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Université Paul Sabatier
Toulouse France

Angelo Gilio
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Abstract

This paper considers the simple problem of
abduction in the framework of Bayes theo-
rem, when the prior probability of the hy-
pothesis is not available, either because there
are no statistical data on which to rely on,
or simply because a human expert is reluc-
tant to provide a subjective assessment of this
prior probability. The problem remains an
open issue since a simple sensitivity analy-
sis on the value of the unknown prior yields
empty results. This paper tries to survey
and comment on various solutions to this
problem: the use of likelihood functions (as
in classical statistics), the use of informa-
tion principles like maximal entropy, Shapley
value, maximum likelihood. We also study
the problem in the setting of de Finetti coher-
ence approach, which does not exclude condi-
tioning on contingent events with zero prob-
ability. We show that the ad hoc likelihood
function method, that can be reinterpreted in
terms of possibility theory, is consistent with
most other formal approaches. However, the
maximal entropy solution is significantly dif-
ferent. Yet, it depends on likelihoods, and its
form resembles the Shapley value.

1 INTRODUCTION

Consider the basic problem of Bayesian abduction: Let
H be a Boolean proposition interpreted as a hypoth-
esis, a disease, a fault, a cause, etc. pertaining to the
state of a system. Let E be another proposition repre-
senting a hypothetically observed (that is, observable)
fact, a symptom, an alarm, an effect, etc. Numerical
assessments of positive conditional probability values
P (E|H) = a and P (E|Hc) = b ≤ a are supplied by
an agent, who either uses available statistical data or

proposes purely subjective assessments. The problem
is to evaluate the relative plausibility of the hypothe-
sis and its negation after observing event E. If a prior
probability P (H) is assigned and b > 0, the question is
solved by Bayes theorem. But suppose no prior prob-
ability P (H) is assigned and observation E is made,
or that probabilities a or b are set to zero. What can
be said about the support given to hypotheses H vs.
Hc upon observing E?

The aim of this note is to review past proposals for
dealing with this problem and propose either new so-
lutions or rigorous formalization of previously pro-
posed solutions, in connection with various approaches
to probability theory, and to imprecise probabilities,
such as maximum entropy, Shapley value, conditional
events, de Finetti’s coherence setting, possibility the-
ory and the like.

Here, by definition, we do not take for granted the
Bayesian credo according to which whatever their
state of knowledge, rational agents should produce a
prior probability. Indeed the idea that point probabil-
ity functions should be in one to one correspondence
with belief states means that a probability degree IS
equated to a degree of belief. Then, in case of total
ignorance about H agents should assign equal proba-
bilities to H and its complement, due to symmetry ar-
guments. This claim can be challenged, and was chal-
lenged by many scholars (e.g., (Shafer 1976) (Dubois
and Prade 1990), (Smets and Kennes 1994) (Walley
1991): Indeed agents must assign equal probabilities
to H and its complement, when they know that the
occurrence of H is driven by a genuine random pro-
cess, and when they know nothing. The two epistemic
states are different but result in the same probabil-
ity assessment. Here, we take ignorance about H for
granted, assuming P (H) is unspecified (in other words
the agent refuses to bet on a value of P (H)), and see
what was done in the past, what can legitimately be
done to cope with ignorance, and how to formally jus-
tify various solutions to this problem.
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This paper is organized as follows: We put the prob-
lem into formal terms in the next section, and recall
two classical approaches for its solution in section 3.
In section 4, various information principles are applied
to solve the problem, and compared with each other.
Section 5 presents a novel maximal likelihood approach
by taking the conditional probabilities as kind of mid-
values. Section 6 concludes the paper with a summary
and an outlook on further work.

2 FORMALIZING THE PROBLEM

In the whole paper, the following notations are
adopted: Ω is the sure event, AB is short for A ∧ B
(conjunction), and the complement of an event A is
denoted Ac. Moreover, we use the same symbol to de-
note an event and its indicator. The basic variables in
the problem are denoted

x = P (EH) ; y = P (EcH) ; z = P (EHc) ; t = P (EcHc)

Let P = {P, P (E|H) = a, P (E|Hc) = b} be the set
of probability functions described by the constraints
expressing the available knowledge. The variables
x, y, z, t are thus linked by the following constraints:

x + y + z + t = 1 (normalization),
x = a(x + y) corresponding to P (E|H) = a,
z = b(z + t) corresponding to P (E|Hc) = b.

