ < |X| and [ is an integer
or oo and k < [. This extension of logic programming has been implemented
in the logic-programming solver smodels, [NSS99, Syr01, SNS02]. However the
roots of cardinality-constraints are in both SAT and in Integer Programming
communities. It should be mentioned that cardinality-constraints are natu-
rally represented as pseudo-boolean integer inequalities (i.e. integer inequalities
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where admited solutions must take values in {0,1}). We refer the reader to
papers such as [DG03, WB96] for the discussion of the developments in these
other areas.

The solver smodels allows for the use of cardinality-constraints both in the heads
and in the bodies of clauses. Niemeld and collaborators [NSS99] introduced the
stable semantics for programs admitting cardinality constraints. At the first
glance it has not been clear at all that the stable semantics of programs as in-
troduced in [NSS99] correctly generalizes the generally accepted stable semantics
of normal logic programs [GL88]. The relationship of the stable semantics of
programs admitting cardinality-constraint atoms has been studied by Ferraris
and Lifschitz in [FLO1] and by the authors in [MRO03]. Ferraris and Lifschitz
reduced the stable semantics for such programs to answer sets of programs with
nested expressions (a natural generalization of logic programs). The present au-
thors reduced the stable semantics of CC-logic programs to the usual semantics
of normal programs extended by hide operation.

In [MNRI0] the authors developed a proof-theoretical technique to study stable
models of logic programs. The technique was based on proof-schemes, context-
dependent proofs of atoms out of programs. The characterization of stable
models that one obtains with the proof schemes is based on a fixpoint of anti-
monotonic operator. The technique of proof-schemes has been extended by the
authors in [MRO3] to handle the context of CC-logic programs. This extension
provides, as in the case of normal logic programs, a characterization of stable
models of CC-logic programs in proof-theoretic terms.

The goal of this paper is to prove a normal form theorem for CC-logic programs.
To see this result in perspective, let us look at the simpler case of normal logic
programs. For such programs Dung and Kanchansut [DK89] proved a certain
normal form theorem. Let us call a normal program P purely negative if the
clauses of the program P do not contain positive literals. Next, let us call
programs P and P’ equivalent if the families of stable models of P and of P’
coincide. Dung and Kanchansut stated the following normal form theorem: for
every normal program P there is a purely negative program P’ such that P and
P’ are equivalent.

For CC-logic programs elimination of positive facts from the bodies of clauses
(while keeping heads) is not, in general, possible. An example of such program
is given below (Example 2.4, Section 2. Yet a weaker normal form theorem
can be shown. Let us call a CC-logic program body normal if the clauses of C
contain in the bodies only the CC-atoms of the form 1{a}1, and 0{B}0'. That
is only the atoms or negated atoms. We show that for every CC-logic program
P there is a strongly equivalent body-normal program P’ such that the heads
in P’ occur in P JEFF.

We also show some complexity results for body-normal CC-logic programs. We
discuss conclusions in Section 4.

I'This is equivalent to having in the bodies only expressions 1{a}1 and 0{b}0.



2 Logic programs, CC-logic programs and their
stable semantics

Recall that a clause C of a logic program P is a rule of the form

P QlyeeesQms—T1,ene, . (1)

where p,q1,...,qm,71,...,T, are atoms from the set of atoms At of the program.
We shall refer to p as the head of C, head(C), {q1,...,qm} as the premises of
C, prem(C), {r1,...,mn} as the constraints of C, cons(C), and g1 A ... A gm A
—-ry A ...\ -, as the body of p, body(C). A (normal) logic program is a set P
of clauses. To distinguish them from other clauses described below for CC-logic
programs, we shall refer to clause of the form of (1) as an ordinary logic program
clause. When n = 0, the clause C is called a Horn clause. A Horn program is
a set of Horn clauses.
A Horn program always has a least model which we denote that model by Mp.
This model can be constructed as the closure of the one-step provability operator
Tp as follows. Suppose that P is Horn Program. Thus all the clause of P are
of the form

P G1y .-y Ay (2)

Let Hp denote the Herbrand Base of P. In general, if @ is logic program, the
Herbrand base of ) is the set of atoms a such that either a or —a occurs in Q.
Let 2F7 denote the set of all subsets of Hp. The one step provability operator
Tp associated with P is map Tp : 277 — 287 such that

Tp(S)={p: 3 clause C =p <+ ay,..., a, € P such that {a1,...,a,} CS}.

(3)
We can then define Tg(S) for n > 1 by induction on n by defining TH(S) =
Tp(S) and Tpt (S) = Tp(TE(S)). It is easy to see that T'p is monotone operator
so that

0 CTp(0) CTp(0) CTEO) C -

We let Tg(0) = U,—,; Tp(0). Then the minimal model of P, Mp, is defined to
be T (0)
There is a natural extension of the one step provability operator to ordinary
logic programs. That is, suppose P is program which consists of clauses of the

form of (1) and M C Hp. Then we can define an operator Tp 5 : 287 — 2Hr
by

Tpu(S) = {p:3C=p<+ a1,...,apn, °b1,..., 2by, € P (4)
such that {a1,...,a,} €S & {b1,..., b} N M = 0}.

3

We can then define T5 ,,(S) for n > 1 by induction on n by defining T4 ,(S) =
Tpa(S) and TRt (S) = Tpm(Tp p(S)). Again it easy to see that Tp s is
monotone operator so that

0 CTpam(0) CThy(0) CThp@)C .



We let T 5,(0) = U,—; Tp (). Then we say that M is a stable model of P if
M =T ,,(0).

Alternatively, we can define stable models of logic programs via the Gelfond-
Lifschitz operator GL(-,-) [GL88]. Here the operator GL(-,-) assigns to a logic
program P and a set of atoms M C Hp, the least model of the Horn program
PM where PM consists of the set of all Horn clauses C obtained from a clause
C of P of the form of (1) as follows.

CM:{nil if for s?me 1,1<i<n,r; €M (5)

D4+ qi,...,qm oOtherwise

We say that M is a stable model of P if M = GL(P,M). This definition is
equivalent to the one given above. Gelfond and Lifschitz proved that every
stable model M of P is a model of P, in fact, a minimal and supported model
of P.

Next we define a natural proof-theoretic construct associated to logic programs
called proof schemes. Let P be a logic program, then the set of proof schemes
of P can be defined inductively as follows.

1. fC =p<« —rq,...,—ry, is a clause of P (the case n = 0 is allowed), then
((p),(C),{r1,...,ms}) is a proof scheme for p in P

2. If ((s1,...,8%),(C1,...,Cr),{t1,...,t;}) is a proof scheme and
C=p<+< q,---yqm, “T1,...,7 T, is a clause in P and {q1,...,qm} C
{s1,...,8}, then

((Slz'"7Sk:p>7<cl7"':Ck:C>:{t1:'"7tl:7'17"'7rn}>

is a proof scheme for p in P.

IfS = {{s1,...,8%),(C1,...,Cx), {t1,...,t:}) is a proof scheme in P, we refer
to sx as the conclusion of &, concl(S), and say that & is a proof scheme of s,
in P. We also refer to {t1,...,tx} as the constraints of of &, const(S). We say
that & is proof scheme of length k. We say that & is reduced if s1,..., sy are
pairwise distinct.

One can think of a proof scheme for a logic program as the analogue of a
derivation or proof in classical logic. However, a proof scheme & for p not only
contains the clauses that can be used to derive p but also keeps track of the set of
atoms that must be absent from prospective stable model M, namely const(S),
if p is to be an element of GL(P, M). Thus we say that a proof scheme & is
admitted by M if M N const(S) = 0.

Example 2.1 Let P consist of clauses:

Cr=p<q,r
Cy=q« —s
C3 =5« —q.



It is easy to check that there are exactly two reduced proof schemes of length 1,
namely, &1 = ({(q), (C2), {s}) is a proof scheme for ¢ and &y = ((s), (C3), {q})
is a proof scheme for s. There are three reduced proof schemes of length 2. The
triple

63 = <<qap>7 <C27 Cl>> {Ta 5}>>

is a proof scheme for p in P. In addition, there are two other reduced proofs
which come from concatonating &, and &, namely, &4 = ((q, s}, (C2,C3),{s,q})
and 65 = ((s,q), (C3,Cs), {s,q}). It should be clear that neither of these proof
schemes can be used in the construction of stable model. Finally there are 3 more
reduced proof schemes of length 3, namely, &¢ = ((g, p, s), (C2, C1,C3), {r, s,q}),
67 = ({(q, s,p), (C2,C3,C1),{r,s,q}), and &g = ((s,q,p), (Cs,C2, C1),{r,s,q}).
Let us observe that r can never be in the stable model since r is not the head
of a caluse of P and hence r ¢ T ,(0) for any M. Thus any stable model M
of P must be contained in {p, ¢, s}. In this case, it is easy to check that there
are exactly two stable models of P, M; = {s} and My = {p,q}. Clearly, M;
admits G5 but not &; and &3. Ms admits &; and &3, but not &,. O

The following result is proven in [MNR90].

