Compensated Horner Scheme

S. Graillat!, Philippe Langlois!, Nicolas Louvet!

DALI-LP2A Laboratory. Université de Perpignan Via Domitia.
firstname.lastname@univ-perp.fr, http://webdali.univ-perp.fr

Abstract. We present a compensated Horner scheme, that is an accu-
rate and fast algorithm to evaluate univariate polynomials in floating
point arithmetic. The accuracy of the computed result is similar to the
one given by the Horner scheme computed in twice the working precision.
This compensated Horner scheme runs at least as fast as existing imple-
mentations producing the same output accuracy. We also propose to com-
pute in pure floating point arithmetic a valid error estimate that bound
the actual accuracy of the compensated evaluation. Numerical experi-
ments involving ill-conditioned polynomials illustrate these results. All
algorithms are performed at a given working precision and are portable
assuming the floating point arithmetic satisfies the IEEE-754 standard.

1 Introduction

Polynomials appear in many areas of scientific computing and engineer-
ing. Computer Aided Design and Modeling, Mechanical Systems Design,
Signal Processing and Filter Design, Civil Engineering, Robotics, Sim-
ulation are for instance quoted in [6,5]. Developing fast algorithms and
reliable implementations of polynomial solvers are of challenging interest.
Numerical approaches include iterative methods like Newton’s method
or homotopy continuation methods. These iterative methods needs to
evaluate polynomials and their derivatives. Higham [10, chap. 5] devotes
an entire chapter to polynomials and more especially to polynomial eval-
uation.

In this paper we present an accurate and fast algorithm to evaluate uni-
variate polynomials in floating point arithmetic. By accurate, we mean
that the accuracy of the computed result is similar to the one given by
the Horner scheme computed in twice the working precision. By fast, we
mean that the algorithm run at least as fast as existing counterparts that
produce the same output accuracy. We also present how to compute in
pure floating point arithmetic a valid error error bound to check the ac-
tual accuracy of the proposed polynomial evaluation. These algorithms
are performed at a given working precision (no higher precision is nec-
essary) and are portable assuming the floating point arithmetic satisfies
the IEEE-754 standard.

Since we improve the Horner schema similarly as the well known Kahan’s
compensated summation method [12], the proposed evaluation algorithm

Dagstuhl Seminar Proceedings 05391
Algebraic and Numerical Algorithms and Computer-assisted Proofs
http://drops.dagstuhl.de/opus/volltexte/2006 /442

is presented as a compensated Horner scheme. The recent accurate sum
and dot product algorithms by Ogita-Rump-Oishi [20] strongly moti-
vates this paper (the proofs of presented error bounds use techniques
introduced in this latter reference).

1.1 Numerical Polynomial Evaluation

The classic Horner scheme is the optimal algorithm with respect to alge-
braic complexity for evaluating a polynomial p with given coefficients in
the monomial basis. Horner scheme is often provided by numerical and
scientific libraries, e.g. SPOLY and DPOLY in IBM ESSL, gsl_poly_eval in
GNU GSL, ... The small backward error the Horner scheme introduce
when computing in finite precision justifies its practical interest in float-
ing point arithmetic for instance. It is well known that the computed
evaluation of p(z) is the exact value at = of a polynomial obtained by
making relative perturbations of at most size 2n u to the coefficients of
p where n denotes the polynomial degree and u the finite precision of
the computation [10].

The relative accuracy of the computed evaluation p(x) with the Horner
scheme verifies the classic rule of thumb that links the forward error
to the condition number and the backward error. The classic condition
number of the evaluation of p(z) = 37" a;z’ at a given data z is

cond(p $) — Z?:O ‘CI,ZHCC‘Z — 5($)
’ |2 @i’ [p()]

The classic rule of thumb tells us that the accuracy of computed p(x) is

bounded as R

Ip(z) = ()] < a(n)u x cond(p, z),

()]

where a(n) is a (reasonable) linear function of the polynomial degree n
(here a(n) = 2n). Of course, the computed result p(z) can be arbitrary
less accurate than the working precision u when evaluating p(z) is ill-
conditioned. This is the case for example in the neighborhood of multiple
roots where all the digits or even the order of the computed value of p(z)
could be false.

(1)

How can we accurately perform an ill-conditioned polynomial evaluation?
Before describing the main existing tools, let us distinguish two levels of
(polynomial) ill-condition. When the computing precision is u, evaluat-
ing p(x) is ill-conditioned when 1 < cond(p, z) < 1/ u. There is no sense
to consider (arbitrary) more ill-conditioned polynomials, i.e., polynomi-
als such that cond(p,z) > 1/ u, except for example when the coefficients
are exact in precision u. In the following, we consider and define as ill-
conditioned polynomials both ill-conditioned polynomials and arbitrary
ill-conditioned polynomials assuming the latter satisfy this kind of nec-
essary condition for significance.

Numerous multiprecision libraries are available when the computing pre-
cision u is not sufficient to guarantee a prescribed accuracy. Fixed-length
expansions such as “double-double” or “quad-double” libraries [9] are ac-
tual and effective solutions to simulate twice or four times the IEEE-754
double precision [11]. For example a quad-double number is an unevalu-
ated sum of four IEEE-754 double precision numbers and its associated
arithmetic provides at least 212 bits of significand. These fixed-length
expansions are currently embedded in major developments such for ex-
ample within the new extended and mixed precision BLAS [16]. In this
context the natural way to improve the accuracy of a given subroutine is
to perform its internal computation within the extended precision these
libraries provide and to return a result rounded to the (external) work-
ing precision. A more detailed discussion and references about existing
implementations of expansions are for example available in [20].

1.2 The compensated Horner scheme improves
the classic rule of thumb for the computed solution
accuracy

We focus on the Horner scheme and constraint all computations to be
performed in a fixed precision, for instance the IEEE-754 double pre-
cision. In this paper and in its companion paper [7] we present an al-
ternative strategy to the fixed-length expansion libraries. As mentioned
before, we propose accurate and fast algorithms to evaluate univariate
polynomials in floating point arithmetic. By accurate, we mean that the
accuracy of the computed result is similar to the one given by the Horner
scheme computed in higher precision, for example using fixed-length ex-
pansions. This higher precision corresponds to twice the working pre-
cision for the proposed compensated Horner scheme. In the companion
paper [7], we generalize this compensated Horner scheme such that this
higher precision is k-fold the working precision. Of course the accuracy
of the result still depends on the condition number cond(p, z). By fast,
we mean that these algorithms run at least as fast as the fixed-length
expansion challenger that produce the same output accuracy. Here the
corresponding fixed-length expansions are the double-double format [1].

The proposed compensated Horner scheme requires no branch nor access
to the mantissa, and uses only one working precision. We prove that the
computed result res by the compensated Horner scheme is as accurate as
if computed in doubled working precision. This means that the accuracy
of 7 now satisfies a “compensated rule of thumb” being of the following
form,

% < u+B(n)u’ x cond(p, z). (2)
Again B(n) is a (reasonable) linear function of the polynomial degree n
and u is the precision of the computation. Such a result is given in next
Corollary 1.

