05431 Abstracts Collection
Deduction and Applications

— Dagstuhl Seminar —

Franz Baader!, Peter Baumgartner?, Robert Nieuwenhuis?® and Andrei
Voronkov*

! TU Dresden, DE
baader@inf.tu-dresden.de
2 MPI fiir Informatik, DE
baumgart@mpi-sb.mpg.de
3 TU Barcelona, ES
roberto@lsi.upc.es
4 Manchester Univ., GB
voronkov@cs.man.ac.uk

Abstract. From 23.10.05 to 28.10.05, the Dagstuhl Seminar 05431 “De-
duction and Applications” was held in the International Conference and
Research Center (IBFI), Schloss Dagstuhl. During the seminar, several
participants presented their current research, and ongoing work and open
problems were discussed. Abstracts of the presentations given during the
seminar as well as abstracts of seminar results and ideas are put together
in this paper. The first section describes the seminar topics and goals in
general. Links to extended abstracts or full papers are provided, if avail-
able.

Keywords. Formal logic, deduction, artificial intelligence

05431 Executive Summary — Deduction and Applications

Peter Baumgartner (MPI fir Informatik, D)

Formal logic provides a mathematical foundation for many areas of computer
science. Logical languages are used as specification language within, e.g., pro-
gram development and verification, hardware design and verification, relational
databases, and many subfields of Artificial Intelligence. Automated Deduction
is concerned with the design and implementation of algorithms based on logical
deduction for solving problems in these areas.

The last years have seen considerable improvements concerning both basic
automated deduction technology and its (real-world) applications. Accordingly,
the goal of the seminar was to bring together researchers from both sides in order
to get an overview of the state of the art, and also to get ideas how to advance
automated deduction from an application oriented point of view.

Dagstuhl Seminar Proceedings 05431
Deduction and Applications
http://drops.dagstuhl.de/opus/volltexte/2006 /562

2 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

Keywords: Formal logic, deduction, artificial intelligence

Joint work of: Baader, Franz; Baumgartner, Peter; Nieuwenhuis, Robert;
Voronkov, Andrei

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/510

A description logic voyage: from inexpressive to expressive
languages and back

Franz Baader (TU Dresden, D)

The talk will take you on an adventurous research voyage that starts in the
‘swamp of no-semantics’ of early knowledge representation systems, regains firmer
ground with the first logic-based languages, but then has to cross the ‘tractabil-
ity barrier’ towards expressive Description Logics with sound and complete, but
intractable inference procedures.

Finally, we will reach the ‘island of expressiveness’, on which expressive De-
scription Logics provide us with ontology languages for the Semantic Web and
practical reasoning tools for such languages. On the way, we will receive a brief
introduction into Description Logics, and meet hermaphrodites, OWLs, Lolita,
and Chinese parents. But isn’t there a smaller, more beautiful island of tractable
Description Logics just over the horizon?

Keywords: Description logic, ontology, semantic web

Full Paper:
http://lat.inf.tu-dresden.de/research /papers/2005/BaaderBrandtLutz-IJCAI
-05.pdf

See also: F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intel-
ligence IJCAI-05, Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

Resolution proofs, analogical reasoning and juridical logic

Matthias Baaz (TU Wien, A)

The logic of legal reasoning is determined by the seemingly contradictory prin-
ciples that (i) legal arguments should be demonstrably sound, and (ii) decisions
have to be achieved (even within a priori limited time and space). We show that
arguments in both maximalist (continental/Latin law) and minimalist (common
law) legal reasoning systems are consequently based on analogical reasoning. In
this lecture we demonstrate how Resolution Calculus can be extended to provide
a formal basis for analogical reasoning of the kind described and in consequence
for juridical logic and e-justice.

http://drops.dagstuhl.de/opus/volltexte/2006/510
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf

Deduction and Applications 3

Keywords: Analogical reasoning, resolution calculus, proof descriptions, juridi-
cal logic

See also: Matthias Baaz: Note on Formal Analogical Reasoning in the Juridi-
cal Context in: LNCS Volume 3634 / 2005, Springer, Computer Science Logic:
19th International Workshop, CSL 2005, 14th Annual Conference of the EACSL,
Oxford, UK, August 22-25, 2005. Proceedings Editors: Luke Ong.

DPLL(T) with Generalized Theory Propagation

Clark W. Barrett (Courant Institute - New York, USA)

The DPLL(T) calculus provides an abstract formalization for reasoning about
an efficient combination of Boolean and Theory reasoning. Previous versions of
DPLL(T) require that a theory be able to determine whether or not a set of
literals is satisfiable. However, it is often more convenient for a theory to answer
"maybe" and provide some additional clauses, possibly including new variables
and literals, to the DPLL solver. In this talk we discuss preliminary work on the
extensions necessary to accommodate this and give examples of its application
to a fragment of set theory and the theory of arrays.

