
B-tree indexes for high update rates November 15, 2005, 8:46 AM
Goetz Graefe Page 1 of 7 D R A F T

B-tree indexes for high update rates
Goetz Graefe

Abstract

In some applications, data capture dominates query processing. For example, monitoring
moving objects often requires more insertions and updates than queries. Data gathering using
automated sensors often exhibits this imbalance. More generally, indexing streams apparently is
considered an unsolved problem.

For those applications, B-tree indexes are reasonable choices if some trade-off decisions are
tilted towards optimization of updates rather than of queries. This paper surveys techniques that
let B-trees sustain very high update rates, up to multiple orders of magnitude higher than tradi-
tional B-trees, at the expense of query processing performance. Perhaps not surprisingly, some
of these techniques are reminiscent of those employed during index creation, index rebuild, etc.,
while others are derived from other well known technologies such as differential files and log-
structured file systems.

1 Introduction

Some applications record more data or record data more often than they query them. For ex-
ample, a fleet management system for a trucking or taxicab company might record each vehicle’s
latest position more often than the vehicles’ positions are queried by a fleet supervisor. In those
cases, index and B-tree organization should be optimized for insertion and update performance
rather than for query performance, as has been the traditional objective.

Another application domain for the techniques discussed in this survey is indexing of continu-
ous data streams. Filtering streams on the fly is reasonably well understood, but streams that
contain identifiers of some real-world objects often need to be matched by identifier and descrip-
tive attribute against static data as well as other streams. Thus, it is imperative that streams can
be captured, typically in the order of data arrival, as well as indexed by attributes other than arri-
val time, sometimes in multiple indexes with multiple orders. For example, a stream of credit card
transactions might need, for efficient and near-instantaneous fraud detection, indexing by card
number, customer identity or household (a customer might have lost multiple credit cards at the
same time), and merchant (a single dishonest employee might fraudulently charge credit cards
from multiple customers).

In the following, we assume that update and insertion performance is more important than
query performance. If the reader is not concerned about such applications, traditional B-tree op-
timizations should be applied rather than the techniques surveyed here. Moreover, we assume
that any throttling of the workload, e.g., “best effort” recording of current vehicle locations, has
already been applied, such that the remaining update requests must indeed be applied to all in-
dexes under consideration. Finally, we assume that hardware assistance has been considered
and exploited to the extent possible and appropriate, e.g., disk striping and solid-state disks or
disk buffers.

2 I/O optimizations

As with most database operations, focusing on the efficiency of disk I/O is an effective means
for improving performance and scalability. However, one must separate between improvements

Dagstuhl Seminar Proceedings 05421
Data Always and Everywhere - Management of Mobile, Ubiquitous, Pervasive, and Sensor Data
http://drops.dagstuhl.de/opus/volltexte/2006/763

B-tree indexes for high update rates November 15, 2005, 8:46 AM
Goetz Graefe Page 2 of 7 D R A F T

to the overall system throughput and improvements to the response time of individual transac-
tions, which may or may not be tremendously interesting here.

There are several very generic performance improvement technologies, e.g., data compres-
sion [WKH 00]. In update-intensive workloads, relevant compression applies not only to the data
but also to the transaction log. Some compression techniques are surprisingly simple, e.g., trun-
cating leading and trailing zeroes or blanks, or aggregating multiple log records from the same
transaction into one in order to save many record headers in the transaction log.

2.1 Prefetch, read-ahead, and write-behind

Write-behind of log pages and of data pages are well known techniques. By itself, is does not
improve system throughput, because the amount of writing does not decrease. However, write-
behind often enables large writes, which is even more efficient that queued I/O. Moreover, they
are helpful in the case of spikes in the workload and they permit additional optimizations. For ex-
ample, modern disk drives support native command queuing and thus perform better if there are
10s of I/O operations pending at all times [ADR 03].

Read-ahead (as commonly used in large scans) does not apply to large append operations,
but it applies to merging an entire batch of modifications into an existing B-tree. When merging
multiple B-tree partitions (discussed below) into one, read-ahead with forecasting can improve
performance, since merging such partitions is essentially the same problem as merging runs in
an external merge sort [G 03a].