Proposition 2.1 Let M be a set of atoms contained the Herbrand base Hp of
the a logic program P. Then M is a stable model of P if and only if

1. Every atom p of M possesses a proof scheme &, in P such that M admits
Sp

2. No atom p in At \ M possesses a proof scheme admitted by M.

The proposition immediately follows from the definition of stable model and the
following lemma.

Lemma 2.2 Let M be a set of atoms contained the Herbrand base Hp of the a
logic program P. Then

Tp (D) = {p : M admits a proof scheme & for p}.
Proposition 2.1 implies the following property of models of programs.

Corollary 2.3 Let P be a logic program and let M be a model of P. Then M is
a stable model of P if and only if every element of M possesses a proof scheme
i P admitted by M.

The advantage of proof schemes is that they are entities associated with pro-
grams and atoms and not with models. Proof schemes carry within themselves
the information about their own applicability. Let us observe that Corollary 2.3
establishes a condition for models of P that is easier to check than the condi-
tions given in Proposition 2.1. Below we will extend the notion of proof scheme
to CC-logic programs and prove a result analogous to Corollary 2.3. This is one



reason why we believe that the definition of CC-stable models of cardinality-
constraint programs is a natural generalization of stable semantics for ordinary
logic programs.

There is one other property that we can derive via proof schemes. Namely, we
can show that every program P is equivalent to a program @, in the sense that
P and @ have the same stable models, where each clause of ) has no premises.
This result due to Dung and Kanchansut [DK89] becomes very natural in the
context of proof schemes. To this end consider the set of clauses of the form

p _|b1,..., _|bm

where m may be zero. We call such a program, a purely negative program. Let
us suppose that we start with a logic program P and for each reduced proof
scheme

S = (51,1 80), (Cr,e s Co) i, 1)),

we construct a clause
Cs =8p ¢ —t1,..., 7tm

whose body consists entirely of negative atoms. Let Neg(P) consist of the
program whose clauses are precisely the set of Cg such that & is reduced proof
scheme of P. If P is a finite program, then so is Neg(P). Then we have the
following theorem which was implicit in [MNR90].

Theorem 2.4 For any logic program P, P and Neg(P) have the same stable
models.

We observe that all supported models of Neg(P) are automatically stable models
of Neg(P). Thus supported models of P are not necessarily supported models
of Neg(P). JEFF

Example 2.2 Recall the program P of Example 1 which consist of clauses:

Cr=pq,r
Cy=q« —s
C3 =5+ q.

Then it is easy to see by our analysis of the reduced proof schemes of P that
Neg(P) consists of the following eight clauses where in each case S; is derived
from &;.

S| =q+ —s

Sy =85+ —q

S3 =p <« —r, s

Sy =8 —g,—s

S5 = q < —q,—s

Sg =8+ —r,—s,q
S7 =p <+ —r, s, q
Sg =p ¢ —r, s, q



Let us observe that it is possible to get the same rule from two different proof
schemes as in the case of S; derived from &7 and &g. Moreover, we can get
clauses C and C', like S; and Ss, such that head(C) = head(C") and const(C) C
const(C"). In such a situation, there is no loss in dropping clause C' from the
program. In our case, if we drop all such instance it is easy to see that Neg(P)
is equivalent to clauses Si1, S2, and S3. The stable models of Neg(P) are, as
expected, {s} and {p, q}. O

We now formally define cardinality-constraint logic programs (CC-logic pro-
grams). The syntax of CC-logic programs admits two types of atoms: (i) ordi-
nary atoms from set A¢ and (ii) atoms of the form kX1 where X is a finite set
of atoms from At, k is a natural number (i.e. k € w), ] € wU {oo} and k < L.
Such new atoms will be called cardinality constraints. The intended meaning of
an atom kX1 is “out of atoms in X at least £ but not more than [ belong to the
intended model.”2 Let us observe that the meaning of the negated atom, —p is
precisely the same as that of {p}0. Therefore we shall assume that the bodies
of rules of CC-logic programs contain only atoms of the form kX! and atoms
from At. That is, a CC-clause is either a clause of the form

p%ql,...,qm7k1X1l1,...,annln (6)

or
le<_q17---7qm:k1X1l17---7annln- (7)

We note that either m or n can be zero. Thus the head of CC-clauses is either
of the form p where p is an atom from At or kX[ where k, X, and [ satisfy the
conventions described above. We say that a set of atoms M C At satisfies the
cardinality constraint kX1, M = kX[ if &k < |X N M| < [. Similarly we say
that M |= p where p € At, if p € M. By treating the commas in the bodies
of clauses as conjunctions, we say that M |= body(C) if all atoms occurring in
body(C) belong to M and all cardinality constraints occurring in body(C) are
satisfied by M. We say that M satisfies a clause C, M |= C, if either M does
not satisfy the body of C or M satisfies the head of C.

A CC-logic program is a set of CC-clauses of the form (6) or (7). We say that
M is a model of P, M |= P, if M satisfies all CC-clauses C € P.

There is a particular class of programs called Horn constraint programs that
play a role similar to that of Horn programs in ordinary logic programming. A
Horn constraint clause is a CC-clause where the head of the clause is an ordinary
atom and all the cardinality-constraint atoms k; X;l; in the body have I; = oo,
i.e., it is of the form

H:p<—Q1=---Qm=k1X17---7ann-

Niemeld, Simons and Soininen [NSS99] observe that the one step provability
operator associated with a such Horn constraint program P is monotone and

2Customarily we do not write the lower bound if it is 0 nor the upper bound, if it is co but
not always.



hence a Horn constraint program P has a least fixed point, M*. That is, let
Tp : 24t — 24t be defined so that for each S C At

Tp(S) = {p:3H=p q1,---Gm, k1 X1, .., k,X, € P (8)

such that {q1,..., gm} CSandforalli=1,...n, | X;NS| >k}

3 3

Again it is easy to see that T’p is monotone compact operator and that
0 CTHO) CTH0) CTRO) C - .

Thus

TE0) = |J T50)
n=1

is the least fixed point of Tp. Niemeld, Simons and Soininen observe that that
MP = T%(0) is the least model of P.
Next we introduce the analogue of the Gelfond-Lifschitz reduct for CC-logic
clauses which we call the NSS-reduct. The NSS-reduct of a cardinality-constraint
clause C with respect to a set M of ordinary atoms is defined as follows. First,
eliminate all clauses C' such M [~ body(C). Next,

1.ifC=p <« qi,....qm, k1 Xil1,..., knXolp, then CM =p «— ¢1,..., gm,
k1 Xy, .. k. X,

2. IfC =kXl < qi,...,¢m, k1 X111, .., knXnln, then CM is a collection of

Horn constraint clauses of the form p < q1,...,qm, k1 X1,..., kX, for
eachpe XN M.

Given a CC-program P, we let PM denote a Horn constraint program consisting
of all NNS-reducts of clauses C € P. Following [NSS99], we say that M is a
CC-stable model of P if (i) M is a model of P and (ii) M is the least model
of the Horn constraint program P™. It appears that, in the case of ordinary
programs, the NSS-reduct prunes more clauses than GL-reduct?.

We can also introduce a one-step provability operator Tp s : 24t 5 24t for any
CC-program P and M C At. That is, for any S C At, we let Tpa(S) equal
the set of all p € At such that either

(1) there is a clause C = p « q1,...,qm, k1 X1l1,. .., ko X, I, such that
M = body(C), {q1,.--,gm} C Sandforalli=1,...,n,|SNX;| > k; or

(2) there is a clause C = kXl + q1,...,qm, k1 X1l1,...,knXnl, such that
M = body(C), p € MNX), {g1,---,gm} € S and for all i = 1,...,n,
|S N X > ki

Note that M affects Tpa(S) in two ways. First M restricts the clauses C

3M. Truszczynski (unpublished) proved that for models of P this reduct results in the same
notion of stable model.



that can be used to put elements into T as(S) to be only those clauses such
that M |= body(C). Second, if C = kX1l < q1,...,qm, k1 X1l1, ... ko Xpl,, is
such that M [ body(C), then we can only use C to put elements from M N X
into Tp pr(S). Nevertheless, it is easy to see that Tp ps is a monotone operator
so that

0 CTpa(0) CThp(0) CThp(B) C -

Thus -
Ti @) = | T5(0)
n=1

is the least fixed point of T'par. It is then easy to check that M is a CC-stable
model of P if and only if () M is a model of P and (ii) 1% 5,(0) = M.