Keywords: DPLL, DPLL(T), SMT

Second-Order Principles in Specification Languages for
Object-Oriented Programs

Bernhard Beckert (Univ. Koblenz-Landau, D)

Within the setting of object-oriented program specification and verification,
pointers and object references can be considered as relations between the el-
ements of a data structure. When we specify properties of these data structures,
we often describe properties of relations. Hence it is important to be able to talk
about relations and their properties when specifying object-oriented programs or
programs with pointers. Many interesting properties of relations such as transi-
tive closure, finiteness, and generatedness are not expressible in first-order logic
(FOL); hence neither are they expressible in first-order fragments of specification
languages. In this paper we give an overview of the different ways such properties
can be expressed in various logics, with a particular emphasis on extensions of
FOL, i.e. transitive closure logic, fixed-point logic, and first-order dynamic logic.
Within the paper we also discuss which of these extensions already are - or in
fact should be - implemented within specification languages. We feel that such a
discussion is necessary since it is often the case that when an extension of FOL is
implemented within a specification language it is done so in an ad hoc manner.

Keywords: Software specification, higher-order logic, first-order logic, object-
oriented programming

4 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

Joint work of: Beckert, Bernhard; Trentelman, Kerry

See also: Bernhard Beckert and Kerry Trentelman. Second-Order Principles in
Specification Languages for Object-Oriented Programs. In Proceedings of the
12th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Montego Bay, Jamaica, pages 154-168. Springer, 2005.

A Structured Set of Higher-Order Problems

Christoph Benzmiiller (Universitit Saarbricken, D)

We present a set of problems that may support the development of calculi and
theorem provers for classical higher-order logic. We propose to employ these
test problems as quick and easy criteria preceding the formal soundness and
completeness analysis of proof systems under development. Our set of problems
is structured according to different technical issues and along different notions of
semantics (including Henkin semantics) for higher-order logic. Many examples
are either theorems or non-theorems depending on the choice of semantics. The
examples can thus indicate the deductive strength of a proof system.

Keywords: Higher Order Logic, Semantics, Extensionality, Proof Problems
Joint work of: Benzmiiller, Christoph; Brown, Chad

Full Paper:
http://www.ags.uni-sb.de/ chris/papers/C17.pdf

See also: C. Benzmiiller and C. Brown, A Structured Set of Higher-Order
Problems. Proceedings of the 18th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2005), LNAI vol. 3606, pp. 66-81, Oxford, UK,
2005. Springer.

On Predicting the Grammar of a Normal-Form

Alan Bundy (University of Edinburgh, GB)

We introduce the problem of predicting the formal grammar of the normal-form
that is generated from a class of expressions by exhaustive application of a set of
rewrite rules. We describe and implement a sound but incomplete procedure for
solving this problem and report on its theoretical and experimental properties.

Keywords: Rewrite rules, normal forms, context free grammar

http://www.ags.uni-sb.de/~chris/papers/C17.pdf

Deduction and Applications 5

Event B method

Dominique Cansell (LORIA - Nancy, F)

In this talk we present the event B method using an example: constructing a
spanning tree of a connected graph. The first model is very abstract and com-
putes the spanning tree in one shot. Refinement is used to introduce the depth-
first algorithm. We give and justify (thanks to the refinement) some invariant
and explain how we can prove it almost automatically.

Keywords: Modelisation, incremental development, abstraction, refinement,
invariant, proof

Efficient Satisfiability Modulo Theories via Delayed
Theory Combination

Alessandro Cimatti (ITC-irst - Trento, I)

The problem of deciding the satisfiability of a quantifier-free formula with respect
to a background theory, also known as Satisfiability Modulo Theories (SMT),
is gaining increasing relevance in verification: representation capabilities beyond
propositional logic allow for a natural modeling of real-world problems (e.g.,
pipeline and RTL circuits verification, proof obligations in software systems).

In this paper, we focus on the case where the background theory is the combi-
nation 77 UT5 of two simpler theories. Many SMT procedures combine a boolean
model enumeration with a decision procedure for 77 UT5, where conjunctions of
literals can be decided by an integration schema such as Nelson-Oppen, via a
structured exchange of interface formulae (e.g., equalities in the case of convex
theories, disjunctions of equalities otherwise).

We propose a new approach for SMT(T; U Ty), called Delayed Theory Com-
bination, which does not require a decision procedure for 77 UT5, but only indi-
vidual decision procedures for T} and T», which are directly integrated into the
boolean model enumerator. This approach is much simpler and natural, allows
each of the solvers to be implemented and optimized without taking into account
the others, and it nicely encompasses the case of non-convex theories. We show
the effectiveness of the approach by a thorough experimental comparison.

Keywords: SMT, decision procedure, delayed theory combination

Equinox — A Lazy Explicating Theorem Prover for Full
Pure First-Order Logic

Koen Claessen (Chalmers UT - Géteborg, S)

I will describe the new theorem prover Equinox, for full first-order logic with
equality.