Prefetch operations based on individual keys apply not only to retrieval operations, e.g., navi-
gation from a non-clustered index to a clustered index, but also to update operations. However,
similar to read-ahead and write-behind, prefetch also does not directly improve system through-
put or bandwidth, only response time or latency of individual operations, which might improve
system throughput indirectly by reducing concurrency control contention.

2.2 Write-optimized B-trees

In addition to asynchronous I/O, dynamic placement of contents on disk can improve write
performance [G 04]. This effect is well known and has been extensively studied for log-structured
file systems [OD 89], in particular in the context of RAID storage [PGK 88]. The principal idea be-
hind write-optimized B-trees is to allocate a new location on disk each time a page is written to
disk, and to do so as part of the write operation, i.e., subsequent to the buffer manager’s re-
placement decision, and to allocate a page’s new location in such a way that multiple concurrent
write operations all target the same area on disk.

In order to avoid subsequent updates of neighboring pages, the traditional page chain using
physical page identifiers is replaced by a logical page chain using separator keys, i.e., each page
carries as lower and upper fences the separator key propagated to the page’s parent node when
the page was split from its neighbors. In addition to supporting the same consistency checks and
other maintenance operations supported by traditional physical page chains, fence keys simplify
and improve key range locking, because it is never required to navigate to a neighboring leaf
page in order to find the right key to lock. After physical page chains have been replaced by logi-
cal fence keys, the only role for physical page identifiers is in child pointers, and only those have
to be updated when a node moves to a new location on disk.

In traditional B-tree algorithms, a new location is allocated as part of the B-tree manager’s
decision to split a node, such that subsequent log records can refer to the page identifier. In write-
optimized B-trees, a new page is given a temporary identifier that log records may refer to, and

B-tree indexes for high update rates November 15, 2005, 8:46 AM
Goetz Graefe Page 3 of 7 D R A F T

the page is moved as part of the write operation in a way very similar to a page move during B-
tree defragmentation. Thus, proven concurrency control and recovery mechanisms apply.

The performance effect of write-optimized B-trees is such that random write operations are
converted to large sequential write operations, with a bandwidth advantage of factor 10 or more,
at the expense of added maintenance of each node’s parent each time a node is written to a new
location on disk.

3 Buffering insertions

There are multiple ways to buffer and group new insertions in order to modify each B-tree
node less often, with the advantage of fewer disk I/Os, fewer faults in the CPU cache, etc. Query
operations either need to search the buffer structure in addition to the B-tree index or they force
some or all buffered records into the B-tree index.

For correct transactional execution, it seems that both insertion and deletion in the buffer
must be logged; thus the log volume in these methods may exceed the traditional log volume by a
factor of three or more. However, only the initial insertion into the first buffer is a user transaction,
whereas all subsequent movements of a record can be system transactions that can commit in-
expensively without forcing the tail of the transaction log to stable storage.

3.1 Buffering within tree nodes

Several researchers have explored data structures and algorithms that add a large buffer to
each interior tree node [A 96, AHV 02, VSW 97]. Often the size of this buffer exceeds the size of
the area dedicated to traditional key-pointer pairs, not only because each buffered new record is
larger than a key-pointer pair but also because the number of retained records should be larger
than the number of key-pointer pairs. When the buffer fills up, appropriate records are pushed
down to the child with the most retained records.

It seems that records should be retained only for those children not immediately available in
the I/O buffer. Given that most B-trees have a fan-out of 100 or more, and given that in most da-
tabase servers the RAM size exceeds 1% of the disk size, and given that the B-trees discussed
here are among the most active and performance-critical indexes, one may infer that such buffer-
ing applies only at the nodes immediately above the leaves. In other words, there may be addi-
tional improvement possible beyond published methods that permit buffering in nodes of all B-
tree levels.

3.2 Buffering in separate structures

An alternative to buffering insertions in tree nodes is to create a separate data structure to
buffer new insertions [LJB 95, MOP 00, OCG 96]. This data structure can be another B-tree or it
can be a different type of in-memory data structure, e.g., a hash table. In fact, it can also be a
collection of data structures, forming a hierarchy or cascade of staging areas. Interestingly, this
organization is reminiscent both of generational garbage collection [U 84] and of the tree structure
of the main B-tree index, such that different parts of this data structure buffer insertions pending
at different B-tree levels.

