
A General Markup Framework for Integrity

and Derivation Rules

Gerd Wagner, Adrian Giurca, Sergey Lukichev

Brandenburg University of Technology at Cottbus,

{G.Wagner, Giurca, Lukichev}@tu-cottbus.de

This paper discusses the design of integrity and derivation rules on the ba-
sis of Rule Markup Language (RuleML) and Semantic Web Rule Language
(SWRL). We propose a general markup framework for integrity and deriva-
tion rules (R2ML). Rule concepts are defined with the help of MOF/UML,
a subset of the UML class modeling language proposed by the Object Man-
agement Group (OMG) for the purpose of ’meta-modeling’, i.e. for defin-
ing languages conceptually on the level of an abstract (semi-visual) syntax.
From these MOF/UML language models we can obtain concrete markup
syntax by applying a mapping procedure for generating corresponding lan-
guages from parameterized DTDs. Keywords:rule markup languages, in-
tegrity rules derivation rules, rule meta-models

1 Introduction

Rule markup languages will be the vehicle for using rules on the Web and in distrib-
uted systems. They allow deploying, executing, publishing and communicating rules on
the Web. They may also play the role of a lingua franca for exchanging rules between
different systems and tools. It may be used: to express derivation rules for enriching
Web ontologies by adding definitions of derived concepts or for defining data access
permissions; to describe and publish the reactive behavior of a system in the form of
reaction rules; and to provide a complete XML-based specification of a software agent.
In a narrow sense, a rule markup language is a concrete (XML-based) rule syntax for
the Web. In a broader sense, it should have an abstract syntax as a common basis for

1

Dagstuhl Seminar Proceedings 05371
Principles and Practices of Semantic Web Reasoning
http://drops.dagstuhl.de/opus/volltexte/2006/479

A General Markup Framework for Integrity and Derivation Rules

Rule

DerivationRule ReactionRule

ProductionRule TransformationRule

SQL1999Assertion

OCL2.0Invariant

SQL1999View

ECAPRule ECARule

SQL1999Trigger XSL1.0RuleOracle10gSQLView XSB2.6PrologRule MSOutLook6Rule ILOGRule Jess3.4Rule

R2MLDerivationRule

IntegrityRule

CIM

PIM

PSM

R2MLIntegrityRule

Figure 1: Rule concepts at three different abstraction levels: computation-independent
(CIM), platform-independent (PIM) and platform-specific (PSM) modeling.
Notice that integrity, derivation and reaction rules are both CIM and PIM
concepts.

defining various concrete languages serving different purposes. The main purposes of a
rule markup language is to permit reuse, interchange and publication of rules. Our goal
is to define a family of rule languages capturing the most important types of rules. In
this paper we start with integrity and derivation rules. While these languages should
come with a recommended standard semantics, their rule expressions may, in addition,
allow alternate semantics, which are also considered acceptable. This will accommodate
various formalisms based on non-standard logics, supporting temporal, fuzzy, defeasible,
and other forms of reasoning.
Our development approach is Model Driven Architecture (MDA,[9]) which is a frame-
work for model-driven software development defined by the OMG, [12].

As illustrated in Figure 1, we consider rules at three different abstraction levels:
At the (’computation-independent’) business domain level (called CIM in OMG’s
MDA), rules are statements that express (certain parts of) a business/domain policy
(e.g., defining terms of the domain language or defining/ constraining domain opera-
tions) in a declarative manner, typically using a natural language or a visual language.
Examples of such rules are:

• ”The driver of a rental car must be at least 25 years old”

• ”A gold customer is a customer with more than $1Million on deposit”

2

A General Markup Framework for Integrity and Derivation Rules

• ”An investment is exempt from tax on profit if the stocks have been bought more
than a year ago”

• ”When a share price drops by more than 5% and the investment is exempt from
tax on profit, then sell it”

At the platform-independent operational design level (called PIM in OMG’s
MDA), rules are formal statements, expressed in some formalism or computational par-
adigm, which can be directly mapped to executable statements of a software system.
Examples of rule languages at this level are SQL:1999 [16], OCL 2.0 [11] and DOM
Level 3 Event Listeners [7]. Remarkably, SQL provides operational constructs for all
three business rule categories mentioned above: checks/assertions operationalize a no-
tion of integrity rules, views operationalize a notion of derivation rules, and triggers
operationalize a notion of reaction rules.
At the platform-specific implementation level (called PSM in OMG’s MDA),
rules are statements in a language of a specific execution environment, such as Oracle
10g views [13], Jess 3.4 [8], XSB 2.6 Prolog [19] or the Microsoft Outlook 6 Rule Wizard
[10].
We assume that Web rule languages do not directly follow the tradition of predicate-
logic-style rule languages such as Prolog, but rather follow the recent developments of
Web knowledge representation languages such as RDF [14] and OWL [17]. This requires
that they accommodate:

• Web naming concepts, such as URIs and XML namespaces,

• The ontological distinction between objects and data values,

• The datatype concepts of RDF.