The second summand in the right hand side of Relation (2) reflects the
accuracy of a backward stable computation performed in doubled work-
ing precision u?. The first one comes from the final rounding back to
the working precision u and means that the accuracy improvement the
second summand guarantee can not of course yield more accuracy than
the available precision. Hence we can first expect an evaluation as accu-
rate as possible for polynomials such that cond(p,) < 1/(8(n)u?), and
then for more ill-conditioned polynomials, an accuracy that satisfies the
classic rule of thumb with doubled working precision u?. Next Figure 1
illustrates such a behavior.

We also provide a dynamic bound for the accuracy of the compensated
Horner scheme. This bound is proved to be valid and computable in pure
floating point arithmetic. Together with the compensated evaluation,
this bound is useful to replace the classic couple Horner scheme and its
associated running error bound (see [10, chap. 5] for instance) when more
accuracy is necessary. This is the case for example when implementing
good stopping criteria for the Newton’s method in the neighborhood of
ill-conditioned roots.

1.3 Using error-free transformations to provide
more accuracy

These compensated algorithms reduce the effect in the Horner scheme
of the rounding errors generated by the finite precision arithmetic. The
key tool to introduce more accuracy is what Ogita, Rump and Oishi
call error-free transformations in [20]: “it is for long known that the ap-
proximation error of a floating point operation is itself a floating point
number”. Let fl(x) denotes the rounding to the working precision evalu-
ation of the real value z. It means that for two floating point numbers
a and b, and o an arithmetic operator in {+, —, X}, it exists a floating
point number e, computable with floating point operations, such that

aob="fl(aob)+e.

We later detail the corresponding algorithms for the summation and the
product from Knuth [13] and Dekker [3]. Other error-free transformations
exist for the division and the Fused-Multiply-and-Add FMA operator [2]
— FMA (a,b,c) =fl(a x b+ ¢).

The accuracy improvement is actually a correction of the global round-
ing error p(xz) — p(x), where p(z) is the result of the Horner scheme
performed in working precision. Such a correction has also been exper-
imented by Pichat for summation [21] and mentioned for the Horner
scheme in [22].

Using Tienari [23] and Linnainmaa [17, 18] results about linearization
error, Langlois developed a method and a software that computes the
first order corrected version of any algorithm [14,15]. He also proved
that the final error of the Horner scheme is linear with respect to the

generated errors and so could be corrected computing (exactly) the first
order term of p(z) — p(z). The generic correction in [14] relies on error-
free transformations and algorithmic differentiation. It can be used as
a tool to identify algorithms that could be improved by this first order
correction. An efficient implementation of such a corrected algorithm is
derived in-lining the computation of the correcting term in the original
algorithm. Some algorithms we present hereafter (and in [7]) have been
designed like this.

We have mentioned that our algorithms are at least as fast as the fixed-
length expansion counterparts that produce the same output accuracy.
The practical efficiency of algorithms derived from error-free transfor-
mations is emphasized in [20] and motivates this article. From a theo-
retical point of view, the computation of every step of the compensated
algorithm is similar to the corresponding “double-double” computation
but without performing the renormalization algorithm required by the
non-overlapping “double-double” representation. In term of measured
computing time, our experiments show that the compensated Horner
scheme is therefore more than twice faster than the Horner scheme with
“double-double”. See Table 3 at the end of this paper for such ratios.

1.4 Outline of the paper

The paper is organized as follows. We introduce the classic assumptions
and notations for floating point arithmetic and error analysis in Section 2.
In Section 3, we briefly review the algorithms for the error-free transfor-
mations of the summation and the product of two floating point numbers,
and we introduce the error-free transformation of the Horner scheme. In
Section 4, we describe our compensated algorithm for the polynomial
evaluation, and we prove that the computed result is of the same ac-
curacy as if computed in doubled working precision. We also provide a
valid and computable error bound for the compensated Horner scheme.
Numerical experiments for extremely ill-conditioned evaluations are pre-
sented in Section 5. We compare the compensated algorithm, in term of
computing time, to other algorithms with the same output accuracy.
At the first reading, one who know Ogita-Rump-Oishi’s paper [20] can
jump to the EFT of the polynomial evaluation (Theorem 2) and then to
the compensated Horner scheme (Algorithm 9), its accuracy (Theorem 3)
and the associated dynamic bound (Theorem 4). As in [20] we provide
extended results that take care of the possible underflow; proofs for this
case are gather in Annex A.

2 Standard model of floating point arithmetic
and the Horner scheme

2.1 Standard model

The notations used throughout the paper are presented hereafter. Most
of them come from [10, chap. 2]. As in the previous section, fl (-) denotes

the result of a floating point computation, where all the operations inside
the parenthesis are performed in the working precision. We also introduce
the symbols ¢, ©, ® and @, representing respectively the floating point
addition, subtraction, multiplication and division (e.g., a®b = fl (a + b)).
We adopt MATLAB like notations for algorithms.

The presented results are valid for any IEEE-754 like floating point arith-
metic [11], with round to the nearest. We constraint all the computations
to be performed in one working precision. We assume that no overflow
occur during the computations, but we take into account the gradual
underflow. Let us denote F the set of the floating point numbers, and let

— u be the relative error unit,

— X be the smallest positive normalized floating point number,

— v = Au be the underflow unit which is half the spacing between two

consecutive subnormal numbers.

For IEEE-754 double precision with round to the nearest and gradual
underflow, we have u =275~ 1.11-10716, A = 271922 2.92.. 107308,
and v =277~ 247.107%%.

When no underflow occur, the following standard model describes the
accuracy of every considered floating point computation. For a and b
in F (or in F* if necessary) and for o in {4, —, X, /}, the floating point
evaluation fl(a o b) of a o b is such that

fl(aob) = (aob)(1+e1) = (aob)/(1+e2), (3)

with |e1], |e2| < u. Addition and subtraction are exact in case of under-
flow [8]. To deal with possible gradual underflow, the standard model is
extended by replacing Relation (3) by the following one for multiplica-
tion and division [4]. For o in {X, /}, the floating point evaluation of aob
is such that

fllaob) = (aob)(1+e1)+m =(aob)/(1+e2)+n2, (4)

with |e1],|e2] < wu, |n1], |m2] < v, and e1m1 = e2m2 = 0 (at most one of
e1 and 71 or €2 and 72 is nonzero).

Remark 1. Let a and b be two nonnegative floating point numbers, and
let o be in {4, x}. From the standard model (3), it follows that

0<aob<(14u)fl(aob) and 0<aob< (1—u) 'fl(aoh).

To deal with gradual underflow in the case of the product, Relation (4)
yields

0<axb< (14+u)fl(axb)+v and 0<axb< (1—u) 'fl(axb)+v.

To keep track of the (1 + ¢) factors in next error analysis, we use the
relative error counters introduced by Stewart. For a positive integer n,
(n) denotes the following product,

(n):H(l—b-si)p'i, with p; =41 and |&[<u (i=1,--,n).

i=1

The relative error counters verify (j)(k) = (j)/(k) = (j + k). The quan-
tities -y, are defined as usual to be

nua

=T

When using v, we always implicitly assume nu < 1. When (n) denotes
any error counter, there exists a quantity 6, such that

(ny=1+6, and |0,] < n.