The set P is clearly a segment on a straight line in a 4-
dimensional space (x, y, z, t), namely, the intersection
of three hyperplanes.

In the most general case, assuming 0 < b < 1, the
constraints can be written

x =
a

1− b
(1−b−t) , y =

1− a

1− b
(1−b−t) , z =

b

1− b
t ,

with 0 ≤ t ≤ 1 − b. Then, the set P is the seg-
ment bounded by the probabilities (a, 1 − a, 0, 0) and
(0, 0, b, 1 − b). It can be checked that this result still
holds when a = b = 1.

Note that P (E|H), P (E|Hc) can be viewed as generic
knowledge (sometimes interpreted causally) express-
ing the probabilities of observing events of the form
E in general when H occurs or its contrary occurs.
Then these probabilities refer to a population of sit-
uations where the occurrence of events of the form E
was checked when H was present or absent. This pop-
ulation may be explicitly known (as in statistics) or
not (for instance we know that birds fly but the con-
cerned population of birds is ill-defined). On the con-
trary, the observation E is contingent, it pertains to
the current situation, and nothing is then assumed on
the probability of occurrence of events of the form E

in the population. So it is not legitimate to interpret
the observation E as a (new) constraint P (E) = 1,
which would mean that events of the form E are al-
ways the case, while we just want to represent the fact
that event E has been observed now.

Suppose the prior probability P (H) is provided by an
agent. Clearly it must be interpreted in a generic way
(in general events of the form H have this propensity
to be present) otherwise, if P (H) were only the con-
tingent belief of the agent now, one may not be able
to use it on the same grounds as the conditional prob-
abilities so as to uniquely define a probability func-
tion in P (since we do not interpret the contingent
but sure observation E as having probability 1). As a
consequence, when the prior probability P (H) is speci-
fied, our generic knowledge also includes the posterior
probability P (H|E), which we extract for the refer-
ence class E (as we know the current situation is in
the class of situations where E is true). In a second
(inductive) step, the value P (H|E) can be used by the
agents for measuring their belief in the hypothesis H
to be present now, given that E is observed.

An objection to the above remark can be as follows:
suppose that the agent interprets P (E|H), P (E|Hc)
as contingent conditional belief degrees of observing
E if H is present or not present in the current. In
that case, since these values are interpreted as contin-
gent uncertain beliefs, one may be tempted to inter-
pret the observation of evidence in a strong way, as
P (E) = 1, especially in the case where the prior prob-
ability of H is unknown. Unfortunately, the equal-
ity P (E) = 1 is inconsistent with P (E|H) = a and
P (E|Hc) = b since they imply a ≥ P (E) ≥ b. So the
formal framework cannot support the interpretation
of P (E|H), P (E|Hc) as contingent conditional belief
degrees.

3 TWO STANDARD APPROACHES

In the literature, two approaches exist that try to cope
with ignorance of the prior probability. The first ap-
proach is based on varying the prior probability on
the expression of P (H|E) derived from Bayes theorem.
Another classical approach in non-Bayesian statistics
relies on the relative values of P (E|H) and P (E|Hc)
interpreted as the likelihood of H and its complement.
In this approach, the idea of computing a posterior
probability is given up.

3.1 IMPRECISE BAYES

The most obvious thing to do in the absence of prior is
to perform sensitivity analysis on Bayes theorem. Let
P (H) = p be an unknown parameter. Then
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P (H|E) =
P (E|H) · P (H)

P (E)
=

a · p
a · p + b · (1− p)

·

But the value p is anywhere between 0 and 1. Clearly
the corresponding range of P (H|E) is [0, 1]. So this ap-
proach brings no information on the plausibility of the
hypothesis, making the observation of evidence and
the presence of the generic knowledge useless. This is
rather counter-intuitive, as one feels prone to consider
that evidence E should confirm H if for instance a
is high and b is low. The above analysis presupposes
a · p + b · (1− p) 6= 0.

Two cases result in a ·p+ b · (1−p) = 0. First the case
when P (E|Hc) = b = 0 and P (H) = p = 0 (the case
when P (E|H) = a = 0 implies b = 0 by construction);
finally the case when a = b = 0, while p > 0. It can be
checked that in these cases, the range of P (H|E) still
remains [0, 1]
Notice that the direct reasoning above in general may
be risky, because we are not sure of considering all
(explicit or implicit) constraints. Therefore, the case
when some conditioning events may have zero proba-
bility must be treated in the coherence framework of
de Finetti.