SWRL [15] and the RuleML, [5] do not consider functions in atom construction. For
simplicity, in R2ML we follow the same approach which corresponds of NafNegDatalog
dialect. As a working name for our markup framework, we use the acronym R2ML
standing for REWERSE Rule Markup Language.

This paper is focused on the development of suitable MOF/UML models for integrity
and derivation rules, provides parameterized DTD’s for the language constructs and
gives rule examples, which illustrate the usage of the framework in modeling different
kind of business rules.

3

A General Markup Framework for Integrity and Derivation Rules

2 The Rule Model

In this section, using the MOF/UML metamodeling, we define the vocabulary and all
abstract constructs of R2ML framework . Such a metamodel can be transformed into a
DTD and/or XML Schema definition by following a certain mapping procedure, like the
one recommended by the XMI specification of the OMG. In this paper we present para-
meterized DTD’s for all concepts depicted in the MOF/UML model of our framework.
The main steps for obtaining a such DTD are:

1. mapping the segmentation defined by an abstract class to a corresponding DTD
choice assigned to a parameter entity.

2. mapping each non-abstract class to a corresponding XML element by

a) mapping the attributes of the class to corresponding attributes of the element,
taking into consideration if they are mandatory or optional

b) mapping the parts of the class to corresponding subelements, taking the mul-
tiplicity constraints of the aggregation into consideration (e.g. 1..* maps to
+)

Logical formulas, logical statements and rules are expressed in various ways on the basis
of a vocabulary, which includes

• definitions of proper names or globally unique object identifiers (such as URI ref-
erences) standing for objects (or individuals);

• definitions of terms standing for general concepts, among which we distinguish
entity types (classes) and datatypes;

• definitions of fact type expressions (or predicate symbols) standing for fact types
(or predicates and properties);

• fact statements (expressing facts) instantiating fact type expressions, within the
definition of individuals

In Web languages such as RDF and OWL, all these language elements do not have
ordinary names. Instead, they have globally unique standard identifiers in the form of
URI references.

4

A General Markup Framework for Integrity and Derivation Rules

2.1 Vocabulary Constructs

The R2ML framework has its own basic vocabulary which is defined to permit the basic
constructs for rules:

• Vocabulary for classification: Class, RDF:DataType;

• Vocabulary for construction of data and object terms: DataVariable, DataValue,
OperationTerm, AttributeFunctionTerm, BuiltinFunctionTerm, ObjectConstant,
RoleFunctionTerm;

• Vocabulary for construction of atoms: AssociationPredicate, DataPredicate, At-
tribute and ReferenceProperty.

One of the goals of R2ML is to be compliant with the significant semantic web standards
like RDF and OWL. R2ML accommodate data types from RDF and individuals from
OWL. Below is the DTD for R2ML vocabulary:

<!-- vocabulary concepts used in terms-->

<!ELEMENT %Class; EMPTY>

<!ATTLIST %Class; %ID; (CDATA) #REQUIRED>

<!ELEMENT %RDFDataType; EMPTY>

<!ATTLIST %RDFDataType; %ID; (CDATA) #REQUIRED>

<!-- vocabulary concepts used in atoms-->

<!ELEMENT %AssociationPredicate; EMPTY>

<!ATTLIST %AssociationPredicate; %ID; (CDATA) #REQUIRED>

<!ELEMENT %DataPredicate; EMPTY>

<!ATTLIST %DataPredicate; %ID; (CDATA) #REQUIRED>

<!ELEMENT %Attribute; EMPTY>

<!ATTLIST %Attribute; %ID; (CDATA) #REQUIRED>

<!ELEMENT %ReferenceProperty; EMPTY>

<!ATTLIST %ReferenceProperty; %ID; (CDATA) #REQUIRED>

5

A General Markup Framework for Integrity and Derivation Rules

2.2 Objects, Data, Variables

The abstract concepts of ObjectTerm and DataTerm are depicted on the Figure 3 and
4.

Definition 1 (ObjectTerm, Figure 3) The concept of ObjectTerm is used for mod-
eling variables, that can be instantiated by object values and object constants. RoleFunc-
tionTerm is an object term that is used to model an association end. For example, on
the Figure 2, in the association isMarriedTo a Person plays a role of wife or husband
and they are modeled as role function terms.