Remark 2. Next relations (about 7,) will be useful in the sequel. We
verify the following inequalities for any positive integer n,

nu < Yn, In < Yn+1, (1 + u)’)/n < Yn+1, 2n u(l + "YQn—Q) < Yon-

2.2 The Horner scheme

The Horner scheme is the classic method for evaluating a polynomial
p(z) = 31, a:;z’ (Algorithm 1). For any floating point value z we denote
Horner (p, z) the result of the floating point evaluation of the polynomial
p at x using the Horner scheme.

Algorithm 1 Horner scheme

function [ro] = Horner (p, x)
Tn = Gn
fori=n—1:-1:0

TP =Tit1 QT D a;
end

A forward error bound for the result of Algorithm 1 is (see [10, p.95])

Ip(z) — Horner (p,) | < 20 p(x), (5)

where
pla) = laila’].
i=0

So, the accuracy of the computed evaluation is linked to the condition
number of the polynomial evaluation (1) satisfying the previously men-
tioned rule of thumb,

|p(z) — Horner (p, z) |
lp(z)]

Clearly, the condition number cond(p,) can be arbitrarily large. In par-
ticular, when cond(p,z) > 1/v2n, we cannot guarantee that the com-
puted result Horner (p, x) contains any correct digit.

If a FMA instruction is present on the architecture, then we can change
the line 7; = ri4+1 ® £ @ a; in Algorithm 1 by r; = FMA (ri41, 2, a;). This
enable to improve the previous error bound since we have now,

< 2, cond(p, x). (6)

|p(z) — Horner (p, z) |
Ip(2)]

< vn cond(p, x).

3 Error-free transformations (EFT)

In this section, we review well known results concerning the error-free
transformations of the elementary floating point operations +, — and Xx.
We also introduce a new EFT for the polynomial evaluation using the
Horner scheme.

3.1 EFT for the elementary operations

Let o be in {+,—, X}, a and b be two floating point numbers, and T =
fl(a o b). The elementary rounding error in the computation of T is

y=(aob)—fl(aob), (7)

that is the difference between the exact result and the computed result of
the operation. In particular, for o in {4, —, X}, the elementary rounding
error y both belongs to F, and is computable using only the operations
defined within F. Thus, for o in {4, —, x}, any pair of inputs (a,b) in F?
can be transformed into an output pair (Z,y) in F? such that

aob=Z+y and ZT=~fl(aob).

Let us emphasize that this relation between these four floating point val-
ues relies on real operators and exact equality (i.e., not on approximate
floating point counterparts). Ogita et al. [20] call such a transformation
an error-free transformation (EFT).

The EFT for the addition (o = +) is given by the well known TwoSum
algorithm by Knuth [13]. TwoSum (Algorithm 2) requires 6 flops (float-
ing point operations).

Algorithm 2 EFT of the sum of two floating point numbers.

function [z, y] = TwoSum (a, b)
r=a®b
z=rBa
y=(o(x62)® o2

If the two floating point inputs a and b are such |a| < |b|, then we can
use the following algorithm FastTwoSum for the EFT of the addition.
It satisfies the same properties as TwoSum but requires only 3 flops.
Nevertheless, if we count absolute value and comparison as one flop, this
algorithm requires 6 flops. In practice, FastTwoSum is up to 50 % slower
than TwoSum du to the presence of branching.

Algorithm 3 EFT of the sum of two floating point numbers when |a| <
[b1.

function [z, y] = FastTwoSum (a, b)
r=ad®b
y=>b6(roa)

For the EFT of the product, we first need to split the input arguments
into two parts. It is done using Algorithm 4 by Dekker [3]. If ¢ is the
number of bits of the mantissa, let r = [¢/2]. Algorithm 4 splits a float-
ing point number a into two parts « and y, both having at most r — 1
nonzero bits, such that a = x + y. For example, with the IEEE-754
double precision, ¢ = 53, r = 27, therefore the output numbers have at
most r—1 = 26 bits. The trick is that one bit sign is used for the splitting.

Algorithm 4 Splitting of a floating point number into two parts.

function [z, y] = Split (a)
z=a® (2" +1)
r=20(26a)
y=a0x

Then, Algorithm 5 by Veltkamp (see [3]) can be used for the EFT of the
product. This algorithm is commonly called TwoProduct and requires 17
flops.

Algorithm 5 EFT of the product of two floating point numbers.

function [z, y] = TwoProduct (a, b)

r=a®b
[an, ai] = Split (a)
[bh7 bl] = Split (b)

y=a @S ((zSar®by) ©ar®@br) ©an b

The next theorem exhibits the main properties of TwoSum and TwoProd,
even in presence of underflow.

Theorem 1 ([20]). Leta,binF and z,y € F such that [z,y] = TwoSum(a, b)
(Algorithm 2). Then, also in the presence of underflow,

a+b=a+y, w=—adb, |yl < uel, |yl < ula+d]

Algorithm TwoSum requires 6 flops.
Let a,b € F and z,y € F such that [z,y] = TwoProduct(a,b) (Algorithm
5). Then, if no underflow occurs,

axb=xty, w=a®b, |y < ulzl, |yl < ulaxb,

and, in the presence of underflow,

axb=x+y+5n, = =a®b, |yl < ulz|+5v, |y| < ulaxbl+5v with |n| < v.

Algorithm TwoProduct requires 17 flops.

TwoProduct can be rewritten in a very straightforward way for proces-
sors that provide a Fused-Multiply-and-Add operator (FMA), such as
Intel Itanium or IBM PowerPC. For a, b and ¢ in F, FMA (a, b, ¢) is the
exact result a x b+ c rounded to the nearest floating point value. Thus
y=axb—a®b=FMA(a,b,—(a®b)) and TwoProduct can be replaced
by following Algorithm 6 requiring only 2 flops.

Algorithm 6 EFT of the sum of two floating point numbers with a
FMA.

function [z, y] = TwoProductFMA (a,b)
r=a®b
y = FMA (a,b, —z)

We notice that algorithms TwoSum, TwoProduct and TwoProductFMA
require only well optimizable floating point operations. They do not use
branches, nor access to the mantissa that can be time consuming.

In the sequel of the paper, we assume that no FMA operation is used
except in algorithm TwoProductFMA. Our goal is to design algorithms
whose proofs are valid on any IEEE-754 compliant computer. All the
flop counts reported in the sequel of the paper have been done under
this assumption.

3.2 An EFT for the Horner scheme

We now propose an EFT for the polynomial evaluation with the Horner
scheme.

Theorem 2. Let p(z) = Y. a:;x’ be a polynomial of degree n with
floating point coefficients, and let x be a floating point value. Then Algo-
rithm 7 computes both
1) the floating point evaluation Horner (p, x) and
i1) two polynomials pr and ps of degree n — 1 with floating point coeffi-
cients,
and we write

[Horner (p, z) , px, po] = EFTHorner (p, z) .
Then, if no underflow occurs,

p(x) = Horner (p, z) + (pr + po)(2), (8)
and, in the presence of underflow,
n—1)
p(z) = Horner (p, z) + (pr + po)(z) + 5 Z niz', with || < v. (9)
i=0
Algorithm 7 requires 23n flops. If TwoProductFMA is used instead of
TwoProduct, then the flops count drops to 8n.