6 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

Equinox is based on successively augmenting a propositional logic theorem
prover with more and more expressivity, using the lazy explicating proof tech-
nique. Equinox is still in a baby-state but already shows promising results. I will
discuss its current design, strengths and weaknesses as well as future directions.

Keywords: Automated theorem proving, first-order logic, SAT solving

Locality modulo

Hubert Comon-Lundh (ENS - Cachan, F)

Locality is a property of an inference system, which states that, if there is a proof
of a formula, then there is a proof only involving "pieces" of the hypotheses and
the conclusion. D. McAllester investigated local inference systems when a "piece"
means a subterm. Basin and Ganzinger considered locality when a "piece" means
a smaller formula. Local inference systems yield efficient proof search. As an
example, most of the intruder models (in the analysis of cryprographic protocols)
are local. We present an ongoing work on local inference systems in presence of
algebraic properties.

Joint work of: Comon-Lundh, Hubert; Delaune, Stephanie

Practical Proof Checking for Program Certification

Bernd Fischer (NASA (RIACS) - Moffett Field, USA)

Program certification aims to provide explicit evidence that a program meets a
specified level of safety. This evidence must be independently reproducible and
verifiable. We have developed a system, based on theorem proving, that generates
proofs that auto-generated aerospace code adheres to a number of safety policies.
For certification purposes, these proofs need to be verified by a proof checker.

I will describe and evaluate a semantic derivation verification approach to
proof checking. The evaluation is based on safety obligations that are attempted
by EP and SPASS. Our system is able to verify almost all of the proofs found
by the two provers. The majority of the proofs are checked completely in less
than 15 seconds wall clock time. This shows that the proof checking task arising
from a substantial prover application is practically tractable.

Keywords: Program certification, proof checking

Joint work of: Fischer, Bernd; Sutcliffe, Geoff; Denney, Ewen

Deduction and Applications 7

Proving and Disproving Termination in the Dependency
Pair Framework

Jirgen Giesl (RWTH Aachen, D)

The dependency pair framework is a new general concept to integrate arbitrary
techniques for termination analysis of term rewriting.

In this way, the benefits of different techniques can be combined and their
modularity and power are increased significantly. Moreover, this framework fa-
cilitates the development of new methods for termination analysis. Traditionally,
the research on termination focused on methods which prove termination and
there were hardly any approaches for disproving termination. We show that with
the dependency pair framework, one can combine the search for a proof and for
a disproof of termination. In this way, we obtain the first powerful method which
can also verify non-termination of term rewrite systems.

We implemented and evaluated our contributions in the automated termina-
tion prover AProVE. Due to these results, AProVE was the winning tool in the
International Competition of Termination Provers 2005, both for proving and
for disproving termination of term rewriting.

Keywords: Termination, non-termination, term rewriting, dependency pairs
Joint work of: Giesl, Jiirgen; Thiemann, René, Schneider-Kamp, Peter
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006 /509

Full Paper:
http://www-i2.informatik.rwth-aachen.de/giesl/papers/LPARO4-distribute.ps

Full Paper:
http://www-i2.informatik.rwth-aachen.de/giesl /papers/FROCOS05-distribute.ps

See also: J. Giesl, R. Thiemann, P. Schneider-Kamp. The Dependency Pair
Framework: Combining Techniques for Automated Termination Proofs. Proceed-
ings of the 11th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2004), Montevideo, Uruguay, Lecture Notes
in Computer Science 3452, pages 301-331, 2005.

See also: J. Giesl, R. Thiemann, P. Schneider-Kamp. Proving and Disproving
Termination of Higher-Order Functions. Proceedings of the 5th International
Workshop on Frontiers of Combining Systems (FroCoS ’05), Vienna, Austria,
Lecture Notes in Artificial Intelligence 3717, pages 216-231, 2005.

http://drops.dagstuhl.de/opus/volltexte/2006/509
http://www-i2.informatik.rwth-aachen.de/giesl/papers/LPAR04-distribute.ps
http://www-i2.informatik.rwth-aachen.de/giesl/papers/FROCOS05-distribute.ps

8 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

Processor Datapath Verification with SPASS

Thomas Hillenbrand (MPI fir Informatik, D)

Initiated by the VERISOFT project, we have carried out an attempt to verify the
datapath of a simple DLX-like processor with the superposition-based theorem
prover SPASS, which is not a straightforward choice for this domain because
reasoning on bitvectors effectively is essential here. After experiments with a
number of problem encodings we came up with a method that looks promising.
Proving the processor correct manually, or with the ISABELLE system, was
complicated and required splitting the theorem up into 18 propositions some of
which are non-trivial. In contrast, with the right encoding SPASS can do the
proof automatically in less than one minute. In the talk, the application will
be introduced, and an account of the encoding method be given as far as it is
worked out by now.
This is joint work with Carsten Thlemann, and in progress still.