Person

wife*

husband

*
isMarriedTo

Figure 2: Role function terms wife and husband

ObjectTerm

name : UnicodeString
ObjectVariable

objectID : URIRef
ObjectConstant

roleNamespaceID
roleName : URIRef

RoleFunctionTerm

1

1..*

Figure 3: Object terms

Definition 2 (DataTerm, Figure 4) DataTerm is used to represents primitive data
types and data values. There are three types of data terms: DataVariable, which rep-
resents a variable, DataValue, which represents a value and DataFunctionTerm. Data-
FunctionTerm can be of three different types:

1. BultinFunctionTerm represents arithmetic built-ins.

2. AttributeFunctionTerm represents an attribute function (a function, which returns
attribute value for an object).

6

A General Markup Framework for Integrity and Derivation Rules

3. OperationTerm represents user-defined function (method, for instance) and takes
DataTerm or ObjectTerm as parameters.

DataTerm

name : UnicodeString
DataVariable

value : Literal
DataValue DataFunctionTerm

operationNamespaceID
operationName

OperationTerm

attributeNamespaceID
attributeName

AttributeFunctionTerm
builtinFunctionID : URIRef
BuiltinFunctionTerm

dataArguments

*
{ordered}

arguments

1..*
{ordered}

ObjectTerm

contextArgument

1

argument1

objectArguments *
{ordered}

Figure 4: Data terms

Definition 3 (VariableDeclaration, Figure 5) A variable declaration is a pair of a
type and a set of variables, associated with this type.

VariableDeclaration

ObjectVariableDeclaration DataVariableDeclaration

ObjectVariable Class DataVariable

1

1

*
1

*
1

1

1

RDF::DataType

Figure 5: R2ML Variable Declaration

7

A General Markup Framework for Integrity and Derivation Rules

2.2.1 DTD module for objects terms, data terms

Below is the R2ML DTD module for objects terms, data terms and variables. Object-
Term and DataTerm are abstract concepts and they are not used in the concrete markup
of rules. In a concrete rule we use the derived concrete concepts i.e. ObjectVariable,
ObjectConstant, DataVariable and RDFLiteral. The same remark holds also for the
abstract concept of VariableDeclaration.

<!ELEMENT %ObjectTerm; (%ObjectVariable;|%ObjectConstant;

|%RoleFunctionTerm;)>

<!ELEMENT %ObjectVariable; EMPTY>

<!ATTLIST %ObjectVariable; %name; (CDATA) #REQUIRED>

<!ELEMENT %ObjectConstant; EMPTY>

<!ATTLIST %ObjectConstant; %ID; (CDATA) #REQUIRED>

<!ELEMENT %RoleFunctionTerm; (%objectArgument;)>

<!ATTLIST %RoleFunctionTerm; %namespaceID; (CDATA) #REQUIRED>

<!ATTLIST %RoleFunctionTerm; %name; (CDATA) #REQUIRED>

<!ELEMENT %DataTerm; (%DataVariable;|%DataValue;

|%OperationTerm; |%AttributeFunctionTerm;

|%BuiltinFunctionTerm;)>

<!ELEMENT %DataVariable; EMPTY>

<!ATTLIST %DataVariable; %name; (CDATA) #REQUIRED>

<!ELEMENT %DataValue; EMPTY>

<!ATTLIST %DataValue; %value; (CDATA) #REQUIRED>

<!ELEMENT %OperationTerm; (contextArgument,

objectArgument, dataArgument*)>

<!ATTLIST %OperationTerm; %namespaceID; (CDATA) #REQUIRED>

<!ATTLIST %OperationTerm; %name; (CDATA) #REQUIRED>

<!ELEMENT %AttributeFunctionTerm; (objectArgument)>

8

A General Markup Framework for Integrity and Derivation Rules

<!ATTLIST %AttributeFunctionTerm; %namespaceID; (CDATA) #REQUIRED>

<!ATTLIST %AttributeFunctionTerm; %name; (CDATA) #REQUIRED>

<!ELEMENT %BuiltinFunctionTerm; (dataArgument, dataArgument*)>

<!ATTLIST %BuiltinFunctionTerm; %ID; (CDATA) #REQUIRED>

<!ELEMENT %VariableDeclaration; (%ObjectVariableDeclaration;|

%DataVariableDeclaration;)>

<!ELEMENT %ObjectVariableDeclaration; (%ObjectVariable;)>

<!ATTLIST %ObjectVariableDeclaration; %classRef; (CDATA) #REQUIRED>

<!ELEMENT %DataVariableDeclaration; (%DataVariable;)>

<!ATTLIST %DataVariableDeclaration; %RDFDataTypeRef; (CDATA) #REQUIRED>

<!ELEMENT objectArgument (%ObjectTerm;)>

<!ELEMENT dataArgument (%DataTerm;)>

<!ELEMENT contextArgument (%ObjectTerm;)>

2.3 Atoms

The basic constituent of a rule is the atom. In R2ML we define metamodels for atoms,
which are compatible with all important concepts of OWL, SWRL and RuleML. All
atoms from our framework are presented on the Figure 6.

