
Multi-Version Program Analysis
– Dagstuhl Seminar Summary –

Thomas Ball · Stephan Diehl · David Notkin · Andreas Zeller

Public Outreach

Change is an inevitable part of successful software systems. Software changes
induce costs, as they force people to repeat earlier assessments. On the
other hand, knowing about software changes can also bring benefits, as
changes are artifacts that can be analyzed.

In the last years, researchers have begun to analyze software together with
its change history. There is a huge amount of historical information that
can be extracted, abstracted, and leveraged:

• Knowing about earlier versions and their properties can lead to incre-
mental assessments.

• Analyzing the history of a product can tell how changes in software
are related to other changes and features.

• Relating properties to changes can help focusing on changes that cause
specific properties.

In this Dagstuhl seminar, researchers that analyze software and its history
have met and discussed for a full week, exchanging their ideas, and com-
bining and integrating the techniques to build a greater whole. Clearly,
understanding history can play a major role when it comes to understand
software systems.

Scientific Highlights

The main concern of the seminar was the synergy of the individual ap-
proaches. Themes that emerged during the seminar included:

• The use of bug databases to judge whether changes were beneficial or
not;

• The use of advanced visualization techniques that integrate program
analysis and history; and

• The use of version histories to conduct empirical research, as in the
study of clone genealogies.

1
Dagstuhl Seminar Proceedings 05261
Multi-Version Program Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/559



The latter point – leveraging version histories to conduct empirical research –
was maybe the strongest highlight of the seminar. As a direct result of the
seminar, a mining challenge was introduced at the Workshop of Mining Soft-
ware Repositories.

All in all, Software engineering is full of anecdotical evidence, often relying
on insufficient or proprietary data. Publicly available change and bug his-
tories may change this, providing reproducible benchmarks for empirical
research, and allowing anyone to assess hypotheses about what works in
software engineering and what does not.

Perspectives

The analysis of programs across multiple versions has a bright future. The
workshop on mining software repositories has never been more active; re-
searchers begin to recognize the great potential of software history to un-
derstand development processes. With this Dagstuhl Seminar, we are very
happy to have contributed to this momentum. We also look forward to see
this research being applied in practice, as it is already the case with IBM and
Microsoft.

Key words

software engineering, data mining, software processes, software archives,
version control, bug database, experimentation, measurement, verification.

2