The consistency of conditional probability assessments
can be checked by a geometrical approach (see, e.g.,
(Gilio 1990) and (Gilio 1995)), or considering suit-
able sequences of probability functions (see, e.g., (Co-
letti and Scozzafava 2002)). The approach goes as
follows on the (first) case: P (E|H) = a > 0;
P (E|Hc) = 0; P (H) = 0. Assign probability vector
p = (a, 0, 0, γ) to the family of conditional events F =
{E|H , E|Hc , H|Ω , H|E}. To check coherence of
p, we have to consider the “constituents” (interpreta-
tions) generated by F and contained in the disjunction
of the conditioning events H∨Hc∨Ω∨E = Ω (here, the
sure event). They are C1 = EH , C2 = EcH , C3 =
EHc , C4 = EcHc Let Qh = (qh1, . . . , qhn) , denote
the following 3-valued assignment induced by con-
stituent Ch, to the n conditional events in the family
F :

qhj =


1, if Ch ⊆ EjHj ,
0, if Ch ⊆ Ec

jHj ,
pj , if Ch ⊆ Hc

j .
(1)

Then, in geometrical terms, we introduce the
points Q1 = (1, 0, 1, 1) , Q2 = (0, 0, 1, γ) , Q3 =
(a, 1, 0, 0) , Q4 = (a, 0, 0, γ) , and, denoting by I the
convex hull of Q1, . . . , Q4, we must check the (neces-
sary) coherence condition p ∈ I. It amounts to check-
ing the solvability of the linear system :{

x = a(x + y), z = 0, x + y = 0, x = γ(x + z),
x + y + z + t = 1, x ≥ 0, y ≥ 0, z ≥ 0, t ≥ 0.

The solution to this system, (x, y, z, t) = (0, 0, 0, 1)
is a probability function on the set of constituents
{C1, C2, C3, C4}. The probabilities of conditioning
events are P (H) = 0, P (Hc) = 1, P (Ω) = 1, P (E) = 0.

Then, we must continue to check coherence on the
sub-family of conditionals whose conditioning events
have zero probability; that is, we now have to check
the coherence of the assessment p0 = (a, γ) on
F0 = {E|H,H|E}. Constituents in H ∨ E are C1 =
EH ,C2 = EcH , C3 = EHc , with associated points:
Q1 = (1, 1) , Q2 = (0, γ) , Q3 = (a, 0) . We can ver-
ify the condition p0 ∈ I0 (p0 belongs to the triangle
Q1Q2Q3) amounts to solving the linear system{

x = a(x + y), x = γ(x + z),
x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0.

It is satisfied for every γ ∈ [0, 1] by the vec-
tor (x, y, z, t) =

(
aγ

a+γ(1−a) ,
(1−a)γ

a+γ(1−a) ,
a(1−γ)

a+γ(1−a) , 0
)
.

The probabilities of conditioning events H and E are
P (H) = γ

a+γ(1−a) ≥ 0 , P (E) = a
a+γ(1−a) > 0 .

The set of conditioning events with zero probability
is empty or equal to {H}. Hence, the assessment
p0 = (a, γ) is coherent for every γ ∈ [0, 1]; therefore,
the initial assessment p = (a, 0, 0, γ) is coherent for
every γ ∈ [0, 1]. In other words, the range of P (H|E)
remains [0, 1].

3.2 LIKELIHOOD APPROACH

Usual statisticians consider P (E|H) to be the likeli-
hood of H, L(H). When P (E|H) = 1, H is only fully
plausible. When it is 0 (the probability P (E|Hc) be-
ing positive) it rules out hypothesis H upon observing
E. But there is no formal justification given to the
notion of likelihood, usually. However L(H) can then
be viewed as a degree of possibility as pointed out by
(Dubois, Moral and Prade 1997): generally the quan-
tity P (A|B) is upper bounded by maxx∈B P (A|x) and
as pointed out by (Coletti and Scozzafava 2002), if set-
function L is assumed to be inclusion-monotonic (as
expected if we take it for granted that L means like-
lihood), then P (A|B) = maxx∈B P (A|x) is the only
possible choice if only P (A|x) is known for all x.

In this sense the likelihood approach, common in non-
Bayesian statistics (e.g. (Edwards 1972), (Barnett
1973)) comes down to interpreting conditional prob-
abilities in terms of possibility theory. The quantity
P (E|H) can be used to eliminate assumption H if it is
small enough in front of P (E|Hc), but knowing that
P (E|H) = 1 is not sufficient to ascertain it.