Algorithm 7 EFT for the Horner scheme

function [Horner (p, z) , px, po] = EFTHorner(p, x)
Sn = Qn
forc=n—-1:-1:0
[pi, mi] = TwoProduct(sit1,x)
[$i,04] = TwoSum(p;, a;)
Let m; be the coefficient of degree i in px
Let o; be the coefficient of degree i in p,
end
Horner (p, z) = so

If no underflow occurs during the computation, Relation (8) means that
EFTHorner is an EFT for the polynomial evaluation with the Horner
scheme. In the presence of underflow, we do not have an EFT anymore,
but we still write [Horner (p, z) , px, po] = EFTHorner (p, z).

Proof (Proof of Theorem 2 (without underflow)). Since TwoProduct and
TwoSum are EFT from Theorem 1 it follows that s;11x = p; + m and
pi + a; = s; + 0;. Thus we have

$i = Sitix+a;, —m —o;, for i=0,...,n—1.

Since s, = an, the whole for loop yields
n) n—1) n—1]
S0 = [Z aizrl] — [Z m:]cl} — |:Z oixl] ,
i=0 i=0 i=0

and Horner (p, z) = p(x) — (pr + po) ().

The following proposition is useful to prove the accuracy bound on com-
pensated Horner scheme in next section. This result proves that the
conditioning of the (polynomial) error evaluation is better by a factor of
the precision uthan the conditioning of the initial polynomial evaluation.
This property justifies the interest to apply recursively such compensated
accuracy improvement in [7].

Proposition 1. Given p(z) =>""_, a;x’ a polynomial of degree n with
floating point coefficients, and x a floating point value. Let y be the float-
ing point value, pr and ps, be the two polynomials of degree n — 1, with
floating point coefficients, such that [y, p~,po] = EFTHorner(p, z) (Algo-
rithm 7). Then, if no underflow occurs,

(Pr + po)(@) < y20 P(2),

and, in the presence of underflow,

n—1

(Pr + Po) (@) < 720 B(2) + (5 +720) v) _ [2']-

i=0
Proof (Proof (without underflow)). Applying the standard model of float-

ing point arithmetic (3), for ¢ = 1,...,n, the two computations in the
loop of Algorithm 7 verify

Pril = Isn-in182] < (1 Wlsa—ialle] and [sa—il = pa—i@an—i| < (1+w)(|pa—il+lan—]).

Let us prove by induction that, for ¢ = 1,...,n,
Pl < (1+792i-1) D an—itylla’|, and (10)
j=1
i .
lsn—al < (1+72:) Y lan—itsll2’]. (11)
j=0

For i = 1, since $n = an we have |pp—1] < (14 u)|an||z| < (1+71)|an||z|
and (10) is satisfied. On the other hand, |sn—1| < (14+u) ((1 4+ 71)|an]|z] + |an-1]) <
(1472) (|an||z| + |an-1]), and (11) is also satisfied. Now we suppose that
(10) and (11) are true for some integer ¢ such that 1 <4 < n. Then we
have,
[Pr—+n] < (14 u)|sn—i||z|.

From the induction hypothesis, we derive,

PG4 < L+ W1 +720) Y lan—irs ||z
j=0
i+1)
< (14 y2641)-1) Y lan—(ir1)+4ll27|-
j=1

Therefore we have,

Isn—i+1)] < (L4 W) (|Pn—(i+1)| + lan—+1)])
i+1

< (14 W)L +726041-1) | D 1an—rni 1127 + lan—11)|
j=1
i+1)
< (L4 72341) D [@n—(i41)45]127]-
j=0

Relation (10) and Relation (11) are proved by induction. Thus, for i =
1,...,n,

[pr—illz" '] < (14 72i-1) Blz) and fsn—ilz" ™" < (14 720) Blx).

From Theorem 1, since TwoSum and TwoProd are EFT, fori =0, -+ ,n—
1, we have |m;| < ulp;| and |o;| < uls;|. Therefore,

n—1 n

(Pr + o) (@) = D (Im| +loul)le’| < u)(Ipn—il + lon—il)le" "],

=0 =1

and we obtain

n

(Pr 4 Po)(@) < 0 (24 i +720) Be) < 20 (14 720) Bla).

i=1
Since 2nu(1l 4 v2n) = 7y2n, we finally obtain (px + ps)(z) < von p(z).

The proof in case of underflow is presented in Annex A.

4 Compensated Horner scheme

From Theorem 2 the global forward error affecting the floating point
evaluation of p at x according to the Horner scheme is

e(r) = p(x) — Horner (p, z) = (pr + po)(T).

The coefficients of these polynomials are exactly computed by Algo-
rithm 7, together with Horner (p, z). Indeed, if [Horner (p,z),px,ps] =
EFTHorner(p, x), then pr and p, are two exactly representable polyno-
mials such that p(xz) = Horner (p,z) + (p» + ps)(x). Therefore, the key
of the algorithm proposed in this section is to compute an approximate
of the global error e(z) in working precision, and then to compute a
corrected result
res = Horner (p, z) @ fl(e(x)).

We say that ¢ = fl(e(z)) is a corrective term for Horner (p, z). The cor-
rected result res is expected to be more accurate than the first result
Horner (p, x) as proved in the sequel of the section.

4.1 Evaluation of the sum of two polynomials

Our aim is now to compute the corrective term ¢ = fl ((pr + po)(x)).
Two different ways to evaluate this sum of polynomials are
i) evaluate the polynomial whose coefficients are those of pr+p, rounded

to the nearest floating point value,

ii) compute Horner (p-,) and Horner (po, z) and then sum the two re-
sults.

In this subsection, we consider the first solution which is here better in

term of computing time.

Let p and ¢ be two polynomials with floating point coefficients, such
that p(z) = 37" ,a:x’ and q(z) = 31, bix’. The coefficients of (p +
q)(x) = > ;(ai + bs)x" are not necessarily floating point numbers. We
compute an approximate of (p+¢)(z) by evaluating the polynomial whose
coefficients are those of p+ ¢ rounded to the nearest floating point value.
This process is described by Algorithm 8.

Algorithm 8 Evaluation of the sum of two polynomials.

function [ro] = HornerSum (p, ¢,)
Tn = an & bn

for i=n-1:-1:0
ri =Tit1 @ D (a; D bs)
end

Lemma 1. Let us consider the floating point evaluation of (p + q)(z)
computed with HornerSum (p, g, z) (Algorithm 8). Then, in case no un-
derflow occurs, the computed result satisfies the following forward error
bound,

|HornerSum (p, ¢,) — (p + ¢) ()| < y2n+1(P + 9)(2),

and, in the presence of underflow,

[HornerSum (p,q,) — (p+ q)(2)| < (5 + @)(@) + (1 +120-1) v Z ']

Algorithm HornerSum requires 3n + 1 flops.

Proof (Proof (without underflow)). Considering Algorithm 8, we have
Trn = Gn ® by = (an +bn){l),and for i =n—1,---,0,

7 =Tit1 QT @ (a; B b;) = rig12(2) + (a; + b:i)(2).
Therefore it can be proved by induction that

ro = (an +bn)z"(2n + 1) + ni(ai + b))z (2(i + 1)).
i=0

Thus there exist quantities 82,41, 02n, - - - , 01, bounded according to |0;| <
vi, such that

n—1
70 = (an + bn)2" (1 + 02n11) + (@i + bi)a' (1 + Oais1)).
i=0
Since 7o = HornerSum (p, ¢, x), we finally obtain

n

res — Z(ai + b;)z’

=0

n

< Yont1 3 lai + bil|z| < yansa (B + 9)(2).