Keywords: First-order reasoning, bitvectors

Joint work of: Hillenbrand, Thomas; Thlemann, Carsten

Inductive Proofs in Information Flow Control - Security in
Multiagent Systems

Dieter Hutter (DFKI Saarbriicken, D)

The multi-agent-systems paradigm is becoming more and more popular as a
basis for realizing net-based solutions. This development is accompanied by an
increasing relevance of security issues. For instance, the potential loss of pri-
vacy and other assets is a major concern for both merchants and customers,
in Internet-based commerce and, without being properly addressed, such very
legitimate concerns hamper the growth of e-commerce.

This talk uses a comparison-shopping scenario to introduce a general method-
ology for formally verifying the security of multi-agent systems. Following the
approach of possibilistic information flow security, the security requirements for
the overall system are decomposed into requirements for the individual agents
and verified with the help of unwinding techniques. We present heuristics of how
to guide an inductive theorem prover in verifying the arising proof obligations.

Keywords: Security, multi-agent system, deduction, induction

Deduction and Applications 9

Formal verification of for-loops without induction and
invariants

Reiner Hihnle (Chalmers UT - Gdateborg, S)

Loops are the bottleneck in formal software verification, because they generally
require user interaction: typically, induction hypotheses and invariants must be
modified by hand in order to go through. This involves expert-level knowledge
of the technicalities of the underlying calculus and proof engine. We show that
one can replace interactive proof techniques such as induction with automated
reasoning in order to deal with certain well-behaved for-loops. The latter means
that the execution of loop bodies avoids certain dependencies (this is made
precise).

In a first step we check with a static analysis that a given for-loop is well-
behaved. This guarantees soundness of a proof rule that transforms a for-loop
into a universally quantified update of the state change represented by the loop
body. After this transformation of the problem, it is possible to use automatic
techniques to compute the strongest postcondition of the loop. The method has
been implemented in the KeY verification tool. We evaluated it with represen-
tative case studies from the Java Card domain.

Keywords: Formal software verification, dependency analysis, Java Card

Joint work of: Hidhnle, Reiner; Gedell, Tobias

Teaching a Quantifier Elimination based Method for
Generating Loop Invarinats

Deepak Kapur (University of New Mexico, USA)

In 2003-2004, the author proposed a method for automatically generating loop
invariants of imperative programs based on quantifier elimination in theories.
An overview of this method is first presented. This semester, this method is
being taught in a graduate level class on programming language semantics at the
University of New Mexico. Students’ experience in using this method is briefly
reviewed. The method is especially appealing for this purpose since benefits of
the method are proportional to the amount of effort being put into heuristics
for approximating quantifier-elimination. The method is sound in the sense that
an incomplete method for quantifier-elimination does not produce an incorrect
invariant but rather, a weak invariant. The methodology is illustrated using a
variety of examples.

Keywords: Program invariants, quantifier elimination, heuristics

Full Paper:
http://www.cs.unm.edu/ kapur/myabstracts/aca2004.html

http://www.cs.unm.edu/~kapur/myabstracts/aca2004.html

10 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

See also: Deepak Kapur, Automatically Generating Loop Invariants using
Quantifier Elimination, Proc. IMACS Intl. Conf. on Applications of Computer
Algebra (ACA), 2004, Beaumont, TX, USA, July 2004

Automatically Generating Loop Invariants Using
Quantifier Elimination

Deepak Kapur (University of New Mexico, USA)

An approach for automatically generating loop invariants using quantifier-elimina-
tion is proposed. An invariant of a loop is hypothesized as a parameterized for-
mula. Parameters in the invariant are discovered by generating constraints on
the parameters by ensuring that the formula is indeed preserved by the execution
path corresponding to every basic cycle of the loop. The parameterized formula
can be successively refined by considering execution paths one by one; heuristics
can be developed for determining the order in which the paths are considered.
Initialization of program variables as well as the precondition and postcondition
of the loop, if available, can also be used to further refine the hypothesized in-
variant. Constraints on parameters generated in this way are solved for possible
values of parameters. If no solution is possible, this means that an invariant of
the hypothesized form does not exist for the loop. Otherwise, if the parametric
constraints are solvable, then under certain conditions on methods for generat-
ing these constraints, the strongest possible invariant of the hypothesized form
can be generated from most general solutions of the parametric constraints. The
approach is illustrated using the first-order theory of polynomial equations as
well as Presburger arithmetic.

Keywords: Program verification, loop invariants, inductive assertions, quantifier
elimination

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/511

Temporal logics over transitive states and their relation to
dynamical systems

Boris Konev (University of Liverpool, GB)

Dynamical systems are usually represented by some ‘mathematical’ space W
(modelling possible system states) and a function f on W (modelling the evolu-
tion of the system), with one of the main research problems being the study of
iterations of f, in particular, the orbits O(w) = {w, f(w), f?(w), ...} of states w
in W.

