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Abstract

Knowledge representation using ontologies constitutes the heart of
semantic technologies. Despite successful standardization efforts by the
W3C, however, there are still numerous different ontology representation
languages being used, and interoperability between them is in general not
given. The problem is aggrevated by the fact that current standards lay
foundations only and are well-known to be insufficient for the modelling of
finer details. Thus, a plethora of extensions of the basic languages is being
proposed, rendering the picture of ontology representation languages to
be chaotic, to say the least. While semantic technologies start to become
applicable and are being applied in adjacent areas of research and in re-
search projects with industrial participation, and can soon be expected
to become an integral part of industrial applications, the practitioner is
faced with the difficult task of choosing his basic ontology representation
paradigm. We will argue that the OWL subset known as Description Logic
Programs constitutes a very reasonable choice.

1 Semantic Technologies are everywhere

Accelerated by the vision of the semantic web, semantic technologies have re-
cently made significant advances towards applications. The underlying methods
and paradigms are already being transferred to adjacent areas of research in ar-
tificial intelligence, knowledge management, and elsewhere. Textbooks explain-
ing the foundations, e.g. [12], have appeared. Large national and international
projects on the topic are under way, like the EU funded SEKT1 project, the
KnowledgeWeb2 and REWERSE3 Networks of Excellence, or the SmartWeb4

project financed by the German Federal Ministry of Education and Research
(BMBF), to mention only a few.

∗The authors acknowledge support by the European Union under the SEKT project and
the KnowledgeWeb Network of Excellence, and by the German Federal Ministry for Education
and Research (BMBF) under the SmartWeb project.

1http://www.sekt-project.com
2http://knowledgeweb.semanticweb.org
3http://rewerse.net
4http://www.smartweb-project.org
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Partners from the industry play an important role in the just mentioned
projects and networks, as they help focussing the research on practical needs
and therefore accelerate the transfer of basic research to real applications. Be-
sides the involvement of major companies of wide international impact, small
and medium-sized spin-off companies like Ontoprise and others are successfully
leading semantic technologies to real applications.

As an example, we mention the HALO project5 by Vulcan Inc.6 whose ulti-
mate goal is the creation of a “digital Aristotle”, an expert tutor in a wide variety
of subjects. In a preliminary six-month phase the state-of-the-art in question-
answering, with an emphasis on deep reasoning, was assessed. The effort was
structured around the challenge of responding to variants of AP Chemistry ques-
tions that focused on a portion of the “Advanced Placement test: Chemistry”,
used in the US as a qualification test before entering unversity as a student.
The system developed by Ontoprise, OntoNova, answers questions from this
AP test. OntoNova justifies its answers in detail-giving, natural-language expla-
nations. The results of the intial assessment showed that semantic technologies
are very well suited for such complex modelling and reasoning tasks, indeed sys-
tem performance was in general much better than that of real students taking
the exam.

2 The central role of ontologies

Semantic technologies rest on ontologies as the central paradigm for modelling
knowledge. They act as reference points for the meaning of data, and thus enable
the sharing of conceptualizations. Logical aspects of ontologies furthermore allow
for complex reasoning tasks over the shared knowledge, and for a formally —
i.e. semantically — sound treatment of data.

The use of ontologies for the representation of meaning indeed is one of the
distinguishing aspects of semantic technologies. The development of suitable
ontology representation languages consequently is and has been one of the cen-
tral research tasks for establishing and driving the field. A number of different
paradigms have been proposed and are still being developed and applied. Some
basic languages, like OWL [10, 2], have been established as standards, but there
is general agreement that further extensions and refinements will be needed,
taking some of the basic intuitions of competing paradigms into account. In
consequence, the quest for suitable ontology representation standards is still
open and being pursued with frenzy.