Atom

ObjectAtom DataRelationAtom DataClassificationAtom

EqualityAtom

InequalityAtom
ObjectClassificationAtom AttributionAtom ReferencePropertyAtom

ObjectDescriptionAtom AssociationAtom

Figure 6: R2ML Atoms

Definition 4 (Object Classification Atom, Figure 7) An object classification atom
consists of a class type (as ”base type”) and an object term, variable, constant or function
term.

9

A General Markup Framework for Integrity and Derivation Rules

ObjectClassificationAtomClass ObjectTerm
*1

1 1

Figure 7: R2ML Object Classification Atom

ObjectDescriptionAtom

Class

ObjectTerm ReferencePropertyReferencePropertyObjectTermPair

AttributeDataTermPair AttributeDataTerm

1*

1

*

1

baseType

1

1

category

*

*

object

1

*

value

1

* 1

* 1

*

1

Figure 8: R2ML Object Description Atom is a shorthand from providing a set of de-
scriptions for a particular object.

Following RDF [14] and OWL [17], we adopt the concept of object description atom.

Definition 5 (ObjectDescriptionAtom, Figure 8) An ObjectDescriptionAtom is
a collection of classes (categories and a base type), attribute data term pairs and ref-
erence property object term pairs. Any instance of such atom refers to one particular
object, that is referenced by an objectID, if it is not anonymous.

Definition 6 (AttributionAtom, Figure 9) An attribution atom in R2ML consists
of a variable, constant or function (object terms) as ”subject”, and a data variable or
an RDF literal (data term) as ”value”.

Definition 7 (ReferencePropertyAtom, Figure 10) A reference property atom as-
sociates variables or constants (object terms) as ”subjects” with other object terms as
”objects”.

Notice that, in the OWL approach, property axiom is mixed up with constraint as-
sertions about it (for example, a property to be functional) but in the R2ML approach
the definitions are separated from constraints. In order to support common fact types
of natural language directly, it is important to have n-ary predicates (for n > 2).

10

A General Markup Framework for Integrity and Derivation Rules

AttributionAtomObjectTerm DataTerm

1

subject

1

*

object

1
*

1

Attribute

Figure 9: R2ML Attribution Atom

ReferencePropertyAtom
*

subject

1

*

object

1

ObjectTerm

ReferenceProperty*
1

Figure 10: R2ML Reference Property Atom

Definition 8 (AssociationAtom) Association atom is constructed using one n-ary
predicate as association predicate, a collection of data terms as ”data argument” and a
collection of object terms as ”object argument”. The model is depicted on Figure 11.

As in OWL, equality and inequality atoms must be defined.

Definition 9 (EqualityAtom, InequalityAtom, Figure 12) An EqualityAtom (In-
equalityAtom) is a composition of two or more object terms.

Definition 10 (DataClassificationAtom, Figure 13) A data classification atom con-
sists of an RDF data type and a data term, which is a data variable or an RDF literal.

DataTerm ObjectTermAssociationAtom

*

dataArgument

*
{ordered}

*

objectArgument

2..*
{ordered}*

1

AssociationPredicate

Figure 11: R2ML Association Atom can express an n-ary association between classes.

11

A General Markup Framework for Integrity and Derivation Rules

InequalityAtomEqualityAtom ObjectTerm

2..

* 2..*

Figure 12: R2ML Equality and Inequality Atoms

DataClassificationAtomDataTerm

*1

RDF::DataType

* 1

Figure 13: R2ML Data Classification Atom

Definition 11 (DataRelationAtom, Figure 14) A data relation atom describes a
relation between several data terms, using a data predicate.

2.3.1 The DTD for Atoms.

Atom and ObjectAtom are abstract concepts and they are not used in a markup. For a
markup we use derived concrete concepts, for example, EqualityAtom, AssociationAtom
and so on. We keep all the abstract concepts in the DTD in order to use them in a
future general XML Schema of the framework.