However, as a possibility degree is also an upper proba-
bility bound, one may try to figure out if this approach
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can be formally justified in this setting. Indeed, we are
in a dilemma as the sensitivity approach is probabilis-
tically founded but provides no information while the
likelihood approach is informative but looks ad hoc in
a probabilistic setting.

Note that the likelihood approach is also in agreement
with a default Bayesian approach : in the absence of
a prior probability, assume it is uniformly distributed.
Then the posterior probability is P (H|E) = a

a+b , so
that it is equivalent to renormalize the likelihood func-
tions in the probabilistic style. This fact has been re-
currently used to claim that the likelihood approach is
like the Bayesian approach with a uniform prior.

However this is because in classical probability theory
the notion of incomplete probabilistic model makes no
sense. Even if the likelihood approach looks consistent
with the uniform prior (Bayes) method, its meaning is
radically different. The former has no pretence to com-
pute precise posterior probabilities: results it provides
are informative only if one of a or b is small (and not
the other). The uniform prior results from applying
the Laplace principle of insufficient reason. But, say-
ing that the likelihood approach is a special case of the
Bayesian approach is like saying that a uniform pos-
sibility distribution (equivalently: an unknown prob-
ability distribution) and a uniform probability distri-
bution mean the same thing.

4 APPROACHES BASED ON
INFORMATION PRINCIPLES

One way out of the dilemma of abduction without pri-
ors is to introduce additional information by means of
default assumptions that are part of the implicit back-
ground knowledge. The idea is that in the absence of
prior probability, one finds a (default) probability mea-
sure in P in some way, relying on principles of informa-
tion faithfulness, maximal independence assumptions,
or symmetry assumptions, respectively (Paris, 1994).
Then the posterior beliefs of agents is dictated by the
default probability thus selected. Unfortunately, as
seen below the results obtained by means of the vari-
ous principles are not fully consistent with each other.

4.1 MAXIMUM LIKELIHOOD

The maximum likelihood principle says that if an event
occurred then this is because it was at the moment the
most likely event. So the best probabilistic model in a
given situation is the one which maximizes the prob-
ability of occurrence of the observed evidence. This
principle is often used to pick a probability distribution
in agreement with some data. For instance, assume we
observe k heads and n− k tails from tossing a coin n

times. The probability function underlying the process
is completely determined by the probability of heads,
say x. To find the best value of x, one maximizes the
likelihood L(x) = P (E|x) = xk · (1 − x)(n−k), where
E = “k heads and n− k tails” and we find x = k

n . In-
terestingly, since x completely defines the probability
measure P on {tail, head}, P (E|x) = L(P ), i.e. the
likelihood of model P .

In our case, E occurred, so it is legitimate to estab-
lish the agent’s posterior (contingent) belief about H
assuming P (E) is as large as possible under the con-
straints P (E|H) = a < 1 and P (E|Hc) = b ≤ a.
Again, in that case we interpret P (E) as the likelihood
of the probability function P to be selected among
those such that P (E|H) = a, P (E|Hc) = b, while the
non-Bayesian statistics approach directly chooses be-
tween H and Hc on the basis of their likelihoods. Here
we first try to select a plausible probabilistic model,
with a view to solve the abduction problem in a sec-
ond step.

Note that P (E) = a · p + b · (1 − p) whose max-
imum is P (E) = a, which unfortunately enforces
p = 1. It comes down to assuming P (H) = 1, so
that P (H|E) = 1, too. This is clearly too strong to be
credible, even under a weak interpretation of the pos-
terior probability (H is present in the situation where
E was observed). However note that in this approach
the constraint P (E) = a is not added to mean that
the probability of E is indeed a in the population. It
just assumes that the population of realizations rele-
vant for the current situation is the one where E is as
likely as possible, so that in the current situation, P
can be restricted to {P ∈ P, P (E) is maximal}.

In any case, this approach results in a dead end in
the prior-free abduction problem. A way out of this
difficulty is proposed in section 5.