Next we define the notion of a proof scheme for a CC-logic program and state a
result analogous to Corollary 2.3. The basic idea is that a proof scheme should
carry along all the information that is needed to see that an element p is in a
CC-stable model M. In particular, when we deal with atoms of the form kX1,
we need to know the information that k < |M N X| <. Thus our proof schemes
will carry along the information about what we expect M N X to be. Formally,
the notion of CC-proof scheme for a CC-logic program P is defined inductively
as follows.

1. Whenever C =p « I1 X11Y,. .., I X,1!" is a clause in P and for all

3 3

1<i<mn,li=0andY; is asubset of X; such that I} <|Y;| <! then
<<p>7 <C>7 <(lI1Xlllll/ Yl): SR (leranfril Yn)))

is a CC-proof scheme for P. (The case n = 0 is allowed.)

2. Whenever I'X1" « I} X1, ... 1} X0 is a clause in P and for all 1 <4 <

n, I} =0 and Y; is a subset of X; such that I} < |Y;| < 1Y and Y is a subset
of X such that k£ < |Y| <, then for every p e Y

((p), (C), ((BXLY), (' X1",Y), (WX ly Yh), - (1, Xl Vo))

is a CC-proof scheme for P. ( Again, the case n = 0 is allowed.)
3. Whenever
6= <<Sl7 R Sw>7 <Cla R Cw>7 <(kiX1kllla Yl) """ (k:‘XTkLla YT)>>

3 3

is a CC-proof scheme in P and
C=p<aqi,....qm, 01210, .. 1. Z,1"

is a clause in P such that {g1,...,¢m} C {s1,...,sw}andforall1 <i <mn,

|Z; N {s1,...,8w}| > ki and T} is a subset of Z; such that I} < |T;] <1,
then

<(k;.X1k:’l,7 Yl): vy (k;X'r‘k'lr,, Y’r‘) (lllzllglll Tl) ey (l’nZ"llri:Tn)»

3

is a CC-proof scheme for P.



4. Whenever

S = ((s1,..,80), (C1y .o, Co) (KL XK Y1), (B XK, Y)Y

is a proof scheme in P and
C=1Zl" +~qi,...,qm,112:17,...,1Il, Z,1"

is a clause in P such that {q1,...,¢m} C {s1,..., 8w}, for all 1 <
|Z; N {s1,..., Sw}| > ki and T; is a subset of Z; such that I} < |T;|

and Y is a subset of Z such that I' <|Y| <", then for every p e Y

INIA

"
li

((Slz LR Sw7p>= (CI: LR Cw7C>7
<(llZl”7 Y) (kllek:Il,/ Yl) """ (k,rXTklrla YT): (l’1Z1l11’7T1) tey (l,nan,r:/ Tn)))

is a proof scheme for P.
Now, given a CC-proof scheme
6= <<517 ) Sk): <Cl7 R Ck): <(kI1X1k;la Yl): R (k;X'f‘k:/ Y’f‘)))

for P, we say that & is a CC-proof scheme for s; in P. We shall refer to the
sequence ((ki1 X1k{,Y1),..., (k. X,k!!,Y,)) as the cardinality constraint sequence
of 6. If M C At, then we say that & is admitted by M if M N X; = Y; for
i=1,...,k. Wesay that & is reduced if s1, ..., s are pairwise distinct. We say
that & is self-consistent if for alli =1,...,r, Y; = X; N (U;:1 Y;).

It is easy to see that if M admits a proof scheme
6= <<517 sy Sk): <Cl7 ceey Ck): <(k;.X1k:’l,7 Yl): B (k;X'f‘k'lr,/ Y’f‘)))

then & is self-consistent and M |= k1 X kY,..., M = k. X,.k!! since the sets Y;,
i=1,..., k witnesses that the corresponding constraints are satisfied. It is then
easy to see by induction that M must satisfy the body of every clause C; in &.
Thus a proof scheme provides a derivation of an atom and proposes a way of
satisfying constraints occurring in bodies of all clauses used in that derivation.
Moreover, the proof schemes for ordinary programs can be easily transformed
into the CC-proof schemes for the corresponding cardinality-constraint program.
That is, instead of having an element r be in set of constraints in the third
component of a proof scheme for an ordinary logic program, we simply add a
pair (0{r}0,0) to the cardinality constraint sequence of the corresponding CC-
proof scheme because a set M C At will admit such a proof scheme if and only
ifr¢ M.

Example 2.3 Let P be the following CC-logic program:

Cy = 1{p,q}2 < r,0{t}0
Cy =71« 0{s}0
C3 =5« 0{r}0

10



The CC-program P has four stable models: My = {r,p}, My = {r,q}, M5 =
{r,p,q} and My = {s}. M, and M, are included in Ms3.

The triple ((r,p), (Ca, C1), {(1{p, ¢}2,{p}), (0{s}0,0), (0{£}0, B))) is admitted by
M3, but not by M,. Also, the scheme G5

<<T=p7 q): <C27 Cl: Cl): ((1{]97 q}2= {p7 q}): (O{S}O: 0)7 (O{t}07 @»)

is admitted by M3 but not by M;, because atom g does not belong to M;. Let
us observe that clause C; is used in &3 twice, once to derive p and again to
derive g. This phenomenon does not occur in case of normal logic programs
where where, in a reduced scheme, every clause can be used at most once. O

The following analogue of Corollary 2.3 is proved in [MRO03].

Proposition 2.5 Let P be a CC-logic program, and let M C At, M |= P. Then
M is a CC-stable model of P if and only if every element p of M possesses a
proof scheme &, such that &, is admitted by M.

Next we want to prove the analogue of Theorem 2.4 for CC-programs. It turns
out we need to be careful. To this end, we shall say a CC-program P is totally
negative if all the clauses of P are of the form

p <+ 0T0 (9)

for some set finite T or
kX1« 070 (10)

for some set finite 7. In the case of ordinary logic programs, we were able to
show that for every logic program P, there was totally negative program @ such
that P and @ have the same stable models and the set of heads of clauses in P
contains the set of heads of clauses in Q. Our next example will show that it is
not the case that for every CC-program P, there is a totally negative CC-logic
program @ such that P and @ have the same CC-stable models and the set of
heads of clauses in P contains the set of heads of clauses of Q.

Example 2.4 Consider the CC-logic program P with the following two clauses.

Cp:0{1,2}1 «
CQ 13«1

It is easy to check that P has three CC-stable models, M; = 0, M> = {2}, and
M; = {1,3}. Now if @ is a totally negative program such that the set of heads
of P contains the set of heads of @), then ) must consists of two types of clauses.

E, :0{1,2,} + 0AOfor some set A and
Es : 3 + 0BOfor some set B.

11



However one can not have any clauses of the type Es since NSS-reduct of @
relative to @ would be a clause D of the form

D :3+ 0B

for some set B. But then E would show that 3 € Tg ¢(0) so that @ not a
CC-stable model of . But if ) has no clauses of the form of FE,, then all the
clauses of ) must be of the form FE;. But this is impossible since then there
would be no way to have 3 € T 11,33(0) and hence {1,3} is not a stable model
of Q. Thus there can be no such Q. O

Despite Example 2.4, we can still use CC-proof schemes to show that for every
CC-logic program P, there is a CC-logic program () such that P and @ have
the same CC-stable models, the set of heads of clauses of P contains the set of
heads of clauses of @), and every clause of @) is of the form

peql:"':qTH7_'b1:"':_'bn (11)

or
kX1 G, . qm,=bi,...,—by (12)

That is, the bodies of the all the clauses of @ are of the form of bodies for
ordinary logic programs. We shall call CC-logic programs all of whose clauses
are of the form (11) or (12) body-normal CC-logic programs. We note that we
can re-write clauses of the form (11) or (12) as follows.

p<—qla"'7qm70{bl7"'7bn}0 (]‘3)

or
EXL < quy- s Gm, 041, ..., b }0 (14)

Thus we shall assume that the clauses of a body-normal CC-logic programs are
always of the form (13) or (14).

Now suppose that we are given a CC-logic program P. Our goal is to construct
a body normal CC-logic program BN (P) such that P and BN(P) have the
sames set of CC-stable models. Suppose that & is a reduced proof scheme

6 = <<817 ceey Sn>7 <Cl7 .. .7Cn>, ((k1X1117T1)7 P (kttht;Tt)>>

of P where
Con=p q1ye qm, 1 Y11, .. LY,

Then we construct clause
Cs =68, 81,---,8,-1, ORg0

where Rg = Uzzl Z; and, for each i = 1,...,t,

(15)

) otherwise.
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If & is a reduced proof scheme
6= <<Sl7 R Sn>7 <Cla R Cn); <(k17XlllaT1)7 B (kttht7 Ti)>>

of P where
Cn=kXl < qi,...,qm, 1Y, . 1LY.1.