<!-- abstract atoms -->

<!ELEMENT %Atom (%ObjectAtom;|%DataRelationAtom;|

%DataClassificationAtom;)>

<!ELEMENT %ObjectAtom; (%AssociationAtom;|%ObjectDescriptionAtom;|

%ObjectClassificationAtom;|%AttributionAtom;|

%ReferencePropertyAtom;|%EqualityAtom;|%InequalityAtom;)>

<!ELEMENT %AssociationAtom; (%DataTerm;*,%ObjectTerm;,%ObjectTerm;+)>

<!ATTLIST %AssociationAtom; %associationPredicateRef; (CDATA) #REQUIRED>

<!ELEMENT %ObjectDescriptionAtom; (%ReferencePropertyObjectTermPair;*,

%AttributeDataTermPair;*)>

DataRelationAtom DataTerm
1 *

DataPredicate

1 *

Figure 14: R2ML Data Relation Atom

12

A General Markup Framework for Integrity and Derivation Rules

<!ATTLIST %ObjectDescriptionAtom; category (CDATA) #IMPLIED>

<!ATTLIST %ObjectDescriptionAtom; baseType (CDATA) #REQIURED>

<!ELEMENT %ReferencePropertyObjectTermPair; (object)>

<!ATTLIST %ReferencePropertyObjectTermPair;

%referencePropertyRef; (CDATA) #REQUIRED>

<!ELEMENT object (%ObjectTerm;*)>

<!ELEMENT %AttributeDataTermPair; (value)>

<!ATTLIST %AttributeDataTermPair; %attributeRef; (CDATA) #REQUIRED>

<!ELEMENT value (%DataTerm;*)>

<!ELEMENT %ObjectClassificationAtom; (%ObjectTerm;)>

<!ATTLIST %ObjectClassificationAtom; %classRef; (CDATA) #REQUIRED>

<!ELEMENT %AttributionAtom; (subject, value)>

<!ATTLIST %AttributionAtom; %attributeRef; (CDATA) #REQUIRED>

<!ELEMENT subject (%ObjectTerm;)>

<!ELEMENT %ReferencePropertyAtom; (subject, object)>

<!ATTLIST %ReferencePropertyAtom;

%referencePropertyRef; (CDATA) #REQUIRED>

<!ELEMENT %DataClassificationAtom; (%DataTerm;)>

<!ATTLIST %DataClassificationAtom;

%RDFdataTypeRef; (CDATA) #REQUIRED>

<!ELEMENT %DataRelationAtom; (%DataTerm;*)>

<!ATTLIST %DataRelationAtom; %dataPredicateRef; (CDATA) #REQUIRED>

<!ELEMENT %EqualityAtom; (%ObjectTerm;, %ObjectTerm;+)>

<!ELEMENT %InequalityAtom;(%ObjectTerm;, %ObjectTerm;+)>

2.4 Formulas

R2ML provides two abstract concepts for formulas: the concept of AndOrNafNegFormula
(see Figure 15), which represents the most general quantifier free logical formula with
weak and strong negations, and the concept of LogicalFormula (see Figure 16), which
corresponds to a general first order formula.

2.4.1 R2ML uses two kinds of negations.

The distinction between weak and strong negation (marked up as <naf> and <neg>

in RuleML and also in our markup proposal from the Section 4) is used in several
computational languages: it is presented in explicit form in extended logic programs [3],

13

A General Markup Framework for Integrity and Derivation Rules

Atom

1

2..*

1

2..*

1

1

QF::AndOrNafNegFormula

QF::Negation QF::Conjunction QF::Disjunction

Figure 15: R2ML AndOrNafNegFormula

LogicalFormula

QuantifiedFormula

ExistentiallyQuantifiedFormula UniversallyQuantifiedFormula

VariableDeclaration

1
1..*

1
1

Atom

WeakNegation StrongNegationDisjunctionConjunction

1

1

111 2..*1

2..*

Figure 16: R2ML Logical Formula

14

A General Markup Framework for Integrity and Derivation Rules

only implicitly in SQL [16] and OCL [11], as was shown in [6]. Intuitively speaking, weak
negation captures the absence of positive information, while strong negation captures
the presence of explicit negative information (in the sense of Kleene’s 3-valued logic).
Under the minimal/stable models [2] weak negation captures the computational concept
of negation-as-failure (or closed-world negation) [1]. The model is depicted on Figure
17.

Negation

WeakNegation StrongNegation

Figure 17: R2ML Negations

2.4.2 The DTD for formulas.

<!-- abstract formulas -->

<!ELEMENT %NegObjectFormula; (%ObjectAtom;|%NegObjectAtom;)>

<!ELEMENT %NegObjectAtom; (%ObjectAtom;)>

<!ELEMENT %AndOrNafNegFormula; (%Atom;?|

%QF-Conjunction;?|%QF-Disjunction;?|

%QF-WeakNegation;?|%QF-StrongNegation;?)>

<!ELEMENT %QF-StrongNegation; (%AndOrNafNegFormula;)>

<!ELEMENT %QF-WeakNegation; (%AndOrNafNegFormula;)>

<!ELEMENT %QF-Conjunction; (%AndOrNafNegFormula;,%AndOrNafNegFormula;+)>

<!ELEMENT %QF-Disjunction; (%AndOrNafNegFormula;,%AndOrNafNegFormula;+)>

2.5 Rules Constructs

2.5.1 Integrity Rules

Integrity rules, also known as (integrity) constraints, consist of a constraint assertion,
which is a sentence in a logical language such as first-order predicate logic or OCL (see
Figure 18). R2ML framework supports two kinds of integrity rules: the alethic and the
deontic ones. The alethic integrity rule can be expressed by a phrase, such as ”it is