Since infinite iterations of f cannot be represented in first-order logic, a dif-
ferent logical formalism is required. One possible formalism for speaking about
such iterations is a variant of temporal logic. We investigate the computational

http://drops.dagstuhl.de/opus/volltexte/2006/511

Deduction and Applications 11

behaviour of ‘two-dimensional’ propositional temporal logics over natural num-
bers (with and without the next-time operator) that are capable of reasoning
about states with transitive relations. We show that temporal logics over infinite
expanding domains are undecidable even for the language with the sole temporal
operator ‘eventually.” From this result we get the undecidability of the dynamical
topological logic of Aleksandrov spaces.

Keywords: Modal logic, temporal logic, dynamical systems, lossy computations

Theory Instantiation

Konstantin Korovin (Manchester University, GB)

We continue our previous work on instantiation-based theorem proving and
present a method for integrating theory reasoning in this framework.

This method allows us to integrate theory reasoning in a uniform manner for
different theories. The theory reasoner can be seen as a black-box that is only
required to satisfy certain natural requirements. We prove completeness of the
resulting calculus provided that the theory reasoner satisfies the requirements.

As one of the applications of our approach we show how it is possible to
combine instantiation calculus with other calculi, e.g., ordered resolution and
paramodulation.

Keywords: Automated deduction; instantiation methods

Joint work of: Ganzinger, Harald; Korovin, Konstantin

Modular Static Analysis with Sets and Relations

Viktor Kuncak (MIT - Cambridge, USA)

Complexity of data structures in modern programs presents a challenge for cur-
rent analysis and verification tools, forcing them to report false alarms or miss
errors. I will describe a new approach for verifying programs with complex data
structures. This approach builds on program analysis techniques, as well as de-
cision procedures and theorem provers.

The approach is based on specifying interfaces of data structures by writing
procedure preconditions and postconditions in terms of abstract sets and rela-
tions. Our system then separately verifies that 1) each data structure conforms
to its interface, 2) each data structure interface is used correctly, and 3) desired
high-level application-specific invariants hold. The system verifies these condi-
tions by combining decision procedures, theorem provers, and static analyses,
promising an unprecedented tradeoff between precision and scalability. In the
context of this system, we have developed new decision procedures for reasoning
about sets and their cardinalities, approaches for extending the applicability of
existing decision procedures, and techniques for modular analysis of dynamically
created data structure instances.

12 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

Keywords: Static analysis, data structure consistency, program verification,
decision procedures

Joint work of: Kuncak, Viktor; Rinard, Martin; Lam, Patrick; Wies, Thomas;
Podelski, Andreas; Marnette, Bruno

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/512

Predicate Abstraction via Symbolic Decision Procedures

Shuvendu Lahiri (Microsoft Research, USA)

We present a new approach for performing predicate abstraction based on sym-
bolic decision procedures. A symbolic decision procedure for a theory T' (SDPr)
takes sets of predicates G and E and symbolically executes a decision procedure
for T on G’ U {—e | e € E}, for all the subsets G’ of G. The result of SDPr is a
shared expression (represented by a directed acyclic graph) that implicitly repre-
sents the answer to a predicate abstraction query. We present symbolic decision
procedures for the logic of Equality and Uninterpreted Functions(EUF) and Dif-
ference logic (DIF) and show that these procedures run in pseudo-polynomial
(rather than exponential) time. We then provide a method to construct SDP’s
for simple mixed theories (including EUF + DIF) using an extension of the
Nelson-Oppen combination method. We present preliminary evaluation of our
procedure on predicate abstraction benchmarks from device driver verification
in SLAM.

Keywords: Predicate abstraction, decision procedures, software verification
Joint work of: Lahiri, Shuvendu; Ball, Thomas; Cook, Byron

Full Paper:
http://research.microsoft.com /research /pubs/view.aspx?tr _id=906

Constructing Bachmair-Ganzinger Models

Christopher Lynch (Clarkson University - Potsdam, USA)

The Bachmair-Ganzinger Model Construction technique was originally devel-
oped for proving completeness of inference systems. We show how this model
construction technique can also be used to answer questions about the model in
the nonequality case. We believe that this is the first such method for nonground
clauses. For non-Horn clauses, we must add a mild splitting inference. We make
an assumption about the ordering that is often true about orderings used in
practice.