Then we construct clause

CG = kX« S1,---,80—1, ORGO

3

where Rg = U::;l Z; and, foreach s = 1,...,t,
Zi = if | X < (16)
] otherwise.

Let BN;(P) be the program whose clauses are precisely the set of Cs such that
& is a reduced proof scheme of P.

BN, (P) is not quite the program that we want. In fact, we have to add some
additional clauses to BN;(P) to get a CC-logic program BN (P) and make one
addition assumption about P before we can prove an analogue of Theorem 2.4
for CC-progams with P and BN (P).

That is, first, CC-programs allow clauses of the form

C:ORO(—ql,...,qm,lelll,...,annln. (17)

We call clauses of the form of (17), empty head clauses. The problem with
empty head clauses is that our definition of CC-proof scheme has no mechanism
to reflect such clauses. That is, such clause cannot be used to put elements into
a CC-stable model but they do restrict the set of models of programs that have
such clauses. Hence our definition of BN (P) is not sensitive to the existence
of such clauses. However, we can easily construct a CC-logic program that
is equivalent to P which does not have any empty head clauses. That is, we
introduce an atom A which does not occur in P. Then for each clause C in P
of the form of (17), we introduce a clause C, for each r € R,

Cr:A<_T7q17'-'7Qm:k1Xllla'--:annln:_'A' (18)

JEFF: We use here =4 i/s 0{A}0. I Think this needs to be fixed

We call the resulting program P. Note A cannot be in any CC-stable model of
P. That is, if A € M, then M does not satisfy the body of any clause C,.. Hence
there will be no clause D in P with A in the head such that M = body(D). It
then follows that A ¢ T%’M(@) and hence M is not a CC-stable model of P.

Now suppose that M is a CC-stable model of P such that M |= body(C). Then
{g1,--,qm} C M and k; < |[MNX;| <Il;fori=1,...,n. Then it is easy to
see that it cannot be that r € M with r € R. That is, if r € M N R, then, since
M = T%M(@), there will be a k such that r,q1,...,¢m € T%M(@). But then C,

3
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would witness that A € Tg’]\;(@). Thus M N R = () and hence M |= C. Thus

every CC-stable model of P which satisfies body(C) also satisfies C. It follows
that M models P and that none of the clauses C, that we introduced can be
used to put elements into 7% | (#). Hence it is the case that

M =T% ,,(0) = T§,,(0).

Thus M is a stable model of P.

One the other hand, if M is a CC-stable model of P, then A ¢ M since A does
not occur in P. Moreover, if M |= body(C), then M = head(C) and hence
M N R = 0. It then follows that M = C, for all r € R since M [~ body(C,.).
Thus M is a model of P. Again, it will be the case that

M = Tg,,(0) = T2 ,,(0)

so that M is a stable model of P. Thus we have shown that P and P have the
same set of CC-stable models.

Next we consider the clauses that we have to add to BNy (P) to obtain a CC-
logic program BN (P) which is equivalent to P. Suppose that & is a reduced
proof scheme

C=kXl< g1, qm, 1A, .. ILALL,
and B = (B4, ..., B,) is a sequence of sets such that

1. {q1,- -, qm} € {s1,...,8,} and

2.1 X Nnqs1,...,sn}| > 1,

3. JAin{s1,...,8p}| > fori=1,...,r, and

4. fori=1,...,r, B; CA; and I} <|B;| <1

Then we construct clause

CGCE = A« S1yv-ySn, ORech,ﬁA
where A is a new atom which does not occur in P and Rg = (Uf:1 Z;) U
(Uj=1 Di) where for each i =1,....1,
Xi =T if | X <l
7= iG] < (19)
) otherwise
and
A; — B; if|X;| <1,
D; = i - (20)
0 otherwise.
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We add a clause Cg . 5 to BN1(P) for each such triple (&, C, B) to get our
desired program BN( ). Clearly BN (P) is a body-normal CC-logic program.
Our next example explains why we need to add clauses of the form C6 0.5 10
BN(P).

Example 2.5 Consider the CC-logic program

Cl 11+
Cy 2+ 1{1,2}2
Cs: 0{1,2}1 +.

It is easy to see that P does not have any CC-stable models. Since clearly,
clauses Cy and Cs will force 1 and 2 to be in Tp () for any M C {1,2}. Thus
the only possible CC-stable model is M = {1,2}. But then M satisfies body(C's)
but does not satisfy the head(C3) so that M is not a model of P. Thus P has
no CC-stable models.

There are 11 reduced CC-proof schemes of P. There are 3 CC-proof schemes of
length 1.

61 = ((1),(C1), O)s

62 = ((1),(C3), ((0{1,2}1,{1}))),

S5 = ((2),(Cs3), ((0{1,2}1,{2}))).

There are reduced 6 reduced CC-proof schemes of length 2 with conclusion 2.
G4 = ((1,2),(C1, Cs), ((0{1,2},{2}))),

65 = ((172>: <C3= 3)7 <(0{1:2}7{1}) (0{172}1 {1}))>:

Ge = ((172>: (CI: 02>7 <(1{1: 2}27 {1})>>

&7 = <<172>7 <01702>7 <(1{1:2}27{1 2})>>

Gs = ((1,2),(Cs, C1), ((0{1,2}1,{1}), (1{1,2}2,{1}))),

Sy = ((1,2),(Cs, C1), ((0{1,2}1,{1}), (1{1,2}2,{1,2}))),

Finally there are 2 reduced proof schemes of length 2 with conclusion 1.
G = ((27 1): (CS7 Cl>7 <(0{1: 2}17 {2})>): and

S12 = ((2,1),(C3, C5), ((0{1,2}1, {1}), (0{1,2}1, {2}))).

Thus 061 =1« s
Cs, =1+ 0{2}0,
063 =2« 0{1}0)7
Cs, =2+ 1,0{1}0,
Cs, =2+ 1,0{1,2}0,
CGG =2« ].,

067 =24+ 17

Cs, =2+ 1,0{2}0,
Cs, = 1 + 0{2}0,
Cs,, =1+« 0{1}0, and
Cs,, =1« 0{1,2}0.

It is the easy to see that BNy (P) which consists of Cg,,...,Cs,, has one CC-
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stable model, namely, M = {1,2}. Hence BN;(P) is not equivalent to P. Note
it easy to see that all but clauses Cg,, Cs, and Cg, are superfluous so that
BN; (P) is equivalent to clauses:

Dlil(—,
Dy : 2+ 0{1}0 and
D3 2+ 1.

However, the clause C3 and the empty sequence B = () together with any of
the proof schemes Gy, ...,Cs,, generate the following clauses in BN (P).
5= A< 1,2,0{1}0,-4,

0647037

065,03,5 = A« 1,2,0{1,2}0, —A,
Cor o= A 1,274,

Corcng = A 1,274,

0637037 5= A+ 1,2,0{2}0,—|A7
069,03,5 = A« 1,2,0{2}0,—|A,
0610,03,5 =A<+ 2, 1,0{1})0,—|A, and
0611,03,5 =A<+ 2, 1,0{1,2})0, —A.

It can not be that A is in any CC-stable model of BN(P) because for any
M which contains A, M does not satisfy any of the bodies of CGZ_703J§ for
i = 4,...,11. Hence A cannot be in TEN(P)’M(@). Thus the only possible
CC-models are subsets of {1,2}. But clauses Cs, and Cg, will force {1,2} C
TEn(py,m(0) for any M so that the only possible CC-stable model of BN (P) is
M = {1,2}. Note that the clause Cso.05.8 = A< 1,2,7A prevents {1,2} from
being a CC-stable model of BN (P) so that BN (P) has no stable models and
hence is equivalent to P. Moreover, it is easy to see that all the clauses with
i # 6 are superfluous so that BN (P) is equivalent to the following program:
D1 01 “—,

D5 : 2 « 0{1}0,

D3 :2<¢+ 1, and

D4 A 172,_IA.

We then have the following analogue of Theorem 2.4. This the promised normal
form theorem.

Theorem 2.6 For any CC-logic program P which has no empty head clauses,
P and BN(P) have the same set of stable models.

Proof. First we shall show that if M E P, then M = BN(P). Assume
that M |= P. Then we claim if & is a reduced CC-proof scheme of P and
M [ body(Cg), then M |= Cs and hence M |= BN(P). First consider the
case where G is of length 1. There are two cases.