Separate structures imply, unfortunately, additional mechanisms for concurrency control and
recovery. Thus, a standard index structure that is already implemented might be the preferred
mechanism. Otherwise, not locking modes or protocols require correctness arguments, imple-
mentation, testing, etc. Perhaps the most desirable implementation avoids both separate struc-

B-tree indexes for high update rates November 15, 2005, 8:46 AM
Goetz Graefe Page 4 of 7 D R A F T

tures and modifications of existing structures, and instead only uses existing mechanisms in dif-
ferent ways.

3.3 Buffering in B-tree partitions

One design motivated by the desire to avoid special-case code employs the main B-tree as
its own buffer data structure by introducing partitions within each B-tree [G 03a]. By introducing
an artificial leading key column, the traditional B-tree structure is retained. The “main B-tree” is
defined by a common value for the artificial leading key column, say 0 or null, and one or more
“buffers” are defined by different values in that column, say 1, 2, etc.

Traditional buffer management together with a size limit on newly added partitions can en-
sure that data insertions by user transactions can be processed entirely in memory. In the ex-
treme case, partitions of new insertions can be as small as a single record, i.e., each new inser-
tion defines a new partition and can thus proceed practically without any search or page reor-
ganization within the B-tree. Thus, insertion rates and throughput by user transactions are maxi-
mized, at the expense of more merge effort during B-tree optimization and reorganization.

Queries obviously have to search in each partition, using traditional methods for queries that
restrict some index columns but not the leading one [LJB 95]. Alternatively, query activities may
force some merge activities, executed prior to actual data retrieval and implemented using sys-
tem transactions. Thus, B-tree maintenance work that traditionally is part of update operations is
shifted to query operations. The main differences are when the work is done and how it is syn-
chronized without transactions; the difference in how it is done seems minor in comparison. In the
extreme case, a query may force complete merging and optimization of all partitions, maybe ex-
cepting one partition targeted by current insertions.

Some interesting aspects of such B-trees are (i) that the reorganization operation that com-
bines multiple partitions into one is very similar to a merge step in a traditional external merge
sort, (ii) that such merge operations can execute as system transactions and commit very small
key range at a time, (iii) that merge and reorganization operations can pause and resume at any
time in response to load spikes etc., and (iv) the same technique can aid bulk deletions, i.e., B-
tree entries to be deleted are moved by small system transactions into one dedicated partition
and then deleted in one fast user transaction that cuts multiple full pages from the B-tree.

3.4 Graceful degradation

In addition to raw performance improvements, buffering insertions also enables graceful deg-
radation after errors in cardinality estimation during query optimization. Today, query optimization
can choose between row-by-row update processing and index-by-index update processing. Up-
dating row-by-row implies maintenance of all appropriate indexes immediately for each row. Up-
dating index-by-index means that all changes are applied to one index at a time, possibly after
splitting each update into a deletion and an insertion, sorting the changes, and re-combining
changes if appropriate; a generalized version of techniques described in [GKK 01] implemented
in Microsoft SQL Server since 1998. Row-by-row updates are most appropriate for small
changes, whereas index-by-index updates are more efficient for large updates, in particular if
there are more individual changes that leaf pages in an index.

Buffering insertions as described here opens up another option, namely row-by-row process-
ing with the I/O pattern and efficiency better than index-by-index processing, albeit with the dis-
advantage of non-optimal indexes left behind. Thus, a query execution plan may prescribe row-
by-row update processing due to an anticipated small update set, yet the actual execution may
determine that the update set is rather large. In such a case, an update plan may apply updates

B-tree indexes for high update rates November 15, 2005, 8:46 AM
Goetz Graefe Page 5 of 7 D R A F T

row-by-row until the actual size of the update set becomes apparent and then switch to buffered
or partitioned updates. While it is possible to implement graceful degradation from row-by-row to
index-by-index updates using conditional execution in a traditional query execution plan, assign-
ing a new partition identifier (artificial leading key column) to index changes is much simpler and it
achieves even faster update performance.

4 Differential files and indexes

While the designs discussed in the prior section are able to buffer insertions, they cannot
buffer other update operations, i.e., modifications or deletions. However, they can be extended to
do so, by adapting ideas from differential files [SL 76] and specializing them to B-tree indexes.
Interestingly, some B-tree adaptations for multi-version concurrency control and for historical in-
dexes are very similar, including the logic required during query processing.