3 The Babel of ontology representation lan-
guages

Apparently, some of the reasons why there are competing ontology represen-
tation languages lie in the differing requirements imposed by the respective
application scenarios to which semantic technologies are being applied. Simpler
languages are easier and more efficient to deal with but lack the complex mod-

5http://www.projecthalo.com
6http://www.vulcan.com
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elling facilities of the richer paradigms. Some scenarios may require particular
modelling facilities or even tools which are only available for certain paradigms.

Of the major ontology representation languages, we mention a few. The
Resource Description Framework RDF [11] — and its Vocabulary Description
Language RDF Schema (RDFS) — is a W3C standard for the basic modelling
of resources. While it is often being used directly as an ontology representation
language, it lacks some of the basic logical features and semantic expressivity
needed for taking real advantage of the added-value which semantic technologies
offer.

The Web Ontology Language OWL [10, 2], in contrast, is a very expres-
sive ontology representation language which can be described as a fragment of
first-order predicate logic. Despite its being a W3C standard, it comes in three
different versions, namely as OWL Lite, OWL DL and OWL Full, where the
first two are decidable but not fully RDFS-compatible, while the latter is un-
decidable and does not harmonize well with the first two. Furthermore, there
currently do not exist any implemented reasoners which support all of OWL
DL or OWL Full, and even for the implemented fragments reasoning tasks scale
badly due to the underlying high complexities.

Another major paradigm used for ontology modelling is F-Logic [8, 1]. While
OWL is based on the Description Logic paradigm [3], F-Logic is strongly re-
lated to logic and object-oriented programming, and allows for the modelling of
knowledge by implication rules, a feature missing in OWL. F-Logic, for example,
underlies the OntoBroker system which was used in the abovementioned HALO
project.

4 DLP in a nutshell — and why it is good for
you

For applying semantic technologies, the practicioner is faced with the question,
which of the above — or other — ontology modelling paradigms should be
adopted. For performance reasons, simpler paradigms are often preferable, but
equally important is interoperability between different systems and reusability
in the future, i.e. compatibility with to-be established standards.

We argue that Description Logic Programs (DLP)7 as described in [4, 13]
provide a basic ontology modelling paradigm which meets most of the require-
ments above while being a flexible choice for future developments. In a nutshell,
DLP is a fragment of OWL corresponding to Horn clauses8, i.e. to the logic
programming fragment of OWL. As such, it is a proper fragment of both OWL
and F-Logic. While it is intuitively clear what DLP is, formal characterizations
are not entirely straightforward, mainly due to the question what “intersection”
between two languages is supposed to mean exactly, e.g. whether it should be
understood in a semantic or a syntactic way — we will discuss this in more
detail in Section 5.

But in order to facilitate the usage of OWL DLP, we can describe an easy
to use sublanguage of DLP by listing all the constructors which can be used

7See also http://logic.aifb.uni-karlsruhe.de.
8A Horn clause is a formula in first order predicate logic which is in conjunctive normal

(i.e. clausal) form and contains at most one positive (non-negated) literal. See e.g. [9].
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freely in an OWL ontology without running the risk of leaving DLP — provided
the usual OWL DL constraints are also being adhered to. This does not mean
that other constructors are entirely forbidden in OWL DLP. It is just that their
usage underlies further constraints which we will discuss in Section 5.

Allowed OWL constructors: Class, Thing, subClassOf, Property, sub-
PropertyOf, domain, range, Individual, equivalentClass, equivalentProperty,
sameAs, differentFrom, AllDifferent, ObjectProperty, DatatypeProperty, in-
verseOf, TransitiveProperty, SymmetricProperty, FunctionalProperty, Inverse-
FunctionalProperty, intersectionOf.

In order to use DLP, there is no need for special software as standard OWL
editors can be used to create valid DLP ontologies. As for expressivity, it was
shown in [13] that existing available ontologies often use very few constructs
outside the DLP language fragment. It thus supports most of the requirements
currently made in practice. The use of DLP in major projects such as SEKT,
SmartWeb, WSMO9 or SweetRules10 further justifies our argument. As for per-
formance, DLP enjoys polynomial data complexity and exptime combined com-
plexity, which renders it to be far better than the more expressive languages we
mentioned.