=0

The proof in case of underflow is presented in Annex A.

4.2 The compensated Horner scheme and its error
bound

In the previous subsection, we have chosen algorithm HornerSum to com-
pute an approximate of the evaluation of the sum of two polynomials at
a given value. This algorithm is used with EFTHorner (Algorithm 7)
to compute the corrective term for the polynomial evaluation with the
Horner scheme.

Algorithm 9 Compensated Horner scheme

function [res] = CompensatedHorner (p,)
[h, =, ps] = EFTHorner (p, z)

¢ = HornerSum (pr, ps, x)

res=hdc

We prove hereafter that the result of a polynomial evaluation computed
with this compensated Horner scheme (Algorithm 9) is as accurate as if
computed by the classic Horner scheme using twice the working precision
and then rounded to the working precision.

im0 a;x’ of degree n with float-
ing point coefficients, and x a floating point value. We consider the result
CompensatedHorner (p, z) computed by Algorithm 9. Then, if no under-
flow occurs,

Theorem 3. Given a polynomial p = > "

|CompensatedHorner (p, z) — p(2)| < ulp(z)| +73, 5(z), (12)

and, in the presence of underflow,
n—1]
|CompensatedHorner (p, z) — p(z)| < ulp(z)| + 3, plz) + K v Z |z*],
i=0

with K < 7. CompensatedHorner requires 26n + 3 flops. If TwoPro-
ductFMA is used instead of TwoProduct, then the flops count drops to
11n — 1.

Proof (Proof (without underflow)). The absolute forward error generated
by Algorithm 9 is

res —p(z)| = [(h @ ¢) —p(a)| = (1 +e)(h+¢) —p(z)| with [e] < u.

Let e(z) = (pr + po)(z). From Theorem 2 we have h = Horner (p,z) =
p(x) — e(x), thus

[(1+¢) (p(z) — e(z) + ¢) — p(2)]
ulp(z)| + (1 + w)le — e(z)].

[res — p()]

IN

Since pr and p, are two polynomials of degree n—1, and ¢ = HornerSum (px, po, x),
applying Lemma 1, we write

lc — e(2)] < v2n—1(px + o) ().
Then we use Proposition 1 to bound (pr + po)(x) as
lc — e(x)] < Y2n—172n ().
Since (1 + u)y2n—1 < Y2n, we finally write the expected bound
res — p(e)| < ulp(@)| + 3, Bz).
The proof in case of underflow is presented in Annex A.

It is very interesting to interpret the previous theorem in terms of the
condition number(1) of the polynomial evaluation of p at z. Combin-
ing the error bound in Theorem 3 with the expression of the condition
number |p(x)|/|p(z)| for the polynomial evaluation gives the following
result.

Corollary 1. Given p a polynomial of degree n with floating point coef-
ficients, and x a floating point value. If no underflow occurs,

|CompensatedHorner (p, z) — p(z)]

< u+fy2ncond P,). 13
(@] 2 (p,z) (13)

In other words, the bound for the relative error of the computed result
is essentially 72, times the condition number of the polynomial evalua-
tion, plus the inevitable summand u for rounding back the result to the
working precision. In particular, if cond(p,z) < ’y;nl, then the relative
accuracy of the result is bounded by a constant of the order u. This
means that the compensated Horner scheme computes an evaluation ac-
curate to the last few bits as long as the condition number is smaller
than 75,5 ~ (2nu)~!. Besides that, Corollary 1 tells us that the com-
puted result is as accurate as if computed by the classic Horner scheme
with twice the working precision u? and then rounded to the working
precision u.

4.3 A dynamic error bound

The error bound (12) for the result of a polynomial evaluation with algo-
rithm CompensatedHorner is entirely adequate for theoretical purposes.
However, it is an a priori error bound that takes no account of the actual
rounding errors. Moreover, it is not computable in practical applications
since it involves the exact result p(z) of the polynomial evaluation. We
introduce here how to compute a valid error bound in pure floating point
arithmetic in round to the nearest, which is also less pessimistic than the
error estimate (12). Since underflow is rare and the quantities involved
are almost always negligible, we do not take into account underflow in
the following analysis.

First, we state the following lemma. When the coefficients of the polyno-
mials p and ¢, and the argument x are all nonnegative floating point num-
bers, it gives a bound on (p + ¢)(x) with respect to HornerSum (p, ¢, z).

Lemma 2. Given p(z) = Y1 a:z’ and q(z) = 3.1 bz’ two polyno-
mials such that all their coefficients are nonnegative floating point num-
bers, and given x a nonnegative floating point number. The following
inequality holds

0< Z(ai +b)z" < (14 u)*" "' HornerSum (p, g,).
i=0

Proof (Proof (without underflow)). We consider Algorithm 8, and the
intermediate variables r;, for i =n —1,...,0. Let us prove by induction
that, for ¢ =0,...,n,

D (anits +bn—ing)a’ < (14 0> . (14)

3=0
For i = 0, (an + bn) < (14 u)(an @ bn) = (1 + u)rs, so Relation (14)
is satisfied. Now we assume that Relation (14) is true for some integer 4
such that 0 < i < n. Then
it1 _ i _
> (@n—(i1yritbn—in)T = | D (@n—its + boirj)a’ | 24 (an—i+ba).
j=0 j=0
By induction hypothesis we have
i1 _ ‘
D (@i + b i)z’ < U4 W) i 4 (@n-i + ba-i)
j=0

<1+ w1+) (remi @2 D (@n—i D bn—i))

< (14w .

Therefore Relation (14) is proved by induction, which in turn proves the
lemma.

The proof in case of underflow is presented in Annex A.

Theorem 4. Given a polynomial p with floating point coefficients, and
a floating point value x, we consider res = CompensatedHorner (p, z) the
accurate evaluation of p at x (Algorithm 9). The absolute forward error
affecting the evaluation is bounded according to

|CompensatedHorner (p, z)—p(z)| < fl (ulres| + (yant+2HornerSum (|p«|, [ps|, [z]) + 2 u®|res|)) .
(15)

For the proof of Theorem 4, we need the following two relations.
i) For (k+1)u < 1, we have v < (1 — u)yi41. Indeed, if (k+1)u< 1
then ku < (1 — u)(k + 1) u and therefore

g B (o wn,

ii) We know that fl(ku) = ku € F. Moreover, if ku < 1, then fl(1—ku) =
1 — ku € F. So only the division suffers from a rounding error in the
computation of ~;. Thus

= < - w7 kw1 - ku)] = (1 - u)~).

Proof (Proof of Theorem 4 (without underflow)). The key of the proof is
to use relations in Remark 1 to bound real quantities with computable
expressions. The result res = CompensatedHorner (px, po, x) computed by
Algorithm 9 suffers from the following absolute forward error,

[res — p(x)| = |Horner (p,z) & HornerSum (pr, ps,) — p(x)|
< |(Horner (p, z) @ HornerSum (px, po, x)) — (Horner (p, z) + HornerSum (px, po, x))]
+ |(Horner (p,) + HornerSum (px, po, z)) — p(z)| .