4.2 MAXIMUM ENTROPY

A fairly popular informational principle is the maxi-
mization of entropy (e.g. Paris, 1994). Entropy quan-
tifies the indeterminateness inherent to a probability
distribution P by H(P ) = −

∑
ω P (ω) log P (ω). Given

a set R = {(B1|A1)[x1], . . . , (Bn|An)[xn]} of proba-
bilistic conditionals, the principle of maximum entropy

max H(Q) = −
∑
ω

Q(ω) log Q(ω)

s.t. Q is a probability distribution with Q |= R

solves (uniquely) the problem of representing R by
a probability distribution without adding information
unnecessarily. The resulting distribution is denoted by
ME(R). The maximal entropy solution is often inter-
preted as a least committed probability, in fact the one
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involving maximal indeterminateness in a subsequent
decision process. In fact, maximal entropy processes
conditional dependencies especially faithfully, and in-
dependence between events is implemented only if no
information to the contrary can be derived.

Using well-known Lagrange techniques, we may repre-
sent ME(R) in the form

ME(R)(ω) = α0

∏
1≤i≤n

ω|=AiBi

α1−xi
i

∏
1≤i≤n

ω|=AiBc
i

α−xi
i , (2)

with the αi’s being exponentials of the Lagrange mul-
tipliers, one for each conditional in R, and α0 simply
arises as a normalizing factor. For further details, see,
e.g., (Kern-Isberner 2001).

The maximum entropy solution to our problem can be
computed as follows. Let Pme be the maxent distribu-
tion in P and we use the notation α = a

1−a , β = b
1−b .

Here, the probabilistic information given is represented
by R = {(E|H)[a], (E|Hc)[b]}, so Pme = ME(R).
Using equation (2) we get the following probabilities:
Pme(EH) = λ0λ

+
a , Pme(EcH) = λ0λ

−
a , Pme(EHc) =

λ0λ
+
b , Pme(EcHc) = λ0λ

−
b , with a normalizing con-

stant λ0 = (α−a(1 − a)−1 + β−b(1 − b)−1)−1, and
λ+

a = α1−a, λ−a = α−a, λ+
b = β1−b, λ−b = β−b. Now,

it immediately follows that

Pme(H|E) =
α1−a

α1−a + β1−b

and Pme(H) = a−a(1−a)a−1

a−a(1−a)a−1+b−b(1−b)b−1 .

The same results can be obtained in a more direct way
by observing that every probability in P has the form
(ka, k(1 − a), (1 − k)b, (1 − k)(1 − b)) with k ∈ [0, 1]
and choosing k such that entropy is maximized.

4.3 SHAPLEY VALUE

The Shapley value was first proposed in cooperative
game theory ((Shapley 1953)), to extract from a set
of weighted coalitions of agents (a non-additive set-
function), an assessment of the individual power of
each agent (a probability distribution). In the theory
of belief functions, it is known as the “pignistic trans-
formation” ((Smets and Kennes 1994)). Selecting the
Shapley value comes down to assuming that all proba-
bilities in P are equally probable so that by symmetry
the center of mass of this polyhedron can be chosen by
default as the best representative probability function
in this set. This is similar as replacing a solid by its
center of mass for studying its kinematics. As shown
above, P is a segment on a straight line, bounded by
the probabilities (a, 1 − a, 0, 0) and (0, 0, b, 1 − b). So
the Shapley value is the midpoint of this segment, i.e.

(a
2 , 1−a

2 , b
2 , 1−b

2 ). Under this default probability,

P (H|E) =
a

a + b

that is, the Shapley value supplies the same response
as the Bayesian approach where a uniform prior is as-
sumed! This is not too surprising as the Shapley value
can be seen as assuming a uniform metaprobability
over the probability set induced by the constraints,
and considering the average probability resulting from
this meta-assessment. The above result suggests that
assigning a uniform prior to assumptions and assuming
a uniform metaprobability over the probability poly-
gon come down to the same result.

4.4 COMPARATIVE DISCUSSION

Contrary to the simple form, in some sense natural,
of the Shapley value, the maximum entropy solution
looks hard to interpret in the problem at hand, at first
glance. But there is a similarity of form between them,
except that the maxent solution distorts the influences
of the probabilities a and b by the function

f(x) =
(

x

1− x

)1−x

so that the maxent solution for P (H|E) takes the same
form as the Shapley value, after distortion, namely,

f(a)
f(a)+f(b) . Alternatively, one may see the maxent so-
lution as attaching multiplicative weights to coeffi-
cients a and b, of the form w(x) = x−x(1 − x)x−1, so
that P (H|E) also takes the form a·w(a)

a·w(a)+a·w(b) . These
weights can be interpreted, up to a normalization, as
a default prior, assuming P (H) = w(a)

w(a)+w(b) in the
maximum entropy approach.