DLP also provides a flexible choice for the future. As it is a common fragment
of major paradigms, it is compatible in principle with whatever paradigm will
turn out to be more popular. Extensions made for either more general language
can be adopted for the fragment in a straightforward manner. Modelling and
reasoning tools available for OWL or F-Logic can naturally deal with DLP, and
interoperability is guaranteed to the largest extent possible.

5 What DLP is

DLP is the Horn fragment of OWL DL. This apparently neat statement, exam-
ined closely, turns out to be of limited use in practice. This is caused by the fact
that “Horn fragment” refers to a syntactic fragment of first-order predicate logic
(FOL), while OWL DL is commonly perceived as a semantic fragment of FOL.
Consequently, the initial statement of this section reads that DLP is the syn-
tactic Horn fragment (in the sense of FOL syntax) of something (namely OWL
DL) which is not in FOL syntax, but can semantically be mapped to a syntactic
fragement of FOL. Obviously, this needs to be explained, which is what we will
do in the following. Along the way, we will also come up with clear explanations
what DLP is. Let us start with two perspectives on the DLP definition problem,
one semantic, the other syntactic. If the reader is not interested in these rather
messy details, then he may safely skip to Section 5.1.

The semantic perspective says that an OWL-DL statement is in DLP if
and only if it can be written — semantically equivalently — as a set of Horn
clauses in FOL. Sadly enough, this perspective is not readily algorithmized as
it amounts to checking whether for a given FOL formula there exists a set of

9http://www.wsmo.org
10http://sweetrules.projects.semwebcentral.org
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Horn formulae with exactly the same models. In this generality, the checking
task is actually undecidable!

In order to exemplify the difficulties, consider the following example — we
choose description logic syntax for this and all subsequent examples, as it is the
most easily human-readable syntax for written documents.

Example 1 The (admittedly strange) OWL-DL statement

Father v Human tHuman

translates to the FOL formula

(∀x)(Father(x) → Human(x) ∨Human(x)),

which is not Horn. However, it is obvious that the following statement is se-
mantically equivalent, and is indeed a Horn statement:

(∀x)(Father(x) → Human(x)).

The final translation, however, was not syntactic, but semantic.
A more sophisticated (and more generic) example is the following. The state-

ment
∀.R.〈X〉 v D t E,

for R a role, D,E concept identifiers, and 〈X〉 some composite concept, trans-
lates naively to the FOL formula

(∀x)((∀y)(R(x, y) ∧ 〈X〉(y)) → (D(x) ∨ E(x))),

which is in general not syntactically transformable to a Horn clause. However,
if (∀y)(R(x, y) ∧ 〈X〉(y)) is unsatisfiable, then the formula is a tautology and
can thus be expressed by means of any Horn tautology. Checking satisfiability
of (∀y)(R(x, y) ∧ 〈X〉(y)) for arbitrarily sophisticated 〈X〉, however, amounts
to reasoning over OWL-DL, which is too complex a task to be included in a
language definition!

A more practical approach along the same intuition is to state that an OWL
DL statement is in DLP if and only if some given transformation algorithm can
rewrite it as a semantically equivalent Horn clause in FOL. Indeed, it is easy to
come up with reasonable transformation algorithms, and corresponding imple-
mentations have this way shown that most of the currently available ontologies
are in DLP (see [13]). While this approach is not entirely satisfactory from a
principled-based perspective, we believe that it is a practical one, as the finer
details will rarely matter in practice, and reference to a concrete (implementa-
tion of a) transformation algorithm will suffice to clarify which “dialect” of DLP
one refers to.