As before, let e(x) = (pr + po)(z). From Theorem 2, the EFT of p(z)
satisfies p(x) = Horner (p, z) + e(x). Thus

[res — p(x)| < u|Horner (p, x) & HornerSum (px, po, x)| + [HornerSum (px, ps, x) — e(z)|
< ulres| + |HornerSum (pr, ps, x) — e(z)] .

Now we bound the rightmost absolute value. Since p,. and p, are of
degree n — 1, Lemma 1 yields

|[HornerSum (px, po,) — e(z)| < yon—1(Dx + Do) (x),
and from Lemma 2, we write
[HornerSum (px, po,) — e(z)| < (14 u)*" 2, _1HornerSum (|p«|, [po |, |z) -

Let E = HornerSum (|px|, [pol, |z]). Since (1 + u)*" 'y9—-1 < Yan—2 <
1- u)474n+2, it follows

res — p(z)| < ulres| + (1 — u)*yani2E.
Since Yany2 B < (1— u)f1 fl(Yant+2)E < (1— u)f2 fl(yant2E), we deduce

ulres| + (1 — u)* fl(yans2F)
(1 — u)ulres| + (1 — u)® fi(yani2E) + u’|res|.

|res — p(x)| <
<

We notice that u®|res| and 2u?|res| are representable floating point val-
ues, since we assume that no underflow occurs. We can always assume
that 2(1 — u)? > 1, thus

[res — p(z)] 1— u)ulres| 4+ (1 — u)? [fl(vant2E) + 2u2\res”

<(
< (1= u) [ulres| + fl(yan+2E + 2u2\res|)}
< fl (ulres| + (yant2E + 2u2|res|)) .

Relation (15) is easily evaluated concurrently with the computation of
p(z) according to Algorithm 9. One possible use of this error estimate is
to provide a stopping criterion for a polynomial root finder. For instance,
if |CompensatedHorner (p, z) | is of the same order as the computed error
bound, then further iteration serves no purpose, as « could be a zero. We
present some experiments to show the accuracy of the computable error
estimate (15) compared to the accuracy of the a priori error bound (12)
at the end of next Section 5.

5 Experimental results

All our experiments are performed using IEEE-754 double precision.

5.1 DDHorner is the Horner scheme with internal
double-double computation

We compare the CompensatedHorner algorithm to an implementation of
the classic Horner scheme that use internally the double-double format
and denoted as DDHorner. Our implementation is based on the one pro-
posed by the authors of [9, 16].

For our purpose, it suffices to know that a double-double number « is the
pair (an,a;) of IEEE-754 floating point numbers with a = a; + a; and
|a;] < ulan|. To implement the Horner scheme using the double-double
format, we only need two basic operations: i) the product of a double-
double number by a double number, and ii) the addition of a double
number to a double-double number. For the first operation we use Al-
gorithm 10 that requires 25 flops. If TwoproductFMA is used instead of
Twoproduct, then the flop count drops to 10. For the second operation,
we use Algorithm 11 that requires 9 flops.

Horner scheme with internal double-double, DDHorner (Algorithm 12),
requires 34n flops. If TwoProductFMA is used then the flops count drops
to 19n flops.

Algorithm 10 Product of the double-double number (an,a;) by the
double number b

function [cp, ¢;] = prod_dd_d (an,ar,b)
[sh,s1] = TwoProduct (ap, b)

[th, tl] = FastTwoSum (b’h7 (al ® b))
[Ch7 Cl} = FastTwoSum (th, (tl (&) Sl))

Algorithm 11 Addition of the double number b to the double-double
number (ax, ar)

function [cp, ¢;] = add_dd_d (a, ai, b)
[th,ti] = TwoSum (ap,b)
[ch, 1] = FastTwoSum (L, (¢t & a1))

Algorithm 12 Horner scheme with internal double-double computa-
tions

function [cp, ¢;] = DDHorner (p, x)
Sh = Qn
S = 0
fori=n—-1:-1:0
[ph7pl] = prod.dd.d (sh7 817:6)
[Sh, Sl} = add_dd_d (ph,pl7 (li)
end
res= Sp

5.2 Accuracy of the compensated Horner scheme

Table 1. Description of the routines experimented for the doubled working precision

|r0utine |description of the corresponding Horner scheme

Horner IEEE-754 double precision (Algorithm 1)
CompensatedHorner|Compensated Horner scheme (Algorithm 9)

DDHorner Horner scheme with internal double-double computation (Algorithm 12)
MPFRHorner Horner scheme in 106-bits precision arithmetic from MPFR library

We test the expanded form of the polynomial p,(z) = (z — 1)". The
argument x is chosen near to the unique real root 1 of p,, and with
many significant bits so that a lot of rounding errors occur during the

evaluation of p,(z). We increment the degree n from 1 until a sufficiently
large range has been covered by the condition number cond(pn, z). Here

we have
n

1+«
1—=x

_ pa(@) _
cond(pn,) o ()]
and cond(pn,z) grows exponentially with respect to n. In the exper-
iments reported on Figure 1, cond(p,,z) varies from 10? to 10%° (for
x = fl(1.333), that corresponds to the degree range n = 3, ...,42). These
huge condition numbers have a sense since here the coefficients of p and
the value x are chosen to be exact floating point numbers.

)

We experiment both Horner, CompensatedHorner and DDHorner (see Ta-
ble 1). For each polynomial p,, the exact value p,(z) is approximate with
a high accuracy thanks to the arbitrary accurate MPFR library [19]. Fig-
ure 1 presents the relative accuracy |y — pn(z)|/|pn(z)| of the evaluation
y computed by the three algorithms. We set to the value one relative
errors greater than one, which means that almost no useful information
is left. The dotted lines represent the a priori error estimates (6) and
(13).

We observe that the compensated algorithm exhibits the expected be-
havior, i.e., the compensated rule of thumb. The full precision solution is
computed as long as the condition number is smaller than u~! ~ 10,
Then, for condition numbers between u™! and u~2 & 102, the relative
error degrades to no accuracy at all. However, when the condition num-
ber is beyond u™*', the a priori error estimate (13) is always pessimistic
by 2 or 3 order of magnitude.

5.3 Accuracy of the dynamic error bound

We experiment the accuracy of the dynamic error bound (15), compared
to the a priori error bound (12) and to the actual forward error. We eval-
uate the expanded form of ps(z) = (1 —) for 1024 points near x = 1.
For each value of the argument z, we compute CompensatedHorner (ps,),
the associated dynamic error bound, and the actual forward error. The
results are reported on Figure 2.

As already noticed in the previous paragraph, the closer the argument is
to the root 1 (i.e., the more the condition number increases), the more
pessimistic becomes the a priori error bound. The proposed dynamic
error bound is more accurate as it takes into account the rounding errors
that occur during the computation.

5.4 Time performances

All the algorithms are implemented in C-code. In particular we use es-
sentially the same programming techniques for the implementations of
the routines CompensatedHorner and DDHorner. The experimental envi-
ronments we have considered are listed in Table 2. Our measures are

relative forward error

0.01

le-04

le-06

1le-08

le-10

le-12

le-14

le-16

le-18

Condition number and relative forward error

E T T =T Ta i aha il daalaaidaalaasias

Horner -—-a---
CompensatedHorner ---<¢---
DDHorner —s—

100000 le+10 le+l5 1le+20 le+25 1e+30 le+35
condition number

Fig. 1. Accuracy of the Horner scheme performed in IEEE-754 precision compared to
the accuracy of two algorithms CompensatedHorner and DDHorner.