This makes maximum entropy more cautious, i.e. re-
turning in general probabilities which are closer to 0.5,
according to the maxent philosophy of not introducing
determinateness unnecessarily. As a and b approach
the extreme probabilities 1 resp. 0, the maxent solu-
tion approaches the Shapley value.

In fact, we have PShapley(H|E) = Pme(H|E), if and
only if a = b, or a = 1 − b. In the first case, H and
E are statistically independent, in the second case,
the influence of H on E is symmetrical – its presence
makes E probable to the same extent as its absence
makes it improbable, which can be understood as a
generalization of logical equivalence to the probabilis-
tic case. This reflects a strong symmetric dependence
between E and H.

What makes Shapley value bolder in the scope of max-
ent is that both approaches coincide only when E and
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H are either independent, or very strongly related. In
fact, a (the degree of the presence of H) has a positive
effect throughout on the probability P (H|E) whereas
b (the degree of the absence of H) has a negative effect.
This means that increasing a or decreasing b always re-
sults in an increase of P (H|E) which can be explained,
e.g., by assuming H to be an essential cause of E.

As opposed to this, the maximum entropy probabil-
ity processes information in a more unbiased way, i.e.
without assuming either strong dependence or inde-
pendence in general. But note, that when such a
relationship seems plausible (in the cases a = b or
a = 1− b), then it coincides with the Shapley value.

A further difference between Shapley value and the
maxent method becomes obvious when focusing on the
prior probability P (H). In the Shapley approach, it
is an invariant (PShapley(H) = 0.5, independent of a
and b). In the maxent approach, we obtain Pme(H) =

w(a)
w(a)+w(b) where the value of weighting function w is
not altered by exchanging a and 1 − a, (and b and
1− b), and taking on values in the interval [ 13 , 2

3 ] with
Pme(H) = 0.5 if and only if a = b or a = 1 − b. In
other words, this weighting function shrinks the [0, 1]
scale symmetrically around 0.5.

Note that log w(x) is the entropy of the probability
distribution (x, 1−x). So w(x) represents the distance
between x and 0.5. So the prior probability selected
by the maxent approach basically reflects the relative
distances from P (E|H) to 0.5, and P (E|¬H) to 0.5,
regardless of their being greater or less than 0.5. For
instance the cases where a = b = 0.9 and where a =
b = 0.1 are treated likewise, and yield the same default
prior probability.

A general comparison between the inference process
based on center of mass progagation (resulting in the
Shapley value) and that by applying the maxent prin-
ciple was made in (Paris 1994). Paris showed that cen-
ter of mass inference violates some properties that rea-
sonable probabilistic inference processes should obey.
More precisely, in general, center of mass inference can
not deal appropriately with irrelevant information and
with (conditional) independencies. For the problem
that we focus on in this paper, however, the Shapley
value seems to be as good a candidate for reasonable
inference as the maximum entropy value, regarding in-
variance with respect to irrelevant evidence.

Overall, it seems that the maximum entropy approach
is syntactically similar to both the Shapley approach
(since there exists similar implicit default priors in
both approaches) and the maximum likelihood ap-
proach (posterior probabilities are proportional to like-
lihoods or some function thereof) for solving the ab-
duction problem.

5 A RELAXED MAXIMAL
LIKELIHOOD APPROACH

The reason why the maximum likelihood fails is that
maximizing P (E) on P enforces P (H) = 1. It may
mean that the available knowledge is too rigidly mod-
elled as precise conditional probability values.
As pointed out by (de Finetti 1936), E|H stands as
a three-valued entity, not a Boolean one as it distin-
guishes between examples EH, counterexamples EcH
and irrelevant situations Hc. Authors like (Goodman,
Nguyen, and Walker 1991) and (Dubois and Prade
1994) have claimed that E|H can be identified with
the pair (EH,EH ∨Hc) of events (an interval in the
Boolean algebra), or with the triple (EH,EcH,Hc)
that forms a partition of the universal set. And in-
deed (provided that P (H) > 0) P (E|H) is a function
of P (EH) and P (E∨Hc). Now, it is important to re-
alize that E|H is a kind of mid-term between EH and
E ∨Hc since P (E ∨Hc) ≥ P (E|H) ≥ P (EH). So it
makes sense to interpret the knowledge as P (E∨Hc) ≥
a ≥ P (EH) and P (E ∨ H) ≥ b ≥ P (EHc), respec-
tively. This is consistent with the original data due
to the above remarks, which also show that the new
formulation is a relaxation of the previous one.