Case 1. There is a clause C = p « 11 X11Y,. .., I, X,l!! is a clause in P such

that -
6 = ((p), (O), (L X1l{, Y1), .., (1, Xnly, Vi)
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where for all 1 <4 <mn, I} =0 and Y; is a subset of X; such that I} < |Y;| <1V
In this case,
CG =p <& 0Rs0

where where Rg = U::;l Z; and, for each i =1,...,¢,

Xi =Y it | X <l
zi:{ i X < (21)

] otherwise.

Since M = body(Cg), it must be the case that M N Rg = 0. Thus if I{ < |X;|,
MnX; CY; and hence 0 = I} < |M N X;| <|Y;| <. Clearly, if I! > |X;],
then 0 =1} < |M N X;| <. It then follows M = body(C). Since M |= P, it
must be the case that p € M and hence M |= Cg.

Case 2. There is a clause C = $I'X1" « I} X 1Y, ..., 1L, X, in P

& = ((p), (O), (X1 Y), (L Xaly, 1), - ., (I, Xl Yi)))

3 3

where for all 1 <i < n, I} =0 and Y; is a subset of X; such that I} < |V;| <1,
Y is a subset of X such that k <|Y|<landpeY.
In this case,

Cs = kXl <+ 0Rs0

where where Rg = Uzzl Z; and, for each i =1,...,t,

(22)

5 [Xi—v X <t
0 otherwise.

Since M |= body(C), it must be the case that M N Rg = 0. Thus if I < |X;|,
MnNX; CY; and hence 0 =1} < |M N X;| < |Y;| <1Y. Clearly, if I > |X;|,
then 0 =1} < |M N X;| <. It then follows M |= body(C). Since M |= P, it
must be the case that M |= kX! and hence M |= Cs.

Next consider the case where & has length w + 1, where w > 1. Again there
are two cases.

Case 3. 6 is of the form

<(k;.X1k:’l,7 Yl): vy (k;X'r‘k'lr,, Y’r‘) (lllzllglll Tl) ey (l’nZ"llri:Tn)»

where
U=((81,..,8u),(C1,...,Cu), (K X1k, Y1), ..., (k! X, k!, YV,)))

is a CC-proof scheme in P and

C=p<aqi,....qm, 0 2Z0),... 1. Z,1"
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is a clause in P such that {q1,...,¢m} C {s1,...,8,} and for all 1 < i < n,
|Z; N {s1,..., Sw}| > ki and T; is a subset of Z; such that [} < |T;| < 1.

In this case,
Ces=p< S1,...,80, 0Rs0

where where Rg = Uzzl Z; and, for each i =1,... ¢,

. [Xi=vi X<,
) otherwise.

Case 4. G is of the form

6= ((Slz cee :Sw7p>= (CI: .- '7Cw7C>7
<(llZl”7 Y)/ (kllek:Il,, Yl): Ty (k;X'r‘klr’, Y’r‘):

where

U= <<517 LR Sw): <Cl7 R Cw): <(kI1X1k;l/ Yl) """ (k;er;I, YT)>>

3 3

is a proof scheme in P and
C=UZl"+~q,...,qm, 11711, ..., 1, Z,l"

is a clause in P such that {g1,...,qm} C {s1,...,85}, for all 1 < i < n,
|Z; 0 {s1,...,80}| > ki and T; is a subset of Z; such that I} < |T;| <1 and Y
is a subset of Z such that I’ < Y| <", andpeY.
In this case,

Ces =kXIl 4+ s1,...,54, O0Rg0

where where Rg = Uzzl Z; and, for each i =1,... ¢,

Xi =Y it | X <l
zi:{ i LX) < (24)

0 otherwise.

Since M [ body(C), it must be the case that MNRs = @ and {s1,...,5,} C M.
Thus if I} < |X;[, M N {s1,...,8,} C MNX; CY; and hence I} <|M N X;| <
|Y;| <17. Clearly, if I¥' > | X;|, then I} < |[M N {s1,...,su}| < |IMNX;| </ Tt
then follows M = body(C). Since M |= P, it must be the case that m = kX1
and hence M |= Cs.

Next, consider clauses of the form Ce,c,é' That is, suppose G is a reduced
proof scheme

S = ((Sl,---;Sn>7<Cl7---;Cn>;((klyXllth);---(kttht,Tt)>>
of P, C is a clause of P of the form,
C=kXl+q,..., Gm, ALY 1L ALY

3 3

and B = (B1,...,B,;) is a sequence of sets such that
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N

>

D
—~—
=

'7Sn}|>l7
3. JAin{s1,...,8p}| > fori=1,...,r, and
4. fori=1,...,r, B CA; and I} <|B;| <!

In this case,

CGC§ = AFSl,...,Sn, ORGCB‘O’_'A
where A is a new atom which does not occur in P and Rg = (Uf:1 Z;) U
(Uj=1 Di) where for each i =1,....1,
Xi =T it | X <l
7 = I < (29)
0 otherwise
and
A; — B; if|X;| <,
D, = il (26)
0 otherwise.

Since M is model of P, A ¢ M. Now if M |= body(C (. 5), then we know that
{s1,...,8,} CX. Thusforalli=1,...,r,

L <|Ain{s1,..., 80} < [M N A

Moreover, it must be the case that M N A; C B; since X; — B; C R&Cﬁ and
MNRg 5= (. Thus if I} < |X;]| so that if I} < |X;|, then I} < |MnNA;| <.
Clearly if I > |X;|, then I} < |M N A;| < 1. It follows that M = body(C).
But this is impossible because, then the fact that M |= P implies that & <
|M NX| <l However by assumption |[M NX| > [{s1,...,$,}NX]| > 1. Thus it
must be the case that M % body((Cg . ) for any such &, C and B and hence
M= Csc 5

Next we show that for all models M of P,

TF,M(@) = TEN(P),M(@)' (27)

It will easily follow from (27) that if M is a CC-stable model of P, then M is a
CC-stable model of BN (P).

Assume that M = P. By the arguement above, we know that M = BN(P).
Let us note 1% ,,(0) equals the set of all p € Atp such that there there is a
proof scheme

G = <<Sl, PR Sn>, <Cl, ey Cn), <(k1,Xlll,T1), . (kttht;Tt)>>

of P with s, = p which is admitted by M. Now if & is not reduced, it easy
to see that we can trim & to produce a reduced proof scheme with the same
conclusion. Thus there is no loss in generality in assuming that & is reduced.
This given, we shall prove the following lemma.
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Lemma 2.7 The set of all p such that p is the conclusion of a reduced proof
scheme admitted by M is contained in Ty py 7 (0)

Note that in our case, Lemma 2.7 implies

Tpm(®) € TEn(py m(0).
Proof. Suppose that p € Atp is such that there there is a proof scheme
S = <<817 Cey Sn>7 <Cl7 ceey Cn), ((k1X1117T1)7 AN (kttht; Tt)>>

of P with s,, = p which is admitted by M. We shall prove by induction on the
length n of & that p € Ty p) 5, (0).
First consider the case where & is of length 1. There are two subcases.

Case A. There is a clause C = p « 1 X4lf,...,l!, X1 is a clause in P such
that

where for all 1 <i <mn, I} =0 and Y; is a subset of X; such that I} < |Y;| <1V
In this case,
Cs = p < 0Rs0

where where Rg = U§:1 Z; and, for each i =1,...,t,

(28)

Xy it <
) otherwise.

Since M admits &, it must be the case that M N Rg = 0. It then follows
M |= body(Cs). Thus Ce witnesses that p € Tpn(py,m(0).

Case B. There is a clause C = 1I'X1" « I} X1, ..., I X,,I!! in P

& = ((p), (O), (' X1 Y), (L Xaly, 1), - ., (I, Xl Yi)))

3 3

where for all 1 <i < mn, I} =0 and Y; is a subset of X; such that I} < |Y;| <1,
Y is a subset of X such that k <|Y|<landpeY.
In this case,

Cs = kXl <+ 0Rs0

where where Rg = Uzzl Z; and, for each i =1,...,t,

(29)

5 Xy X <,
0 otherwise.

Since M admits &, M = body(C) and p € M. Thus it must be the case
that M N Rg = () and hence M [ body(Cs). But then Cg witnesses that

p € Ten(py,m(0).
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Next consider the case where G has length w + 1, where w > 1. By induction,
we can assume that the conclusion of any CC-proof scheme U of P admitted by
M where length of 4/ is less than or equal to w is in TEN(P)7M(w)' Again there
are two cases.