Table 2. Experimental environments

| environment |description

(D

Intel Celeron, 2.4GHz, 1024kB L2 cache. GNU Compiler Collection 3.4.1

(1D

Intel Pentium, 3.0GHz, 1024kB L2 cache. GNU Compiler Collection 3.4.1

Table 3. Measured time performances for CompensatedHorner, DDHorner and

MPFRHorner.
environment|CompensatedHorner/Horner| DDHorner/Horner |MPFRHorner/Horner
min. mean max. theo.|min. mean max. theo.|min. mean max.
Q) 14 31 34 13| 23 84 94 17(224 975 124.4
(I1) 1.5 29 3.2 13| 23 84 94 17/181 83.7 96.8

Accuracy of the absolute error bounds
le-24 T T T

A priori error bound -------
Running error bound —— |
Actual forward error --------

le-26

le-28

Absolute error

le-30

le-32

le-34
0.99 0.995 1 1.005 1.01

Argument x

Fig. 2. The dynamic error bound (15) compared to the theoretical bound (12) and to
the actual absolute forward error.

Normalized execution times [Intel Celeron, 2.4GHz, 256kB L2 cache] Normalized execution times [Intel Pentium 4, 3.0GHz, 1024kB L2 cache]

140 T T T T T T T X T T T T

120
" 100 g b
£ £
= 2 60}
£ £
A g
] / § s0f CompensatedHorner / Homer
o / o Horner / Homner -
s / s MPFRHorner / Homer -------
5 5 40 |/
2 CompensatedHorner / HornerS: !
2 DDHorner / Homerg i

MPFRHorner / Horner -

20 —
10
0 E= = I I T I I I I I I L L L L L L L L
50 100 150 200 250 300 350 400 450 5060 100 150 200 250 300 350 400 450

Degree of the polynomial Degree of the polynomial

Fig. 3. Normalized execution times of the three routines CompensatedHorner, DDHorner
and MPFRHorner.

performed with polynomials whose degrees vary from 5 to 500 by steps
of 5. We choose the coefficients and the arguments at random. For each
degree, the routines are tested on the same polynomial with the same ar-
gument. Figure 3 displays the timings of CompensatedHorner, DDHorner
and MPFRHorner normalized (dividing them) by the timing of the Horner
routine. The minimum, the mean and the maximum of these normalized
timings are reported in Table 3. For CompensatedHorner and DDHorner,
the theoretical ratios are also reported, resulting from the number of
flops involved by each algorithm.

First, we have to notice that the measured slowdown factor introduced
either by CompensatedHorner or DDHorner is always significantly smaller
than theoretically expected. This is an astonishing fact since the code
for these functions is designed to be easily portable, and no algorith-
mic optimizations are performed, neither in CompensatedHorner, nor in
DDHorner. This interesting property seems to be due to the fact that
the classic algorithm performs only one operation with each coefficient
of the polynomial, whereas CompensatedHorner and DDHorern perform
much more operations with each coefficient. Most of these operations are
performed at the register level, without incurring much memory traffic.
This practical efficiency is emphasized in [20] and motivates this kind of
development.

The results reported in Table 3 show that the compensated algorithm
CompensatedHorner is about 3 times slower than the classic Horner scheme.
The same slowdown factor is about 8 for algorithm DDHorner. From a
practical point of view, we can state that the proposed algorithm is more
than twice faster than the Horner scheme with double-doubles. Table 3
also shows us that comparison with the MPFR library is not entirely
fair in this context. Indeed, the routine MPFRHorner exhibits a slow-
down factor of more than 80. It is not surprising since the MPFR library
is specially designed to handle floating point numbers with extremely
large mantissa.

6 Concluding remarks

We presented a compensated version of the Horner scheme to evaluate
univariate polynomials in floating point arithmetic. We proved that the
accuracy of the result computed by this compensated algorithm is simi-
lar to the one given by the Horner scheme performed in doubled working
precision. The only assumption we made is that the floating point arith-
metic available on the computer satisfies the IEEE-754 floating point
standard. The same frame applies to the presented algorithm that com-
pute the associated dynamic bound and to the recursive implementation
in [7]. These low requirement make it highly portable and so these com-
pensated algorithms could be easily integrated into numerical libraries
or in-lined in specific subroutines.

This compensated algorithm uses only basic floating point operations
and only the same working precision as the data. It uses no branch nor
access to the mantissa that can be time consuming on modern architec-
tures. As a result, it is fast not only in term of flop count but also in term
of measured computing time. In particular, the slowdown factor due to
the improvement of the accuracy is much smaller than theoretically ex-
pected. Our numerical experiments show than compensated Horner runs
only about three times slower than the classic Horner scheme on nowa-
days computers.

Ogita-Rump-Oishi stress the interest to benefit from error-free transfor-
mations as, e.g., TwoSum, TwoProd, available directly from the processor
[20]. This paper emphasizes such an interest to provide more accurate
and reliable numerical algorithms at a reasonable cost.

References

1. David H. Bailey. A Fortran-90 double-double library, 2001. Available
at URL = http://crd.lbl.gov/ dhbailey/mpdist/index.html.

2. Sylvie Boldo and Jean-Michel Muller. Some functions computable
with a fused-mac. In IEEE, editor, Proceedings of the 17th
IEEE Symposium on Computer Arithmetic, 2005, Cape Cod, Mas-
sachusetts, USA. IEEE Computer Society Press, 2005.

3. Theodorus J. Dekker. A floating-point technique for extending the
available precision. Numer. Math., 18:224-242 1971.

4. James Demmel. Underflow and the reliability of numerical software.
SIAM J. Sci. Stat. Comput., 5(4):887-919, 1984.

5. FRISCO - a framework for integrated sym-
bolic/numeric computation. Available at
http://www.nag.co.uk/local/projects/FRISCO.html.

6. Johannes Grabmeier, Erich Kaltofen, and Volker Weispfenning, ed-
itors. Computer Algebra Handbook. Springer-Verlag, Berlin, 2003.

7. Stef Graillat, Philippe Langlois, and Nicolas Louvet. Recursive com-
pensated Horner scheme. Research Report, DALI Research Project,
Laboratory LP2A, Universit de Perpignan Via Domitia, France, July
2005. (In progress).

8. John R. Hauser. Handling floating-point exceptions in numeric pro-
grams. ACM Trans. Program. Lang. Syst., 18(2):139-174, 1996.

9. Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-
double precision floating point arithmetic. In Neil Burgess and Luigi
Ciminiera, editors, Proceedings of the 15th Symposium on Computer
Arithmetic, Vail, Colorado, pages 155-162, Los Alamitos, CA, USA,
2001. Institute of Electrical and Electronics Engineers.

10. Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, second edition, 2002.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A

IEEE Standards Committee 754. IEEE Standard for binary floating-
point arithmetic, ANSI/IEEE Standard 754-1985. Institute of Elec-
trical and Electronics Engineers, Los Alamitos, CA, USA, 1985.
Reprinted in SIGPLAN Notices, 22(2):9-25, 1987.

William Kahan. Further remarks on reducing truncation errors.
Comm. ACM, 8(1):40, 1965.

Donald Ervin Knuth. The Art of Computer Programming: Seminu-
merical Algorithms, volume 2. Addison-Wesley, Reading, MA, USA,
third edition, 1998.