According to the maximum likelihood principle, the
default probability function should now be chosen such
that P (E) = x + z is maximal, under constraints:

P (E ∨Hc) ≥ a ≥ P (EH); P (E ∨H) ≥ b ≥ P (EHc)

and we assume here a positive likelihood function a ≥
b > 0. The problem then reads: maximize x + z such
that : 1 − y ≥ a ≥ x; 1 ≥ x + y + z ≥ b ≥ z. Since
a ≥ x, b ≥ z, x+z ≤ a+b, the maximal value of P (E)
is P ∗(E) = min(1, a + b).

Now there may be more than one probability measure
maximizing P (E). In order to compute the posterior
probability, P (H|E), we are led to the problem of max-
imizing P (EH) = x subject to 1 − y ≥ a ≥ x, 1 ≥
x + y + z ≥ b ≥ z, x + z = min(1, a + b).

Proposition 1 Under the conditional event ap-
proach, the maximum likelihood posterior probabil-
ity, P (H|E), assuming a positive likelihood function
P (E|Hc) = b ≤ a = P (E|H), is as follows:

1) if a + b ≥ 1 then P (H|E) ∈ [1− b, a].

2) P (H|E) =
a

a + b
otherwise.

Proof. When a + b ≥ 1 then x + z = 1, then y = 0
is enforced. Hence the problem reduces to: Maximize
x subject to a ≥ x, b ≥ 1 − x. Then x = P (EH) =
P (H|E) ∈ [1− b, a]. If a+ b < 1, then P (E) = x+z =
a + b. From this and a ≥ x, b ≥ z, it follows directly,

6



that x = a, z = b must hold. So, the problem reads:
Maximize P (EH) = x subject to 1 − y ≥ a ≥ x, 1 ≥
a + y + b ≥ b ≥ a + b − x. The latter simplifies into
1 ≥ a + y + b and a ≥ x ≥ a, which yields x = a
exactly.

These results are not so surprising, even if new to our
knowledge. This approach, in opposition to the ones
in the previous section does not necessarily enforce a
default prior. When P (E|H) and P (E|Hc) are large,
we only find upper probabilities P ∗(H|E) = a and
P ∗(Hc|E) = b (since the lower probability P∗(H|E) =
1− b), which gives a rigorous foundation to the inter-
pretation of P (E|H) and P (E|Hc) as being the like-
lihoods L(H) and L(Hc) respectively. It is not sur-
prising in the light of the interpretation of L(H) and
L(Hc) as degrees of possibility (or upper probabili-
ties). The larger they are the less information is avail-
able on the problem. In particular when a = b = 1,
the likelihood function is a uniform possibility distri-
bution on {H,Hc} that provides no information (in-
deed P (E|H) = P (E|Hc) = 1 means that both H and
Hc are possible). We do find that in this case the ob-
servation E should not inform at all about H in this
case, that is, we find P (H|E) ∈ [0, 1] (total ignorance)
even assuming P (E) = 1. If a = b increase to 1, our
knowledge on the posterior evolves from equal prob-
abilities on the hypothesis and its contrary to higher
order uncertainty about them, ending up with total
ignorance.

On the contrary, when P (E|H) and P (E|Hc) are
small, the maximum likelihood solution in this case
is a unique probability P (H|E) = a

a+b . This is the
result obtained by the Bayesian approach under uni-
form priors and by the Shapley value of the probabil-
ity sets induced by the likelihood functions. In this
case the available knowledge, under maximum likeli-
hood assumption, is rich enough to provide much in-
formation upon observing evidence, under the maxi-
mum likelihood principle.

When one of P (E|H), P (E|Hc) is small, the maxi-
mum likelihood principle enables hypothesis Hc to be
eliminated, if b is much smaller than a. It supplies
a unique probability measure proportional to (a, b) if
both values are small enough.

The previous results can be framed in the setting of co-
herence by the following reasoning, that encompasses
the case of zero probabilities.
Given two quantities a and b in the interval [0, 1], we
consider the assessment p = (x, z, α, β, γ, p) , with
x, z, α, β, γ, p unspecified quantities, on the family
F = {EH, EHc, E ∨ Hc, E ∨ H, E, H|E} , with
P (E∨Hc) ≥ a ≥ P (EH) , P (E∨H) ≥ b ≥ P (EHc) .
Notice that EH = EH|Ω, and so on. We want to ob-

tain all the coherent values of p subject to the condi-
tion that γ is maximum. Then, we obtain an exten-
sion of the above proposition, that takes into account
all cases.