15

A General Markup Framework for Integrity and Derivation Rules

IntegrityRule

1

constraint

1

AlethicIntegrityRule DeonticIntegrityRule

LogicalStatement

Figure 18: Integrity Rules in R2ML

necessarily the case that” and the deontic one can be expressed by phrases, such as ”it is
obligatory that” or ”it should be the case that”. A LogicalStatement is a LogicalFormula
that has no free variables i.e. all the variables from this formula are quantified. The
R2ML DTD for integrity rules is simple:

<!-- R2ML Integrity Rule -->

<!ELEMENT %AlethicIntegrityRule; (constraint)>

<!ELEMENT %DeonticIntegrityRule; (constraint)>

<!ELEMENT constraint (%LogicalStatement;)>

2.5.2 Derivation Rules

Derivation Rules, have ”conditions” and ”conclusions” (see Figure 19). In R2ML frame-
work the conditions of a derivation rule are AndOrNafNegFormula, as defined on Figure
15. Conclusions are restricted to object atoms or strongly negated object atoms (Ne-
gObjectAtom), as depicted on Figure 20.

1 conclusion1..*

1

condition1..*
R2ML::DerivationRule

R2ML::AndOrNafNegFormula R2ML::NegObjectFormula

Figure 19: The R2ML Model of Derivation Rules

ObjectAtom NegObjectAtom

NegObjectFormula

11

Figure 20: R2ML NegObjectFormula

16

A General Markup Framework for Integrity and Derivation Rules

Table 1: Basic language constructs for vocabularies
R2ML RuleML SWRL

data variable variable data variable
object variable variable individual variable

data term term data term
object term term object term

association predicate n/a n/a
class n/a OWL:Description

attribute n/a iObject
data predicate rel n/a

Table 2: Accommodating different atoms concepts
R2ML RuleML SWRL

ObjectDescriptionAtom SlotAtom n/a
ObjectClassificationAtom PositionalAtom classAtom

AssociationAtom PositionalAtom n/a
AttributionAtom PositionalAtom datavaluedPropertyAtom

ReferencePropertyAtom PositionalAtom individualPropertyAtom
DataRelationAtom n/a builtinAtom

DataClassificationAtom n/a datarangeAtom
EqualityAtom n/a sameIndividualAtom

InequalityAtom n/a differentIndividualsAtom

2.5.3 DTD for derivation rules

Below we present the R2ML DTD for derivation rules:

<!ELEMENT %DerivationRule (condition, conclusion)>

<!ELEMENT condition (%LogicalFormula+)>

<!ELEMENT conclusion (%LogicalFormula+)>

3 SWRL, RuleML and R2ML

In R2ML we accommodate all important language constructs from SWRL and RuleML.
Because of space limitation we present the terminological correspondence between these
languages and R2ML in Tables 1 and 2.

17

A General Markup Framework for Integrity and Derivation Rules

4 An R2ML Concrete Language Example

For the concrete definition of some abstract concepts that are needed for a derived rule
markup language, we use short names for the elements and the same names for abstract
types. We apply this rule for every abstract concept from the MOF/UML model that
need a derived concrete concept. The markup of rules from our examples (Example 1
and Example 2) is based on the following terminology proposal:

<!--

We keep the name for every abstract concept because

these names will not be used in concrete instances of the rules.

The concrete rules will use short names for convenience.