Philippe Langlois. Automatic linear correction of rounding errors.
BIT, 41(3):515-539, September 2001.

Philippe Langlois. More accuracy at fixed precision. J. Comp. Appl.
Math., 162(1):57-77, January 2004.

Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry,
Yozo Hida, Jimmy Iskandar, William Kahan, Suh Y. Kang, Anil Ka-
pur, Michael C. Martin, Brandon J. Thompson, Teresa Tung, and
Daniel J. Yoo. Design, implementation and testing of extended and
mixed precision BLAS. ACM Trans. Math. Software, 28(2):152—-205,
2002.

Seppo Linnainmaa. Towards accurate statistical estimation of round-
ing errors in floating-point computations. BIT, 15(2):165-173, 1975.
Seppo Linnainmaa. Error linearization as an effective tool for ex-
perimental analysis of the numerical stability of algorithms. BIT,
23(3):346-359, 1983.

The MPFR library. Available at http://www.mpfr.org.

Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate
sum and dot product. STAM J. Sci. Comput., 26(6):1955-1988, 2005.
Michele Pichat. Correction d’une somme en arithmétique & virgule
flottante. (French) [correction of a sum in floating-point arithmetic].
Numer. Math., 19:400-406, 1972.

Michele Pichat. Contributions a l’étude des erreurs d’arrondi en
arithmétique a virgule flottante. (French) [Contributions to the er-
ror analysis of rounding errors in floating-point arithmetic]. These,
Université Scientifique et Médicale de Grenoble, 1976.

Martti Tienari. A statistical model of roundoff error for varying
length floating-point arithmetic. BIT, 10:355—-365, 1970.

Proofs in case of underflow

Proof (Proof of Theorem 2 (with underfow)). Considering Algorithm 7,
for i = 0---n — 1, we have s;y12 = p; + m + 5n; with |n;| < v, and
pi + a; = s; + o0y, thus

$i = $i+1T + a; — m; — 0; — ON;.

Since s, = an we have therefore

S0

n—1 n—1 n—1
= p(x) — [Z m-:ri] - |:Z U'iIIIi:| -5 |:Z mxl] with |n;| < v.
=0 i=0 =0

Proof (Proof of Proposition 1 (with underfow)). Applying the standard
model of floating point arithmetic with underflow (4), for i = 1,...,n,
the two computations in the loop of Algorithm 7 verify

[Pn—i| = [sn—i+1 @ 2| < (1 + w)[sn—it1|[z| + v, and

[Sn—i| = [Pn—i ® an—i| < (1+ u)(|pn-i| + |an—i|)-

Let us prove by induction that, for i = 1,...,n,

[pn—i| < (1+72i-1 Zlan iille? |+ (14 y2i2 VZW\ and16)

Jj=1
[sn—i| < (1+72:) Z|an it+jlz’ |+ 1+ v2i-1) Vz‘xj‘ (17)
=0

For ¢ = 1, since s, = an we have [pp—1| < (1 4+ u)lan||z] + v < (1 +
~1)|an||z| + v and (16) is satisfied. On the other hand, |s,—1] < (1 +
w) (14 1)lanl2] + v+ |an-1]) < (1-472) (anllz] + Jan-1])+(1F71) v
and (17) is also satisfied. Now we suppose that (16) and (17) are true for
integers ¢ such that 1 <1i < n. Then

Pr—(i+n] < (1+ w)fsn—ilz] + v.

By induction hypothesis,

Pa—(ien] < L+ W)@ +72) D lan—ins 2+ (1 +) (1 + 72i-1) Z 27+ v

j=0
it+1 _ (1+1)71)
< (4 va41)-1) O lan—asnilla’ |+ 1+ r2asm-2) v Y |27
j=1 j=0

Therefore we have

I$n—@+n)| < (L4 W) (|pa—(i+n| + [an—q+1)])
i+1

< (14 w1+ y2641)-1) | D 18n—rn127 | + [an—t)|
j=1
(i+1)—1
+(1 4+ w)(I+v23i41)-2) v Z |2 |
§=0

i+l (i+1)—1
<+ %234) D lan—rnslle’ |+ A+ ren-0)v D |27).

=0 =0

Relation (16) and Relation (17) are proved by induction. Thus, for i =
1,...,n,

Pr—ill&"] < (14 y20-1) B(z) + (1 4+ Y20-2) v Y _ |27], and

[snoill2™] < (14 720) (@) + (1 + 2n-1) v 3 Ja].

From Theorem 1, since TwoSum and TwoProd are EFT, fori =0,--- ,n—
1, we have |m;| < ulp;| +5v and |o;| < uls;|. Therefore

n—1

(Pr+Po)(@) =) _(Imil+oil)[a"] < uz [pr—il+lon—i))le"" 1‘“’"2‘“

=0 =1

And we obtain

(Pr + Po)(z) < nu |24 Y201+ 720) &) + (2 +Y2n-2 + Y2n-1) v Y _ [&']| +5v > _ |2’

n—1
< 2nu(l +920) B(a) + 5+ 2nu(1 +720-1)] v ||

=0

Since 2nu(l + vy2n) = v2n and 2nu(l + ’yznfl)_ < van, we finally obtain
(Pr + Do)(@) < Y2 (@) + (5+v20) v 212y |2

Proof (Proof of Lemma 1 (with underfow)). Considering Algorithm 8,
we have r, = an ® bp = (an + bn)(1), and for i =n—1,---,0,

T =Tit1 QT @ (i Db;) = (2)rit1z + (2)(a; +b;) +m, with || < v.

Therefore it can be proved by induction that

n—1 n—1
ro = (2n+1)(an +ba)z" + > (200 + 1)) (ai + bi)z’ + > (2 + Lmiaz’
i=0 i=0

Since 1o = HornerSum (p, g,), we finally obtain

n

HornerSum (p, ¢, z) — Z(ai + b))z’

=0

< Yont1(p+ @) (@) +(1+720-1) Z|5E |

Proof (Proof of Theorem 8 (with underfow)). As before, we use the no-
tation e(z) = (pr + po)(z). From Theorem 2,

Ires — p(x)] = |(1 +&)(s0 + ¢) — p(z)]|

(1+s>< (2) - e(a —5<Zw>)—pm

ulp(z)[+ (1 +) [c —e(z)[+ 5(1 + u) VZW\

IN

Since pr and p, are two polynomials of degree n—1, and ¢ = HornerSum (pr, po, x),
applying Lemma 1, we have

e — e(@)] < Yano1(Pr + Po)(@) + (1 +720-1) ZW

Then we apply Proposition 1 to bound (px + po)(z). We write

n—1
le— e(@)] < yan-1720 B(@) + 7201 (5 +720) v > +(1 +720-1) Z E
=0

Since (14 u)y2n—1 < 7y2n, we finally write,
Ires — p(«)| < ulp(z)| + 73, Blz) + @

with

n—1

a=(1+1u)[y2n-1(5+720) + 5] v > |2+ (14 u)(1+720-1) vi 2.

=0

As v is a very small constant, we simply bound the term « as follow.

n—1 n—1
a< (1+ u)[6+46v2n—1 + Y2n—172n] VZ |z’ | < Kv Z '],
i=0 i=0

with K < 7.

