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Earliest arrival flows are motivated by applications related to evacuation. In typ-
ical evacuation situations, the most important task is to get people out of an
endangered building or area as fast as possible. Since it is usually not known how
long a building can withstand a fire before it collapses or how long a dam can
resist a flood before it breaks, it is advisable to organize an evacuation such that
as much as possible is saved no matter when the inferno will actually happen.
In the more abstract setting of network flows over time, the latter requirement is
captured by so-called earliest arrival flows. Before we discuss this in more detail,
we first give a short and descriptive introduction into flows over time.

Flows over time. We consider a network N = (V, A) with capacities u, > 0
and transit times 7. > 0 on the arcs e € A. The capacity of an arc bounds the
flow rate (i.e., flow per time) at which flow can enter the arc. The transit time of
an arc specifies the amount of time it takes for flow to travel from the tail to the
head of the arc. Moreover, there is a set of source nodes ST C V and a set of sink
nodes S~ C V\S™. Each source s € St has a supply v(s) > 0 and each sink t € S~
a demand —v(t) > 0 such that o5 v(w) = 0. A flow over time specifies for
each arc e and each point in time the flow rate at which flow enters the arc (and
leaves the arc again 7. time units later). Flow conservation constraints require
that at every point in time and for every intermediate node w € V'\ (ST U S™)
the flow entering and leaving node w must cancel out each other.

Flows over time have been introduced by Ford and Fulkerson [6]. Given a
network with a single source node s, a single sink node ¢, and a time horizon 6 > 0,
they consider the problem of sending as much flow as possible from s to ¢ within
time 6. It turns out that a maximal s-t-flow over time can be determined by a
static min-cost flow computation where transit times of arcs are interpreted as
cost coefficients.

Ford and Fulkerson [6] also introduce the concept of time-expanded networks
that consist of one copy of the node set of the given network for each time unit
(we call such a copy a time layer). For each arc e of the original network with
transit time 7. the time-expanded network contains copies connecting any two
time layers at distance 7.. On the positive side, most flow over time problems can
be solved by static low computations in time-expanded networks. On the negative
side, time-expanded networks are huge in theory and in practice. In particular, the
size of a time expanded network is linear in the given time horizon € and therefore
exponential (but still pseudopolynomial) in the input size.

Hoppe and Tardos [11] consider the quickest transshipment problem which is
defined as follows. Given a network with several source and sink nodes with given
supplies and demands, find a flow over time with minimal time horizon 6 that
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satisfies all supplies and demands. Hoppe and Tardos give a strongly polyno-
mial algorithm for this problem which, however, relies on submodular function
minimization and is highly nontrivial.

Earliest arrival flows. Shortly after Ford and Fulkerson introduced flows over
time, the more elaborate s-t-earliest arrival flow problem was studied by Gale [7].
Here the goal is to find a single s-t-flow over time that simultaneously maximizes
the amount of flow reaching the sink ¢ up to any time § > 0. A flow over time
fulfilling this requirement is said to have the earliest arrival property and is called
earliest arrival flow. Gale [7] showed that s-t-earliest arrival flows always exist.
Minieka [14] and Wilkinson [17] both gave pseudopolynomial-time algorithms for
computing earliest arrival flows based on the Successive Shortest Path Algorithm.
Hoppe and Tardos [10] present a fully polynomial time approximation scheme for
the earliest arrival flow problem that is based on a clever scaling trick.

In a network with several sources and sinks with given supplies and demands,
flows over time having the earliest arrival property do not necessarily exist [3]. We
give a simple counterexample with one source and two sinks. For the case of sev-
eral sources with given supplies and a single sink, however, earliest arrival flows do
always exist [15]. This follows, for example, from the existence of lexicographically
maximal flows in time-expanded networks; see, e.g., [14]. We refer to this problem
as the earliest arrival transshipment problem. Hajek and Ogier [8] give the first
polynomial time algorithm for the earliest arrival transshipment problem with zero
transit times. Fleischer [3] gives an algorithm with improved running time. Fleis-
cher and Skutella [5] use condensed time-expanded networks to approximate the
earliest arrival transshipment problem for the case of arbitrary transit times. They
give an FPTAS that approximates the time delay as follows: For every time § > 0
the amount of flow that should have reached the sink in an earliest arrival trans-
shipment by time 6, reaches the sink at latest at time (1+¢)6. Tjandra [16] shows
how to compute earliest arrival transshipments in networks with time dependent
supplies and capacities in time polynomial in the time horizon and the total supply
at sources. The resulting running time is thus only pseudopolynomial in the input
size.

Earliest arrival flows are motivated by applications related to evacuation. In the
context of emergency evacuation from buildings, Berlin [1] and Chalmet et al. [2]
study the quickest transshipment problem in networks with multiple sources and
a single sink. Jarvis and Ratliff [12] show that three different objectives of this
optimization problem can be achieved simultaneously: (1) Minimizing the total
time needed to send the supplies of all sources to the sink, (2) fulfilling the earliest
arrival property, and (3) minimizing the average time for all flow needed to reach
the sink. Hamacher and Tufecki [9] study an evacuation problem and propose
solutions which further prevents unnecessary movement within a building.

Our contribution. While it has previously been observed that earliest arrival

transshipments exist in the general multiple-source single-sink setting, the problem

of computing one efficiently has been open. All previous algorithms rely on time

expansion of the network into exponentially many time layers. We solve this open
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problem and present an efficient algorithm which, in particular, does not rely on
time expansion.

Using a necessary and sufficient criterion for the feasibility of transshipment
over time problems given by Klinz [13], we first recursively construct the earliest
arrival pattern, that is, the piece-wise linear function that describes the time-
dependent maximum flow value. As a by-product, we present a new proof for
the existence of earliest arrival flows that does not rely on time expansion. We
finally show how to turn the earliest arrival pattern into an earliest arrival flow by
slightly extending the network and applying the quickest transshipment algorithm
of Hoppe and Tardos [11].

The running time of our algorithm is polynomial in the input size plus the num-
ber of breakpoints of the earliest arrival pattern. Since the earliest arrival pattern is
more or less explicitly part of the output of the earliest arrival transshipment prob-
lem, we can say that the running time of our algorithm is polynomially bounded
in the input plus output size.
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