Case C. 6 is of the form

6= ((Slz - ':Sw7p>= (Clz - -7Cw7C>7
(B XK YD), (KL XK Y,)

where

U= <<517 LR Sw): <Cl7 R Cw): <(kg.X1kjlll/ Yl) """ (kerTklrla YT)>>

3 3

is a CC-proof scheme in P and

C=p<aqi,....qm, 01 2117],... 1. Z,1"

3

|Z; N {s1,. .., Sw}| > k; and Tj is a subset of Z; such that I} < |T;| <!

3 3

In this case,

is a clause in P such that {q1,...,qm} C {s1,...,8,} and for all 1 < i < n,

Cs=p<+ s1,...,80, ORs0
where Rg = Uzzl Z; and, for each i = 1,...,t,

(30)

. [Xi=vi X<,
) otherwise.

Since M admits &, it must be the case that M N Rg = 0. Since each of
81, ..., 8y are the conclusions of self-consistent reduced proofs schemes of length
< w which are admitted by M, it follows from our induction hypothesis that

Thus Cg witness that

p € Tonpy v (Tene) (D) = T;TVI(P),M(@)'
Hence p € Ty () 1 (0)-
Case D. 6 is of the form

6= ((Slz'":Sw7p>:<01:'-'7cw7c>7
IZ1".Y), (K X k' YL, .., (K X, k", Y,),
1 1 T T
Bz, 1) . (12,00 T)))
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where

U= (81,1 80), (Crre s, C) AR XK YA, (KL XK, Y)Y

is a proof scheme in P and
C=1Zl" +~qi,...,qum, 11 Z:17,..., Il Z,1"

is a clause in P such that {g1,...,¢m} C {s1,...,8}, for all 1 < i < n,

|Z;N{s1,...,8w}| > ki and T; is a subset of Z; such that I} < |T;| < I and Y
is a subset of Z such that I’ < Y| <!",andp€eY.
In this case,

Cos =kXl 4+ s1,...,54, O0Rg0

where where Rg = Uzzl Z; and, for each i =1,...,t,

(31)

5 Xy X <,
0 otherwise.

Since M admits &, it must be the case that M N Rg = # and p € M. As in
Case C, we can argue that there must exist a k£ such that

Thus Cg witness that

DE TBN(P),M(TEN(P),M(@)) = TETVI(P),M(@)'

Hence p € TEN(P) 2(0). This completes the proof of the lemma. |
Next we have to show that if M | P, then

Ty (0) € TE 0 (0).
Since M = P, we know that A ¢ M and M = BN(P). Now suppose that
pE TEN(P)7M(®). Then again here is a CC-proof scheme JEFF
U= <<a17 LR a'r‘): <Cl7 R Cr>7 <(k1X1l17 Yl): R (kSXslsa )/S»)

of BN(P) with a, = p which is admitted by M. We shall prove by induction
on the length of i, that p € TP, M“(f). We have already shown that M [~
body(Cg ¢ ) for any of the clauses Cy 5 that are in BN(P). Thus there are
no CC-proof schemes of BN (P) admitted by M which contains any clause of
the form Cg , 5. Thus all clauses which occur a CC-proof scheme of BN (P)
admitted by M must be of the form Cg for some CC-proof scheme of P.

First assume that i is of length 1. Thus

U= (p,Cs, ((0Rs0, 0)))

where & is a CC-proof scheme of P of length 1. There are two cases.
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Case I. There is a clause C = p « 11 X 1l{,...,l} Xl is a clause in P such
that
6= <<p>7 <C>7 <(lI1XllI1l/ Y1)7 RS (l;zanfril Yn)))

where for all 1 <i <mn, I} =0 and Y; is a subset of X; such that I} < |Y;| <I¥.
In this case,
Cs = p < 0Rs0

where Rg = Uzzl Z; and, for each i = 1,...,t,
Xi =Y if | X <l
Zi— i X < (32)
0 otherwise.

Since M admits 4, it must be the case that M N Rg = (. Thus if I < |X;|,
MnNX; CY; and hence 0 =1} < |M N X;| <|Y;| <Y Clearly, if I/ > |X;|,
then 0 =1, < |M N X;| <. It then follows M |= body(C). Thus C witnesses
that p € TP,M(@)-

Case II. There is a clause C = I'X1" « 11 X117, . .., U X, in P

3 3

6= <<p>7 <C>7 <(lle”7 Y): (lllelllll Yl): R (l’:’LX"l’:’i7 Yn)>>
where for all 1 < i < n, !l =0 and Y; is a subset of X; such that I} <|Y;| <Y,
Y is a subset of X such that k <|Y|<landpeY.
In this case,
CG = kXl 0Rs0

where where Rg = U::;l Z; and, for each i =1,...,¢,

33
] otherwise. (33)

7 {XZ- —Y; i X <L,
Since M admits i, it must be the case that M N Rg = @ and that p € M. Thus
it 1 <|X;|, MNX; CY; and hence 0 =1} < |[M N X;| < |Y;| <. Clearly, if
I > |X;|, then 0 =1} <|M N X;| <. It then follows M |= body(C). Thus C
witnesses that p € Tp ar(0).

Next consider the case where i has length w + 1, where w > 1. Thus

U= <a17" ':aw7p>= (CGU' ":CG :((lelzlth):' "7(ksXsls:Ts)>>-

w1

By induction, we can assume that the conclusion of any CC-proof scheme U of
BN(P) admitted by M where the length of 27 is less than or equal to w is in
Tg 4;(0). Clearly each of a1, ..., a, are the conclusions of CC-proof schemes of
BN(P) admitted by M and hence {as, ..., a,} C T% pr(0) Thus there is a k
such that

{ar,...;au} CTp 3 (0).
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Again there are two cases.
Case III. G, 41 is of the form

6w+1 = ((SI: s 7Sm:p>7 <Cl7 s 7Cm: C>,
(KXK"Y, (KL XK Y,)

W= ((s1,...,8m)s (C1, ..., Co), (KL XK, Y1), .., (K XL, Y)Y

is a CC-proof scheme in P and

CZp(—ql,...,qs,l'lle'l' ..... l;Ztlil

is a clause in P such that {¢1,...,¢s} C {s1,...,8m} and for all 1 < i < ¢,

|Z; 0 {s1,. .., Sm}| > ki and T is a subset of Z; such that I} < |T;| <.

3 3

In this case,

Cspy1 =D S1,...,5m, ORg,,,0

where Rg, ,, = U§:1 Z; and, for each i =1,...,¢,

(34)

5 Xy X <,
0 otherwise.

It follows that (0Rs,,,0,0) is one of the constraints of 4. Since M admits 4,
it must be the case that M N Rg = (). Moreover, {s1,..., S, } must be a subset
of {ai,..., Gy }. Thus

{g1,---,q¢s} C{s1,--.,8m} C{as,...,an} gT,’;M((ZJ).

)

Note that since for all 1 < i < ¢, |Z; N {s1,...,8m}| > ki, it must be the case
that for all 1 <i <t, [Z; N T (D) > k;. But then C witnesses that

p € Tpm(Tp () = TEh (D).
Hence p € T ,(9).
Case IV. 6,41 is of the form
6w+1 = <<Sl,. ..,Sm,p>,<01,.. .,Cm,C>,
<(llZl”7 Y)/ (kllekil, Yl): Ty (k;X'r‘k:«I, Y’r‘):
(720, T . (1 Z00 T)))

W = <<517 e '7Sw>7 <Cla LR Cw): <(kI1X1k¥7Y1)7 Ty (k;*X’f‘k:/Y’r‘»)
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is a proof scheme in P and
C=UZl"+~q,...,qm, 11711, ... 1, Z,l"

is a clause in P such that {g1,...,¢m} C {s1,...,8}, for all 1 < i < n,
|Z;N{s1,...,8w}| > ki and T; is a subset of Z; such that I} < |T3| <1 and Y
is a subset of Z such that I’ < Y| <!",andp€eY.

In this case,

Cs =U'Zl" « S1y.nny Sw, 0Rs0

w41

where where Rg = Uzzl Z; and, for each i =1,...,t,

Xi =Y it | X <l
zi:{ i 1] < (35)

] otherwise.

It follows that (ORs, ,,0,0) and (I'Z1", M N Z) are among the constraints of .
Since M admits 4, it must be the case that p € M and M N Rg = (. Moreover,
{s1,...,8m} must be a subset of {a1,...,a,}. Thus

{Q1,---,qs} g {517---75m} g {a17"'7aw} nglgM(@)

)

Finally note that since for all 1 <i <, |Z; N {s1,...,8m}| > ki, it must be the
case that for all 1 <14 <, |Z; N T}’§7M(®)| > k;. But then C witnesses that

p € Tpm(Tp () = TEHH (D).

Hence p € T ,(9).

Thus we have proved that every CC-stable model of P is a CC-stable model of
BN (P). To complete our proof, we must show that every CC-stable model of
BN(P) is a CC-stable model of P.