Proposition 2 Given the probability assessment p =
(x, z, α, β, γ, p), with a ≥ b, on the family F =
{EH, EHc, E ∨ Hc, E ∨ H, E, H|E}, let [p′, p′′]
be the set of coherent values p such that γ is maxi-
mum. We have:
1) if a = b = 0, then p′ = 0, p′′ = 1;
2) if a > 0, b = 0, then p′ = p′′ = 1;
3) if a > 0, b > 0, a + b ≥ 1, then p′ = 1− b, p′′ = a;
4) a > 0, b > 0, a + b < 1, then p′ = p′′ = a

a+b .

While confirming the previous results, the coherence
approach solves three cases with zero probabilities.
When a = 0 and b 6= 0 or when a 6= 0 and b = 0, one
of the assumptions H or its contrary are eliminated.
When a = b, we get either P (H|E) = P (Hc|E) = 1

2
if a ∈ (0, 1

2 ); equal upper probabilities a on H and its
contrary if a > 1/2; and the same result (total igno-
rance) for a = b = 0 as for a = b = 1.

This new approach to handling abduction without pri-
ors has some advantages. It reconciliates the max-
imum likelihood principle (that failed in section 4.1
due to an overconstrained problem) and the ad hoc
likelihood-based inference of non-Bayesian statistics.
But it also recovers the Shapley value and the uniform
prior Bayesian approach in some situations. It con-
firms the possibilistic behavior of likelihood functions,
being all the more uninformative as the likelihood of
the hypothesis and of its complement are both close to
1. When they are both low but positive, the uniform
prior Bayesian approach is recovered. When one of a
and b is zero, then the hypothesis with zero likelihood
is unsurprisingly disqualified by observing E. How-
ever in the case when both likelihoods are zero or one,
it comes down to total ignorance about the posterior
probability of the hypothesis. This approach is at odds
with the maximum entropy method which treats the
cases a = b < 0.5 and a = b > 0.5 likewise.

6 CONCLUSION

One of the traditional disputes in probability theory
opposes the Bayesian approach whereby any state of
knowledge can be characterized by a single probability
function on the suitable space, and classical statistics
where likelihood functions are often empirically esti-
mated but subjective prior probabilities are not con-
sidered to be relevant information. The Bayesian ap-
proach to abduction has the merit of offering a com-
plete and harmonious solution, and the price paid is,
as already stressed in the past, that a full data collec-
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tion is needed. The classical statistics approach may
look as lacking formal foundations despite the existing
rationales for this pragmatic approach. This paper
has tried to put together many tools proposed in ad-
ditive and non-additive probability theories so as to
sort out the issue of unknown priors. As a result some
light is shed on the classical statistics approach and
the maximum likelihood principle, by casting them in
the framework of possibility and imprecise probability
theories. It also show the agreement between the use
of Shapley value and the classical Bayesian assumption
of uniform priors under ignorance.

The maximum entropy approach is shown to differ
from the Bayesian tradition of uniform priors and the
non-Bayesian approach based on likelihoods. Indeed,
the selected P (H) depends on the relative distance be-
tween the likelihoods of H and Hc and 0.5. The far-
ther P (E|H) to 0.5 compared to P (E|Hc) the more
informative H turns out to be.

It is also shown that applying the maximum likelihood
principle for picking a default prior yields an unrea-
sonable solution. To cope with this difficulty, our re-
laxation of the prior-free abduction problem provides
an original solution that bridges the gap between the
straightforward use of likelihood functions and the as-
sumption of a uniform prior, being more informative
than the pure sensitivity analysis approach but less
precise then the Bayesian, Shapley and maxent solu-
tions, as it maintains a family of possible posterior
probabilities when the likelihood functions are to high
to enable any hypothesis rejection.

More work is needed to fully interpret the obtained
results. In particular, a systematic comparative study
of first principles underlying the Shapley value and the
maximal entropy approach is certainly in order. We
should also compare our results with what the impre-
cise probability school has to say about this problem
in a more careful way. Finally, another point to study
is the influence of irrelevant information on the results
of the various approaches.
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