The basic approach is to append records that invalidate prior records without actually modify-
ing those prior records. In an update, a new record supersedes the prior B-tree entry with the
same key. In a deletion, the newly appended record simply indicates the end of the history for a
particular key.

Query evaluation needs to search the history for each particular key, either for the most cur-
rent state (for traditional query semantics) or for the state at a particular time (for point-in-time
historical queries). Merge operations may condense the history of keys depending on the desired
future query capabilities.

In other words, like buffering insertions, buffering updates and deletions in differential B-trees
trades query performance in favor of update performance. Turning random single-record inser-
tions, deletions, and updates into append operations with large sequential write operations can
improve the sustained update throughput by two orders of magnitude.

5 Transaction guarantees

Another opportunity for performance improvement may be to weaken transactional guaran-
tees for some indexes, in particular for redundant non-clustered indexes. We consider three tech-
niques that do so, one that dilutes the separation of individual transactions by batching, one that
weakens guarantees in case of system failures, and one that records changes only in the trans-
action log without even attempting to apply them to the index, with the implicit danger that the
attempt to apply such changes later might fail. Obviously, these techniques only apply if the re-
maining transactional guarantees are still strong enough for the application at hand.

5.1 Log-only operations

If the index maintenance cannot keep up with the update stream, maybe at least the transac-
tion log can. In that case, one could write logical redo records to the transaction log and apply
them later, essentially using redo recovery. Of course, this process violates multiple traditional
assumptions about logging, e.g., that redo operations are always physical operations that already
happened, that redo operations cannot fail, etc. However, depending on the application, such
failures might not be total disasters and could be ignored, for example, when some individual lo-
cation reports in a vehicle tracking application cannot be recorded in the historical index. Clearly,
this idea might apply, but details need to be worked out, e.g., what transaction commit truly prom-
ises and what it guarantees, how checkpoints work and what they guarantee, etc.

B-tree indexes for high update rates November 15, 2005, 8:46 AM
Goetz Graefe Page 6 of 7 D R A F T

5.2 Non-logged B-trees

Some database systems employ special techniques during index creation such that the con-
tents of the new index do not appear in the transaction log. Instead, only page allocation and
catalog changes are logged. Failure during index creation results in deallocation of those pages
and erasure of the new index in the catalogs. Index creation ends with flushing all newly allocated
and filled pages to disk, and subsequent backup operations of the database or even the transac-
tion log capture those new pages. Subsequent user transactions log their changes to the new
index in the usual way.

This idea can be extended in the following way. If an index is truly redundant similar to a tra-
ditional cache, and if erasing the index during media or system recovery is acceptable, then all
operations on this index may be non-logged, i.e., only space allocation is logged. This specifically
includes user transactions running after index creation is complete. Rollback of a user transaction
is driven by virtual log records attached to the transaction descriptor in memory, similar to virtual
log records used in other transaction processing designs [G 04]. Details of this technique have
not been worked out or published at this point, but the technique seems promising for some ap-
plications, in particular for temporary caches and indexes that exist only in memory.

5.3 Batching updates

Finally, one may group multiple update operations and transactions into a single transaction.
However, it seems important to separate the transaction semantics from the data structure. For
example, many small user transactions may all insert into a single buffer as described above,
leaving it to a subsequent system transaction (or series of small system transactions) to merge
such insertions into the main B-tree. In other words, it might not be necessary or advantageous to
modify or weaken the boundaries and semantics of user transactions in order to achieve the de-
sired advantages in performance and scalability.

6 Summary and conclusions

In summary, if one is willing to accept deterioration of query performance by an order of
magnitude, e.g., due to searching multiple partitions, update and insertion performance can be
improved by two orders of magnitude or more, e.g., by turning insertions to append operations
and by avoiding random in-place writes into large sequential writes to newly allocated disk space.
Less dramatic tradeoffs also exist. While most applications issue more queries than update re-
quests and thus demand a query-optimized database organization, some applications (e.g., track-
ing moving objects) record more data changes than they answer queries (e.g., about current ob-
ject location). For those applications, numerous techniques are readily available for implementa-
tion by database vendors. Some are even available to database users, e.g., by introducing an
artificial leading key column in the visible database schema and exploiting it for index creation
and possibly for index maintenance during bulk operations [G 03b].