So assume that M is a CC-stable model of BN (P). In cannot be that A € M.
That is, if A € M, then M [~ Cs.c g for any clause Cg (5 in BN (P). However,
these are the only clauses in which A occurs in the head. Thus if A € M, then
Ad TEN(P),M(Q) and hence M is not a CC-stable model of BN (P).

First we have to prove that M is a model of P. Since M |= BN(P), we know
thatif pe M = TEN(P),M(®)7 there is a CC-proof scheme JEFF

Ll = <<a17 .. .,CLT), (Cl, Ceey Cr>7 <(k1X1117Y1)7 Ceey (ksXslevs)))

of BN(P) with a, = p which is admitted by M. Note that since A ¢ M, it
cannot be the case that any of the rules Ce,c,é can be used in a CC-proof
scheme of BN (P) admitted by M since all such rules have A in the head. Thus
if a rule of the form Cg ,, 5 was in a CC-proof scheme of BN (P) admitted by
M, it would follows that A is the conclusion of CC-proof scheme of BN(P)
admitted by M and hence A would be in M since M is a CC-stable model of
BN (P). We shall prove by induction on the length of 4, that p is the conclusion
of CC-proof scheme of P which is admitted by M.
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First assume that 4 is of length 1. Thus
U= <p7 CG: <(0R60/ w)>>

where & is a CC-proof scheme of P of length 1. There are two cases.

Case Al There is a clause C = p « 1 X4lf,..., I, X0 is a clause in P
such that

where for all 1 <i <mn, I, =0 and Y; is a subset of X; such that I} <|Y;| <1V.
In this case,
CG =p <& 0Rs0

where Rg = U::;l Z; and, for each i =1,...,¢,

36
] otherwise. (36)

7= {XZ- —Y; i X <L,
Since M admits 4, it must be the case that M N Rs = . Thus if I < |X;|,
MnX; CY; and hence 0 = I} < |M N X;| <|Y;| <. Clearly, if Il > |X;],
then 0 =1} < |M N X;| <. It then follows M |= body(C). Thus

<<p>7 <C>/ <(l{LXll{LII Mn Xl): RS (l/anl/ri, Mn X")>>
is CC-proof scheme of P with conclusion p admitted by M.

Case AIIL There is a clause C = I'X1" « I} X41Y,. .., U X, in P

3 3

3 3

& = ((p), (O) (X1 Y), (4 Xaly, 1), - ., (I, Xl Ya)))

where for all 1 < i < n, !} =0 and Y; is a subset of X; such that I} <|Y;| <Y,
Y is a subset of X such that k <|Y|<landpeY.
In this case,

CG = kXl «+ 0Rs0

where where Rg = U§:1 Z; and, for each i =1,...,¢,
Xi =Y it | X <l
Z - < (37)

] otherwise.

Since M admits i, it must be the case that M N Rg = @ and that p € M. Thus
it I <|X;|, MNX; CY; and hence 0 =1} < |[M n X;| < |Y;| <. Clearly, if
I >|X;|, then 0 =1} < |MnNX;| <IY. It then follows M |= body(C). Moreover,
since M = BN(P) and M = body(Cs), it must be the case that M |= kX L.
Thus k < M NX <[ and

((p), (C), (EXT, M O X), (LX1 1Y, MO Xy),. .., (I X0, M0 X,)))
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is CC-proof scheme of P with conclusion p admitted by M.

Next, consider the case where i has length w + 1, where w > 1. Thus

U= <<a17 B '7aw7p>= <0617' L] C@w+1>, ((k1X1l17T1)7 R (kSXSlszTS)>>‘

By induction, we can assume that the conclusion ¢ of any CC-proof scheme 20
of BN (P) admitted by M where the length of 27 is less than or equal to w is
also the conclusion of CC-proof scheme of P admitted by M. Clearly each of
ai,...,a, are the conclusions of CC-proof schemes of BN (P) admitted by M
and hence, for each i, there is a CC-proof scheme, &;, of P with conclusion a;
admitted by M where

¢ = ((by,....bh, i), (Dy,....Di,.

m;

Moreover since M is a CC-stable model of BN (P), we have that {a;,...,a,} C
Tg 3 (0) = M. Again there are two cases.

Case AIII. &,,41 is of the form

6w-|-1 = <<Sl7 .- -;Sm;p>7 <017 e '7CTH7C>7
((ky X1 K, YD), (k! X,k Y,)

(L2000, Ty .., (I Z000 T)))
where
V= ({51, ,8m), (C1,...,Cn), (B3 X1k{, Y1), ..., (kLXK YV.)))
is a CC-proof scheme in P and

C=p<aqy,....,q, 0721, ..., 1,71y

3 3

is a clause in P such that {¢1,...,¢s} C {s1,...,8m} and for all 1 < i < ¢,

3

|Z; N {s1,. .., Sm}| > ki and T is a subset of Z; such that I} < |T;| <.

3 3

In this case,

Cs =p<& S1,---,8m, ORs,,,,0

w41

where Rg = U::;l Z; and, foreach s =1,...,t,

w1

(38)

5 Xy X <,
"0 otherwise.

It follows that (0ORg, ., 0,0) is one of the constraints of {{. Since M admits 4L, it
must be the case that M N Rg = . Moreover, {s1, ..., $,,} must be a subset of
{a1,...,ax}. Thus {q1,...,4s} € {s1,--.,8m} C {a1,...,a,}. Note that since
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forall 1 <i<t, |Z;N{s1,-..,Sm}| > ki. Since M is a stable model BN (P), it
must be the case that {a1,...,a,} € M and hence

|ZiﬁM|2\Ziﬂ{a1 ..... aw}‘Z‘Ziﬂ{817...78m}|2ki.

Moreover if Il < |X;|, M N X; CY; and hence 0 =1} < |[M N X;| < |Y;| <1
Clearly, if I! > |X;|, then 0 = I} < |M N X;| <I1Y. It then follows M |= body(C).
But then we can concatonate the CC-proof scheme of P, &;,..., ¢, and add

3 3

the clause C to get a CC-proof scheme of P with conclusion p as follows: JEFF

(b1, bhy a1,
(DY,...,D,, ,D',....DY,... D", C,),
(20, M Zy), . (U2, M0 Zy),
(b A XTRY W) (K 1 X 1K 1 W),

3

(B o XU RY s W) (K 0 X F ki o0 W )

JEFFI believe it is Case V not IV, please check Case V. &, is of the
form

6w+1 = <<Sl7 B ;Sm;p>7 <017 BRI 7C’m7 C>/
('Z1",Y), (K. XK Y, (K XK"Y,

where
W = ((51,.-,8uw), {C1, -, Cuw), (K1 X1k, Y1), ..., (kLXK Y.)))
is a proof scheme in P and
C=UZl"+q,  qm, 112107, ... ) I, Z,1"

is a clause in P such that {gi,...,¢m} C {s1,...,8}, for all 1 < i < n,
|Z;N{s1,...,8w}| > ki and T; is a subset of Z; such that I} < |T3| <1 and Y
is a subset of Z such that I’ < Y| <!",andp€eY.

In this case,

Cs = U'Z1" S1y.++,8uw, 0Rs0

where where Rg = Ut Z; and, for each i =1,...,¢,

i=1

(39)

. [Xi=ve X<,
) otherwise.

It follows that (ORs,,,0,0) and (I'ZI", M N Z) are among the constraints of
$1. Since M admits 4, it must be the case that p € M, I' < |M n Z| <1" and
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M N Rg = 0. Moreover, {s,.. sm} must be a subset of {ai,...,a,}. Thus
{q1,---,8s} C {s1,--.,8m} C {a1 ., Gy }. Note that since for all 1 <3 < ¢,
|Z:N {sl, .oy S8m}| > ki. Since M is a stable model BN (P), it must be the case
that {a1,...,a,} € M and hence

\Z:AM| > |Zin4ar, ... a0} > |Zi0{s1, ... 5m}| > k.