Keywords: Automated deduction, model construction

http://drops.dagstuhl.de/opus/volltexte/2006/512
http://research.microsoft.com/research/pubs/view.aspx?tr_id=906

Deduction and Applications 13

Towards Efficient Boolean Circuit Satisfiability Checking

Ilkka Niemeld (Helsinki University of Technology, FIN)

Boolean circuits offer a natural, structured, and compact representation of Boolean
functions for many application domains such as computer aided verification. We
study satisfiability checking methods for Boolean circuits. As a starting point
we take the successful Davis-Putnam-Logemann-Loveland (DPLL) procedure
for satisfiability checking of propositional formulas in conjunctive normal form
and study its generalization to Boolean circuits. We employ a tableau formula-
tion where DPLL propagation rules correspond to tableau deduction rules and
splitting corresponds to a tableau cut rule. It turns out that Boolean circuits en-
able interesting deduction (simplification) rules not typically available in DPLL
where the idea is to exploit the structure of the circuit. We also study the relative
efficiency of different variations of the cut (splitting) rule obtained by restrict-
ing the use of cut in several natural ways. A number of exponential separation
results are obtained showing that the more restricted variations cannot poly-
nomially simulate the less restricted ones. The results also apply to DPLL for
formulas in conjunctive normal form obtained from Boolean circuits by using
Tseitin’s translation. Thus DPLL with the considered cut restrictions, such as
allowing splitting only on the variables corresponding to the input gates, cannot
polynomially simulate DPLL with unrestricted splitting.

Keywords: Boolean circuits, satisfiability, tableau method, proof complexity,
DPLL method

Joint work of: Niemeld, Ilkka; Junttila, Tommi; Jarvisalo, Matti

Full Paper:
http://dx.doi.org/10.1007/s10472-005-7034-1

See also: Matti Jarvisalo, Tommi Junttila, and Ilkka Niemeld. Unrestricted vs
Restricted Cut in a Tableau Method for Boolean Circuits. Annals of Mathematics
and Artificial Intelligence, 44(4), 373-399, 2005.

The DPLL(T) approach in the BarcelogicTools system

Albert Oliveras (TU of Catalonia - Barcelona, E)

In this talk we will describe the DPLL(T) approach for Satisfiability Modulo
Theories (SMT), the problem of deciding the satisfiability of a formula with
respect to a background theory of interest, which has important industrial ap-
plications. Special emphasis will be made on our DPLL(T) implementation: the
BarcelogicTools for SMT.

First, an overview of SMT procedures will be given using the Abstract DPLL
Modulo Theories framework, an extension of our rule-based formulation of the
Davis-Putnam-Logemann-Loveland (DPLL) procedure.

http://dx.doi.org/10.1007/s10472-005-7034-1

14 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

Apart from providing a simple and clean presentation of DPLL(T), this
framework also allows one to model the various existing techniques for SAT and
for SMT and, unlike when reasoning on pseucode fragments, properties such as
soundness, completeness or termination can be discussed in a clear and uniform
way for all these variants.

The second part of the talk will be devoted to a concrete implementation of
the DPLL(T) approach: our BarcelogicTools system for SMT. Its architecture
will be described and experimental results will be reported. Finally, time per-
mitting, special emphasis will be made on the different techniques and strategies
which might help to explain the successful performance of BarcelogicTools.

Keywords: Satisfiability Modulo Theories, decision procedures

Contextual Modal Type Theory: A Foundation for
Meta-variables

Brigitte Pientka (McGill University - Montreal, CDN)

In recent years, higher-order reasoning systems and logical frameworks have
matured and been successful in several applications such as proof-carrying code.
Maybe surprisingly, there are still some foundational and implementation issues
which are poorly understood.

In this talk, we concentrate on the notion of meta-variables and their role
in higher-order unification. Both concepts are fundamental to proof search, type
reconstruction and representation of incomplete proofs. First, we will present a
contextual modal type theory which provides an elegant, uniform foundation for
understanding meta-variables and explicit substitutions. Second, we will sketch
applications in higher-order pattern unification. This will provide new insights for
efficient implementation strategies and justifies logically design decisions which
have so far been largely motivated operationally. Finally, if time permits, we
will briefly discuss applications of this work to the representation of incomplete
proofs in theorem proving and open code in functional programming.

Keywords: Type theory, logical frameworks, intuitionistic modal logic

Generation of Invariant Conjunctions of Polynomial
Inequalities Using Convex Polyhedra

Enric Rodriguez-Carbonell (TU of Catalonia - Barcelona, E)

A technique for generating invariant polynomial inequalities of bounded de-
gree is presented using the abstract interpretation framework. It is based on
overapproximating basic semi-algebraic sets, i.e., sets defined by conjunctions
of polynomial inequalities, by means of convex polyhedra. While improving on

Deduction and Applications 15

the existing methods for generating invariant polynomial equalities, since poly-
nomial inequalities are allowed in the guards of the transition system, the ap-
proach does not suffer from the prohibitive complexity of the methods based on
quantifier-elimination. The application of our implementation to benchmark pro-
grams shows that the method produces non-trivial invariants in reasonable time.
In some cases the generated invariants are essential to verify safety properties
that cannot be proved with classical linear invariants.