-->

<!ENTITY % SWRL_PREFIX "swrlx">

<!ENTITY % RDF_PREFIX "rdf">

<!ENTITY % RuleML_PREFIX "ruleml">

<!ENTITY % COLON ":">

<!ENTITY % SWRL_NAMESPACE_DECLARATION "xmlns%COLON;%SWRL_PREFIX;">

<!ENTITY % RDF_NAMESPACE_DECLARATION "xmlns%COLON;%RDF_PREFIX;">

<!ENTITY % RuleML_NAMESPACE_DECLARATION "xmlns%COLON;%RuleML_PREFIX;">

<!ENTITY % R2ML_NAMESPACE_DECLARATION "xmlns%COLON;">

<!-- datatypes and literals from RDF -->

<!ENTITY % RDFDataType "%RDFPREFIX;%COLON;datatype">

<!ENTITY % RDFLiteral "%RDFPREFIX;%COLON;literal">

<!-- vocabulary names -->

<!ENTITY % Class "Class">

<!ENTITY % ID "id">

<!ENTITY % AssociationPredicate "AssocPred">

<!ENTITY % DataPredicate "DataPred">

<!ENTITY % Attribute "Attr">

<!ENTITY % ReferenceProperty "RefProp">

<!-- objects, data and variables -->

<!ENTITY % ObjectTerm "ObjectTerm">

<!ENTITY % ObjectVariable "OVar">

18

A General Markup Framework for Integrity and Derivation Rules

<!ENTITY % ObjectConstant "OConst">

<!ENTITY % RoleFunctionTerm "Role">

<!ENTITY % DataTerm "DataTerm">

<!ENTITY % DataVariable "DVar">

<!ENTITY % DataValue "DataValue">

<!ENTITY % OperationTerm "Operation">

<!ENTITY % AttributeFunctionTerm "Attribute">

<!ENTITY % BuiltinFunctionTerm "BuiltinFunction">

<!ENTITY % contextArgument "contextArgument">

<!ENTITY % objectArgument "objectArgument">

<!ENTITY % dataArgument "dataArgument">

<!ENTITY % VariableDeclaration "VariableDeclaration">

<!ENTITY % ObjectVariableDeclaration "OVarDecl">

<!ENTITY % DataVariableDeclaration "DVarDecl">

<!ENTITY % value "value">

<!ENTITY % namespaceID "namespaceID">

<!ENTITY % name "name">

<!-- atoms -->

<!ENTITY % Atom "Atom">

<!ENTITY % ObjectAtom "ObjectAtom">

<!ENTITY % AssociationAtom "AssocAtom">

<!ENTITY % associationPredicateRef "assocPredRef">

<!ENTITY % ObjectDescriptionAtom "DescrAtom">

<!ENTITY % ReferencePropertyObjectTermPair "PropOTermPair">

<!ENTITY % referencePropertyRef "propRef">

<!ENTITY % AttributeDataTermPair "AttrDTermPair">

<!ENTITY % attributeRef "attrRef">

<!ENTITY % ObjectClassificationAtom "OClassAtom">

<!ENTITY % classRef "classRef">

<!ENTITY % AttributionAtom "AttrAtom">

<!ENTITY % ReferencePropertyAtom "PropAtom">

19

A General Markup Framework for Integrity and Derivation Rules

<!ENTITY % DataClassificationAtom "DClassAtom">

<!ENTITY % RDFdataTypeRef "rdf:resource">

<!ENTITY % DataRelationAtom "RelAtom">

<!ENTITY % dataPredicateRef "relPredRef">

<!ENTITY % EqualityAtom "Equal">

<!ENTITY % InequalityAtom "Different">

<!-- formulas -->

<!ENTITY % LogicalStatement "Filter">

<!ENTITY % AndOrNafNegFormula "AndOrNafNegFormula">

<!ENTITY % NegObjectFormula "NegObjectFormula">

<!ENTITY % NegObjectAtom "Neg">

<!ENTITY % QF-WeakNegation "Naf">

<!ENTITY % QF-StrongNegation "Neg">

<!ENTITY % QF-Conjunction "And">

<!ENTITY % QF-Disjunction "Or">

<!-- rules -->

<!ENTITY % DerivationRule "DerivationRule">

<!ENTITY % AlethicIntegrityRule "AlethicIntegrityRule">

<!ENTITY % DeonticIntegrityRule "DeonticIntegrityRule">

Example 1 The integrity rule example from Figure 21 is based on the case study of a
fictitious car rental company called EU-Rent.

<!-- Integrity Rule in a language based on R2ML -->

<AlethicIntegrityRule xmlns:srv="http://www.services.org/EU-Rent/">

<constraint>

<OClassAtom classRef="srv:Rental">

<OVar name="r1"/>

</OClassAtom>

<PropAtom propRef="srv:returnBranch">

<subject><OVar name="r1"/></subject>

<object><OVar name="rb"/></object>

</PropAtom>

<PropAtom propRef="srv:pickupBranch">

20

A General Markup Framework for Integrity and Derivation Rules

reservation date
pick up date
expected return date
actual return date
/rental price
/discount
start date
end date

rental

branch name
branch address
branch postcode

branch
*

pick up branch

1

return branch1
*

/oneway rental

If rental is not a one way rental
then return branch of rental must be the same as pick-up branch of rental.

Figure 21: If rental is not a one way rental then return branch of rental must be the
same as pick-up branch of rental.

<subject><OVar name="r1"/></subject>

<object><OVar name="pb"/></object>

</PropAtom>

<Neg>

<OClassAtom classRef="srv:OneWayRental">

<OVar name="r1"/>

</OClassAtom>

</Neg>

<Equal>

<OVar name="rb"/>

<OVar name="pb"/>

</Equal>

</constraint>

</AlethicIntegrityRule>

The following derivation rule example is based on the EU-Rent case study as well.