The syntactic perspective is more helpful than the semantic perspective
for the ontology engineer who wants to create DLP ontologies from scratch,
as a constant checking for Hornness is unpractical.11 The syntactic approach

11It may actually become practical if ontology editors be equipped with real-time Horn
checkers, but such a thing does currently not exist.
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thus strives for a concrete syntax definition which tells the ontology engineer
how to manually create DLP ontologies. The discussion provided in Example 1
reveals the difficulties inherent in this approach: Any concretely given syntax
will disallow constructs which the ontology engineer may be inclined to use, but
which are semantically redundant and should thus not inflict on the DLPness
of a statement.

We therefore believe that a bottom-up syntactic definition of DLP will not be
entirely satisfactory, and defining DLP in relation to a concrete transformation
algorithm is the more flexible approach. Nevertheless, the provision of a syntax
(or different versions of increasing complexity) which guarantees that the written
statements are DLP statements will be of much practical help. A first step
towards this was provided by the list of allowed OWL constructors in Section 4.
A more sophisticated syntax definition will be provided below.

5.1 Two working definitions

Before we move on to defining what we mean by DLP, we first need to clarify four
additional issues, concerning concrete domains, equality for instances, number
restrictions, and integrity constraints

Concrete domains. Adhering to the naive intuition as DLP being a Horn
fragment of OWL, we disallow concrete domains. We actually understand that
concret domains are of utmost importance in practice, but we nevertheless think
that they should not be part of the pure core language. It appears, however, that
the addition of concrete domains to DLP, for example in the form of built-ins
in a logic programming framework, will not pose any particular difficulties if
practical issues require it.

Equality for instances can be expressed if a logic with equality theory is
used. We perceive this as an optional feature of DLP.

Number restrictions will in general be disallowed for the same reason as
concrete domains. However, some number restrictions can be rewritten using
equality for instances or the existential quantifier, and may therefore be in-
cluded.

Integrity constraints are not Horn clauses, but are commonly used in logic
programming besides Horn clauses.12 As for equality, we perceive this as an
optional feature of DLP.

The semantic approach

Adhering to the semantic perspective discussed earlier, we tie our definition of
DLP to a concrete implementation of a transformation algorithm. The refer-
ence implementation is KAON213, respectively the KAON2-based conversion
tool dlpconvert14, which accepts OWL DL ontologies as input, checks them for

12Integrity constraints are formulae in conjunctive normal form which contain negated lit-
erals only.

13http://kaon2.semanticweb.org
14http://logic.aifb.uni-karlsruhe.de/dlpconvert

6



Hornness, and returns the corresponding DLP ontology in Prolog syntax. The
exact Horn checking algorithm is detailed in [7], which we do not repeat here.
It suffices to say that it boils down to a standard syntactic translation into
conjunctive normal form, with some straightforward improvements.

The syntactic approach

We now proceed with defining a concrete syntactic fragment of DLP, which is
expressive enough to be used by the ontology engineer in practice. Allowed are
the following, where a, b, ai stand for individuals, C stands for a concept name
and R,Q,Ri, Qi,j stand for role names.

• ABox:
C(a) (indiv. assertion)
R(a, b) (property assertion)
a = b (indiv. equivalence)

• Property Characteristics:
R ≡ Q (equivalence)
R v Q (subproperty)
> v ∀R.C (C 6= ⊥) (domain)
> v ∀R−.C (C 6= ⊥) (range)
R ≡ Q− (inverse)
R ≡ R− (symmetry)
> v≤1R (functionality)
> v≤1R− (inverseFunctionality)

• TBox: We allow all (and only) expressions of the form

∃Q(−)
1,1 . . .∃Q(−)

1,m1
.Left1u · · · u ∃Q(−)

k,1 . . .∃Q(−)
k,mk

.Leftk

v ∀R(−)
1 . . .∀R(−)

n .Right

where we allow Leftj to be of the forms C, {o1, . . . , on}, ⊥ or >, and
Right to be of the forms C or >. The superscript (−) shall indicate, that
an inverse symbol may occur in these places. Note that (by a common
abuse of notation) we allow any of k, mi, n to be zero. For k = 0 the left
hand side becomes >.