The talk is based on joint work with Roberto Bagnara and Enea Zaffanella.

Keywords: ~ Program verification; abstract interpretation; invariants; convex
polyhedra

Joint work of: Bagnara, Roberto; Rodriguez-Carbonell, Enric; Zaffanella, Enea

Full Paper:
http://www.Isi.upc.edu/ erodri

See also: Roberto Bagnara, Enric Rodriguez-Carbonell and Enea Zaffanella.
Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra. In 12th
International Symposium on Static Analysis (SAS’05), Volume 3672 of LNCS,
pp- 19-34, September 2005, London (UK).

Using Deduction in Safety Analysis: the Elbtunnel case
study

Gerhard Schellhorn (Universitit Augsburg, D)

Safety Analysis is an important task in the design and analysis of embedded
systems like automotive, railway or avionic systems.

Usually techniques like Fault Tree Analysis (FTA) or Failure Mode and Ef-
fects Analysis (FMEA) are applied informally to identify safety critical compo-
nents and to quantify the risks associated with them.

Using the height control of the Elbtunnel in Hamburg as an example appli-
cation, the talk will present our ForMoSA (Formal Models and Safety Analysis)
approach, which integrates safety analysis, formal methods and mathematical
optimization.

The approach generates temporal logic proof obligations from a formal model
together with an FTA or DCCA (Discrete Cause-Consequence Analysis; a gen-
eralization of both FTA and FMEA) which ensure that no safety relevant events
have been overlooked. They are proved using interactive verification or model
checking in case of finite-state models. The results of FTA and DCCA are in
turn used to optimize system parameters such that safety risks are minimized.

Keywords: Safety Analysis, Fault Tree Analysis, Formal Methods, Deduction,
Model Checking

http://www.lsi.upc.edu/~erodri

16 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

Polynomial Equality Testing for Terms with Shared
Substructures

Manfred Schmidt-Schauss (Universitit Frankfurt, D)

Sharing of substructures like subterms and subcontexts in terms is a common
method for space-efficient representation of terms, which allows for example to
represent exponentially large terms in polynomial space, or to represent terms
with iterated substructures in a compact form. We show that the equality test
of terms with sharing can be done in polynomial time in the size of the repre-
sentation.

We present singleton tree grammars as a general formalism for the treatment
of sharing in terms. Singleton tree grammars (STG) are recursion-free context-
free tree grammars without alternatives for non-terminals and at most unary
second-order nonterminals. STGs generalize Plandowski’s singleton context free
grammars to trees. We show that the test, whether two different nonterminals
representing terms in a singleton tree grammar generate the same term can be
done in polynomial time.

This will allow better algorithms for terms exploiting sharing and improved
upper complexity bounds for second order unification algorithms, in particular
for variants of context unification and bounded second order unification.

Keywords: Sharing of Terms, tree grammars, context-unification

Solvability with Resolution of Problems in the
Bernays-Schoenfinkel Class

Renate Schmidt (Manchester University, GB)

We present a number of results on the solvability and complexity of problems in
the Bernays-Schoenfinkel (BS) class. We focus on resolution methods and show
how the BS class and some natural subclasses can be decided by general-purpose
resolution procedures. The decision procedures can be easily implemented in
current resolution theorem provers for first-order logic and initial tests are en-
couraging.

Keywords: Decidability, resolution, Bernays-Schoenfinkel class

Using Change Information. The Frame Problem in
Software Verification

Peter H. Schmitt (Universitit Karlsruhe, D)

The performance and usability of deductive program verification systems can be
greatly enhanced if specifications of programs and program parts not only consist
of the usual pre-/postcondition pairs and invariants but also include additional
information on which memory locations are changed by executing a program.

Deduction and Applications 17

This allows to separate the aspects of which locations change from how they
change. Modern specification and annotations languages allow to state informa-
tion of this kind in a compact way.

In this presentation we present a method how change information can be ef-
ficiently used in proving program properties. The method has been implemented
and is successfully used in the KeY software verification system.

This talk is based on the publication "An Improved Rule for While Loops
in Deductive Program Verification" by Bernhard Beckert, Steffen Schlager and
Peter H. Schmitt.

Keywords: Program verification, frame problem, Dynamic Logic
Joint work of: Beckert, Bernhard; Schlager, Steffen; Schmitt, Peter H.

See also: Accepted for 7th International Conference on Formal Engineering
Methods, Manchester, UK

Synthesis of Reliable Programs

Johann M. Schumann (NASA (RIACS) - Moffett Field, USA)

In this talk, T will describe the AutoBayes/AutoFilter program synthesis system.
It is a schema-based system for the automatic generation of reliable data-analysis
and state estimation programs from high-level specifications.