Example 2 The first condition of this rule ”no rental associated with the rental car”,
corresponds to a negation-as-failure, which is expressed by the tag <Naf>. The second
condition, not scheduled for service is a categorization and corresponds to a strong

21

A General Markup Framework for Integrity and Derivation Rules

Figure 22: A car is available for rental if it is not assigned to any rental and is not
scheduled for service.

negation, because it requires the value to be explicitly false.

<!-- Derivation Rule in a language based on R2ML -->

<DerivationRule xmlns:srv="http://www.services.org/EU-Rent/">

<condition>

<OClassAtom classRef="srv:RentalCar">

<OVar name="c1"/>

</OClassAtom>

<OClassAtom classRef="srv:RentalContract">

<OVar name="rc"/>

</OClassAtom>

<Naf>

<PropAtom propRef="srv:isAssignedTo">

<subject><OVar name="c1"/></subject>

<object><OVar name="rc"/></object>

</PropAtom>

</Naf>

<Neg>

<OClassAtom classRef="srv:rentalCarScheduledForService">

<OVar name="c1"/>

</OClassAtom>

</Neg>

</condition>

<conclusion>

<OClassAtom classRef="srv:isAvailable">

<OVar name="r1"/>

</OClassAtom>

22

A General Markup Framework for Integrity and Derivation Rules

</conclusion>

</DerivationRule>

5 Conclusion and Future work

In this paper, we have presented R2ML, a framework for rule markup language design
of integrity and derivation rules. The modeling is based on the method of MOF/UML
meta-modeling for defining the abstract syntax of languages. We have constructed all
fundamental concepts needed for modeling of integrity and derivation rules in semantic
web and provided parameterized DTD definitions for each concept. Section 3 is devoted
to the position of the R2ML framework and SWRL/RuleML approaches. As a conclu-
sion we accommodate all constructs from SWRL and RuleML. The rule examples from
Section 4 demonstrate that R2ML is a powerful framework and could represent various
kinds of rules. This paper is a first step in R2ML framework development and immedi-
ate future work will be devoted to: developing a mechanism for automatically schema
generation from visual models, providing an abstract syntax and an abstract semantics
and developing use-cases for rules in different areas of information systems.

References

[1] Clark, K.L., Negation as Failure, in: Gallaire, H., and Minker, J. (eds.), Logic and
Data Bases, Plenum Press, NY, pp.293-322, 1978.

[2] Gelfond, M., Lifschitz, V., The stable model semantics for logic programming In
Proc. of ICLP-88, pp. 1070-1080.

[3] Gelfond, M., Lifschitz, V., Classical Negation in Logic Programs and Disjunctive
Databases, New Generation Computing, vol. 9, pp. 365-385, 1991.

[4] Wagner, G., How to Design a General Rule Markup Language, Proceedings of
the Workshop XML Technologies for the Semantic Web (XSW 2002), HU Berlin,
Insti tut fur Informatik, June 2002, Lecture Notes in Informatics, Gesellschaft f.
Informatik.

[5] Wagner, G., Antoniou, G., Tabet, S., and Boley, H.,The Abstract Syntax of
RuleML Towards a General Web Rule Language Framework, Rule Markup Ini-
tiative (RuleML), http://www.ruleml.org

23

A General Markup Framework for Integrity and Derivation Rules

[6] Wagner, G., Web Rules Need Two Kind of Negations, in Proc. of Principles and
Practice of Semantic Web Reasoning, PPSWR 2003, pp.33-50.

[7] DOM Model, W3C Recommendation, http://www.w3.org/DOM/

[8] Jess, Sandia Lab., http://herzberg.ca.sandia.gov/jess/

[9] Model Driven Architecture (MDA), OMG, http://www.omg.org/cgi-bin/doc?mda-
guide

[10] MS OutLook, Microsoft Corp., http://www.microsoft.com

[11] Object Constraint Language (OCL), v2.0, http://www.omg.org/docs/ptc/03-10-
14.pdf

[12] Object Management Group (OMG), http://www.omg.org

[13] Oracle Views, Oracle Corp., http://oracle.com

[14] Resource Description Framework (RDF), W3 Recommendation,
http://www.w3.org/RDF/

[15] Semantic Web Rule Language (SWRL), http://www.daml.org/swrl

[16] Standard Query Language (SQL1999),

[17] Web Ontology Language (OWL), W3 Recommendation,
http://www.w3.org/2004/OWL/

[18] XML Metadata Interchange (XMI),
http://www.omg.org/technology/documents/formal/xmi.htm

[19] XSB, http://xsb.sourceforge.net/

24