If integrity constraints are allowed, we furthermore allow Right to be of
the form ⊥. If equality of individuals is allowed, we furthermore allow
Right to be of the form {o}. We finally remark that Right may also be
of the form ∃R(−).{a}; in general, however, this causes the DLP ontology
to lie outside of the OWL Lite fragment.

We will proceed with examples in the next section, in order to explain the
definition just given.

It can be shown formally, that the syntactic definition above yields DLP
ontologies, and in fact includes all expressive features which were also allowed
in the original publications on DLP, i.e. in [4, 13]. Formal proof of this can be
found in [6].
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6 Examples

A rule of thumb for the creation of DLP ontologies is: Avoid concrete domains
and number restrictions, and be careful with quantifiers, disjunction, and nom-
inals. We give a small example ontology which includes the safe usage of the
latter constructs. It shall display the modelling expressivity of DLP.

Example 2 For the TBox, we model the following sentences.

(1) Every man or woman is an adult.
(2) An adult is a human who is not a child.
(3) A woman who has somebody as a child, is a mother.
(4) A man who is a parent of somebody, is a father.
(5) An orphan is the child of dead humans.
(6) A lonely child has no siblings.

They can be written in DLP as follows.

Man tWoman v Adult (1)
Adult v Human u ¬Child (2)

Woman u ∃childOf−.> v Mother (3)
Man u ∃parentOf.> v Father (4)

Orphan v ∀childOf.(Dead uHuman) (5)
LonelyChild v≤0childOf.parentOf.> (6)

For the RBox, we use the following.

parentOf ≡ childOf− parentOf and childOf are inverse roles.
parentOf v ancestorOf parentOf is a subrole of ancestorOf.

fatherOf v parentOf fatherOf is a subrole of parentOf.
> v ∀ancestorOf.Human Human is the domain of ancestorOf.

> v≤1fatherOf− fatherOf is inverse functional.

We can populate the classes and roles by means of an ABox in the following
way.

{Ian,Frank,Rudi,Horrocks} v Man
{Carole,Asun,Roberta} v Woman

fatherOf(Rudi, . . . )
Ian = Horrocks
. . .

Note that an ABox statement such as

{Carole,Asun,Roberta} v Woman

is simply syntactic sugar for the three statements

Woman(Carole) Woman(Asun) Woman(Roberta).
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We therefore consider it to be part of the ABox. To be precise, the original
statement is (syntactically) not in OWL Lite, but the equivalent set of three
ABox statements is.

Note also that class inclusions cannot in general be replaced by equivalences.
For example, the statement

Adult v Man tWoman

is not in DLP. The inverse inclusion

Man tWoman v Adult,

however, is in DLP, as it can be written semantically equivalently as the two
statements

Man v Adult
Woman v Adult.

7 Pointers to DLP

The initial publications introducing DLP language are [4, 13]. A website
with pointers to further resources is being maintained at http://logic.aifb.uni-
karlsruhe.de. Special efforts will be made to make the forthcoming KAON2 OWL
DL reasoner15 fully compatible with DLP requirements.

We also provide the KAON2-based tool dlpconvert that converts DLP on-
tologies written in OWL/XML or RDF/XML syntax to logic programming syn-
tax, retaining the semantics16, thus allowing the use of standard out-of-the-box
logic programming systems for DLP reasoning. We further plan to integrate
DLP into our OWL evolution framework evOWLution [5] in order to provide
the means to develop OWL ontologies with the guarantee to remain within DLP.
It is also planned to adapt existing ontology editors in order to help the user to
account for DLP automatically, thus enabling the standard user to fully lever-
age the power of DLP. Since DLP can be understood as a subset of OWL DL,
there is no need for recreating the whole range of ontology management tools.
Small adjustments — if any — of existing software will suffice for achieveing
full benefit of the existing systems and methodologies.
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