Moreover if I} < |X;|, M N X; CY; and hence 0 =1} < |[M N X;| < |Y;| <.
Clearly, if I! > |X;]|, then 0 =1} < |M N X;| <I1Y. It then follows M |= body(C).
But then we can concatonate the CC-proof scheme of P, &,...,¢&, and add
the clause C to get a CC-proof scheme of P with conclusion p as follows. JEFF

<<b%7"'7binl:a17'-'7b?lv7"'7b%w7a’w7p>7
(Di,....D}m,Dl....,D;",...,Dzw,Dw,C,),

((Z1", MO Z), (20, MO Zy), ..., (L Z0Y M N Zy),
(kll,lelklll,l:Wll):'"'(kh Xf1 ]‘ff1 W),
(kll,leluk¥7w=W1 )7' (kf waw k ,wa,w»)-

We are now in a position to complete our proof that M |= P. That is, suppose
that

C:p%ql,...,qw,lelll,... k Xl

is a clause of C such that M |= body(C). Then gq,...,qm are elements of M

and hence there are CC-proof schemes, €;, of P with conclusion a; admitted by
M where

m;

<(k1 ZX kilz Wl) """ (kf 1)(‘)‘27 kf“wa 1)))

fori =1,...,w. Moreover, for all 1 < j <mn, k; < |M N X,| <l;. It follows
that JEFF

Q3:<<b%7"'7b3-n17q1 b "'7bﬂw q’w7p7>7
(D},....D,1n17D1....,D§”7...7D;”1W7D‘”,C7),

(ki X1li, MNX1),. .., (knXnln, M N Xy),
(k’llX k’l’l h,..., (kf1 Xf1 k‘lf{1717Wf171),...
(ki,wXIUkil,w= Wl )7 et (k,’fw,wX}l;,wk}’w,w= wa:“’)))'
is a CC-proof scheme of P with conclusion p admitted by M. Now if €& is
not reduced, we can trim it to produced a reduced CC-proof scheme § with
conclusion p admitted by M. We have already shown that the conclusion of
any CC-proof scheme of P which is admitted by M is in TE’N(P) 1 (0). Thus
€ Tpnep) 1 (0) = M and hence M = C
Next suppose that

C:le(—ql, Qw;lelll----;annln
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and hence there are CC-proof schemes, €;, of P with conclusion a; admitted by
M where

is a clause of C such that M |= body(C). Then q,..., gm are elements of M

<(k£,iX12k£’,i= Wll) e (k;‘i,iX}i,ik}Ii,h W;Z,z)>>
fori=1,...,w. Moreover, for all 1 < j <mn, k; <|MnNX;| <Ij.
There are now two cases.
Case I. [M N X| < I. Since P does not have any empty headed clauses, we
know that I > 0 so let Y be any non-empty subset of X such that k < |Y| <[,
Y C(MNX)andlet peY. Then

€= <<b%7"'7b3-n17q17'"7b1lu7"'7bﬁw7qw7p>a
(Di,....DL D',....D¥ ..., D D"C,)

s Mmoo 3

<(le/Y)7 (lelllaM N Xl): R (annln:M N Xt):
(b A XTRY W) (K, 1 X G 1K 1 W),

3

(K1 o XU RY s W) (K 0 X F ki o0 W )

is a CC-proof scheme of P with conclusion p. It may not be the case that & is
admitted by M since it may not be the case that Y = M N X. Nevertheless,
consider the clause,

CQ_::b%,...,b}nl,ql,...,bqlv,...,b%w,qw,ORQ_rO.

Since each of by,...,bL ,qi,...,bY,...,b% g, are the conclusion of proof

3

schemes of P admitted by M, it follows from Lemma 2.7 that JEFF

1 1 w w
bl:""b 17q17"'7b17"'7bmw7qw

7 m

are all elements of Ty p) (0) = M. 1t is also easy to check that since M admits
¢1,...,€,, M = body(C) and the fact that M N X C Y that it must be the
case that M |= body(C¢). But then since M = BN(P), it must be the case
that M |= kX! and hence M = C.

Case II. [M N X| > 1.

We shall show that this case leads to a contradiction that A € M. Hence we
must be in Case I and M = C.

Consider the proof scheme JEFF

Sr: <<b%7"'7b:n17q17A"'7biua"'7bﬂw7qw>a
(D},...,DL ,D',...,D¥ ....,D% D" C),

s P mqo 3

(k11 X1k 3, WY), ..., (K 1 X5 1k 1. Wi1), ..

3 3

(kll,wX{Uk;l7w7 Wlw)7 et (k‘lfw7wX}l;7wk‘lflw7w7 wa,“’)))'
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which is just the concatonation of &q,..., &, the clause C' and sequence of set

—

B=(MnX,...,MnX,). Now consider JEFF

1 1 w w
CE,C,E =A<+ bl:"'=bm1=q17"'7b1 7"'7bmw7qw70R[§,C,E07_'A‘
Again we can argue that bj,... b, ,qi,...,b,...,b% q, are all elements of

TgN(P)(@) = M. Tt is also easy to check that since M admits €;,..., E,,
M |= body(C) that it must be the case that M |= body(Cy ., 5). But then since
M |= BN(P), it would be the case that A € M.

Thus we have M = C for all C € P. Hence M = P. Now, we have already

shown that if M | P, then

T;,M(@) = TEN(P),M(@)'

But since M is a CC-stable model of NB(P), TEN(P),M(Q)) = M and hence M
is a CC-stable model of P. |
Given our remarks preceeding Theorem 2.6, that for any CC-logic program P,
we can construct a CC-logic program P which is equivalent to P, we then have
the following corollary.

Corollary 2.8 For any CC-logic program P and any atom A ¢ Atp, there is

body-normal CC-logic program BN (P) with no empty headed clauses such that

1. the set of heads of clause of BN (P) is contained in the set of heads of
clauses of P together with {A} and

2. P and BN(P) have the same set of CC-stable models.

3 Some complexity issues

We will now investigate some complexity issues related to CC-logic programs.
In [NSS99], Niemel4, Simons and Soininen show that the stable model existence
problem for CC-logic programs is NP-complete. In light of Theorem 2.6, one
would expect that the existence problems for various restricted classes of CC-
logic programs such a body normal CC-logic programs is already NP-complete.
In fact, as we will see, a much smaller class of CC-logic programs has this
property. In [FMTO02], a class of generator CC-logic programs is introduced
which consists of all CC-logic programs P such that each clause C of P is a single
fact, i.e. C is of the form p <, or of the form kX1 <. A generator for a set At
is a generator CC-logic program P such that every atom in At occurs in some
clause of P. The following fact has been proved by M. Truszczyriski[FMT02].

Proposition 3.1 Let P be a generator for the set of atoms At. Then every
model of P is a CC-stable model of P.

We observe that Proposition 3.1 follows from Proposition 2.5.
Next we observe the following
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Proposition 3.2 The existence problem for stable models of generator CC-logic
programs is NP-complete.

Proposition 3.2 follows from the existence of the reduction of the VERTEX
COVER problem to the existence problem for CC-stable models of generator
CC-logic programs. Indeed, let G = (V, E) be a graph and k¥ € N. Consider
the following generator CC-logic program.

Hz,y}2 «
VEk «

Here the first clause is added for every edge (z,y) € E. Moreover, V is identified
with the set of atoms At. Call the resulting program Pg . It is then easy to
see that models (and thus CC-stable models) of Pg ;. are vertex covers for G of
size at most k.

Thus even the existence of models or CC-stable models for CC-logic programs
and for generator CC-logic programs is NP-complete.

Finally, we will consider a slightly larger class of CC-logic programs P where
the body of clause C' of P contains no cardinality constraints. That is, C' is of
the form

P a1, 0m

or C is of the form
kXl q1,...,qm-

We call such programs semi-generator CC-logic programs.

We will now show how to reduce the satisfiability problem for propositional
logic to the existence problem for CC-stable models of semi-generator CC-logic
programs. To this end, given a CNF formula ® = C; A ... A C,,, we will write
a semi-generator CC-logic program Pg as follows. First let S denote the set of
propositional letters that occur in ®. For each s € S, let d(s) = 5 and d(-s) = s.
Next let py be some fixed element in S and let T = {p: p € S} US. The Ps
consists of the following set of clauses.

(1) Hp, p}1 <

(2) 2{po,Po}2 « d(-l}),...,d(=l%))

The clause (1) is added for every p € S. The clause (2) is added for every clause
Ci:liv---vl;i in®,+=1,...,m.

Note that the clauses of type (1) ensure that for any CC-stable model M of Pg,
exactly one of p and p is in M for each p € S. In particular, we can not have
both py and pg in M. Thus if for all s € S, if we interpret s € M as s being
true and § € M as s being false, then it is easy to see that clauses in (2) ensure
that truth assignment determined by M must satisfy all the clauses C;. Then
it is clear that there is a one-to-one correspondence between stable models of
P and valuations of S satisfying ®. Thus we have proved the following result.
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Proposition 3.3 1. The problem consisting of pairs (P,a) where P is a
semi-generator CC-logic program such that a belongs to some CC-stable
model of P is NP-complete.

2. The problem consisting of pairs (P,a) where P is a semi-generator CC-
logic program such that a belongs to all CC-stable models of P is co-NP-
complete.

4 Conclusions and further research

HAVE TO BE WRITTEN
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