This survey is an attempt to list a variety of possible techniques. Among them, the most
promising might be write-optimized B-trees, partitioned B-trees using partitions to buffer insertions
or all modifications in the manner of differential files, and non-logged B-trees. However, this intui-
tive appraisal requires validation using prototyping or even product implementations.

Numerous open research questions present themselves, including the question for additional
or better trade-offs between update and query performance, a comparative performance evalua-
tion of the methods described above based on an appropriate benchmark, adaptation of some of
the techniques discussed above to other index structures, in particular to multi-dimensional in-
dexes such as UB-trees and R-trees and to materialized and indexed views, and integration of

B-tree indexes for high update rates November 15, 2005, 8:46 AM
Goetz Graefe Page 7 of 7 D R A F T

query and update processing with database maintenance operation such as consistency checks,
defragmentation, and statistics refresh for query optimization. Maybe the present survey will
stimulate and structure such research.

Acknowledgments

Theo Härder and Bernhard Mitschang read earlier incomplete drafts and contributed multiple
very helpful suggestions.

References
[A 96] Lars Arge: Efficient External-Memory Data Structures and Applications. University of Aar-

hus (Denmark), 1996.
[ADR 03] Dave Anderson, Jim Dykes, Erik Riedel: More Than an Interface - SCSI vs. ATA. Con-

ference on File and Storage Technology (FAST), March 2003.
[AHV 02] Lars Arge, Klaus Hinrichs, Jan Vahrenhold, Jeffrey Scott Vitter: Efficient Bulk Opera-

tions on Dynamic R-Trees. Algorithmica 33(1): 104-128 (2002).
[G 03a] Goetz Graefe: Sorting and Indexing with Partitioned B-Trees. Conference on Innovative

Data Systems Research, 2003.
[G 03b] Goetz Graefe: Partitioned B-trees - a user's guide. Datenbanksysteme für Business,

Technologie und Web (BTW) 2003: 668-671.
[G 04] Goetz Graefe: Write-Optimized B-Trees. VLDB Conference 2004: 672-683.
[GKK 01] Andreas Gärtner, Alfons Kemper, Donald Kossmann, Bernhard Zeller: Efficient Bulk

Deletes in Relational Databases. IEEE ICDE 2001: 183-192.
[JNS 97] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, Rama Kanneganti: Incre-

mental Organization for Data Recording and Warehousing. VLDB Conference 1997: 16-25
[LJB 95] Harry Leslie, Rohit Jain, Dave Birdsall, Hedieh Yaghmai: Efficient Search of Multi-

Dimensional B-Trees. VLDB Conference 1995: 710-719.
[MOP 00] Peter Muth, Patrick E. O'Neil, Achim Pick, Gerhard Weikum: The LHAM Log-Structured

History Data Access Method. VLDB J. 8(3-4): 199-221 (2000).
[OCG 96] Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J. O'Neil: The Log-

Structured Merge-Tree (LSM-Tree). Acta Inf. 33(4): 351-385 (1996).
[OD 89] John K. Ousterhout, Fred Douglis: Beating the I/O Bottleneck: A Case for Log-Structured

File Systems. Operating Systems Review 23(1): 11-28 (1989).
[PGK 88] David A. Patterson, Garth A. Gibson, Randy H. Katz: A Case for Redundant Arrays of

Inexpensive Disks (RAID). ACM SIGMOD Conference 1988: 109-116.
[SL 76] Dennis G. Severance, Guy M. Lohman: Differential Files: Their Application to the Mainte-

nance of Large Databases. ACM Trans. Database Syst. 1(3): 256-267 (1976).
[U 84] David Ungar: Generation Scavenging: A Non-Disruptive High Performance Storage Rec-

lamation Algorithm. Software Development Environments (SDE), ACM SIGPLAN Notices
19(5): 157-167 (1984).

[VSW 97] Jochen Van den Bercken, Bernhard Seeger, Peter Widmayer: A Generic Approach to
Bulk Loading Multidimensional Index Structures. VLDB Conference 1997: 406-415.

[WKH 00] Till Westmann, Donald Kossmann, Sven Helmer, Guido Moerkotte: The Implementa-
tion and Performance of Compressed Databases. ACM SIGMOD Record 29(3): 55-67
(2000).