Reliability and high quality of the generated code is paramount for all mission-
and safety-critical code. Therefore, the AutoBayes/AutoFilter system generates
standardized design documents and supports safety policy based certification.
Using a Hoare-style approach and a verification condition generator, we use an
automated theorem prover to prove important safety aspects of the software
(e.g., array-bounds or variable initialization).

Full automation can be accomplished by having AutoBayes/AutoFilter syn-
thesize all required annotations (e.g., loop invariants) and by performing pow-
erful simplification steps for the proof obligations.

Keywords: Program Synthesis, Data Analysis, Automated Theorem Proving

Proof Presentation

Jorg Siekmann (DFKI Saarbriicken, D)

The talk is based on a book about the human-oriented presentation of a math-
ematical proof in natural language, in a style as we may find it in a typical
mathematical text book.

How can a proof be other than human-oriented? What we have in mind is
a deduction systems, which is implemented on a computer, that provesUwith

18 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

some human interactionUa mathematical textbook as may be used in an under-
graduate course. The proofs generated by these systems today are far from being
human-oriented and can in general only be read by an expert in the respective
field: proofs between several hundred (for a common mathematical theorem), for
more than a thousand steps (for an unusually difficult theorem) and more than
ten thousand deduction steps (in a program verification task) are not uncommon.

Although these proofs are provably correct,they are typically marred by many
problems: to start with, that are usually written in a highly specialised logic such
as the resolution calculus, in a matrix format, or even worse, they may be gen-
erated by a model checker. Moreover they record every logical step that may
be necessary for the minute detail of some term transformation (such as, for
example, the rearrangement of brackets) along side those arguments, a math-
ematician would call important steps or heureka-steps that capture the main
idea of the proof. Only these would he be willing to communicate to his fellow
mathematicians-provided they have a similar academic background and work
in the same mathematical discipline. If not, i.e. if the proof was written say
for an undergraduate textbook, the option of an important step may be viewed
differently depending on the intended reader.

Now, even if we were able to isolate the ten important steps U out of those
hundreds of machine generated proof steps U there would still be the startling
problem that they are usually written in the 'wrong’ order. A human reader
might say: ’they do not have a logical structure’; which is to say that of course
they follow a logical pattern (as they are correctly generated by a machine),
but, given the convention of the respective field and the way the trained math-
ematician in this field is used to communicate, they are somewhat strange and
ill structured.

And finally, there is the problem that proofs are purely formal and recorded
in a predicate logic that is very far from the usual presentation that relies on a
mixture of natural language arguments interspersed with some formalism.

The book (about 800 page) which gives an answer to some of these problems
is to appear with Elsevier

Keywords: Artificial intelligence, mathematics, proof presentation
Full Paper: http://drops.dagstuhl.de/opus/volltexte /2006 /561

See also: to appear with Elsevier

A Fresh Look at the Given Clause Algorithm

John Slaney (Australian National University - Canberra, AU)

The given clause algorithm is the basis of most contemporary high performance
theorem provers, and has been so for some decades. Surprisingly, in all that time
nobody seems to have looked carefully at what actually happens during bottom-
up proof searches. The present talk reports some early findings from a project

http://drops.dagstuhl.de/opus/volltexte/2006/561

Deduction and Applications 19

on visualisation of automated reasoning. It does not reach a simple conclusion
but rather demonstrates the complexity of the processes hidden behind the usual
runtime statistics such as the number of loop iterations or the number of clauses
generated.

Keywords: Theorem proving, first order deduction, given clause loop, visuali-
sation

On Properties of Local Theory Extensions: Hierarchical
and Modular Reasoning, Interpolation.

Viorica Sofronie-Stokkermans (MPI fir Informatik, D)

We present the properties of a special type of extensions of a base theory, which
we call local. Many theories important for computer science or mathematics are
local extensions of a base theory. Some examples are:

— theories of data structures, e.g. theories of lists or arrays,

— theories of constructors and selectors (important in program verification, but
also in cryptography),

— theories of monotone functions over an ordered domain (applications in
knowledge representation, or in verification),

— theories of (monotone) functions satisfying certain boundedness conditions
(relevant e.g. in the parametric verification of real-time or hybrid systems),

— theories of mathematics, e.g. the theory of functions satisfying the Lipschitz
conditions at a given point.

The notion of local extension of a theory generalizes the notion of locality of a
theory introduced by Givan and McAllester (1992), and of locality of equational
theories studied by Ganzinger (2001). For local theories, validity of ground Horn
clauses can be checked in polynomial time.

We show that for local extensions of a base theory efficient hierarchical rea-
soning, in which a theorem prover for the base theory is used as a “black box”, is
possible. We identify situations in which, for an extension 77 of a theory 7y, the
decidability (and complexity) of the universal theory of 77 can be expressed in
terms of the decidability (resp. complexity) of suitable fragments of the theory
7o (universal or V3). We also discuss combinations of local theory extensions,
possibilities of modular reasoning, as well as interpolation properties.

Keywords: Automated reasoning, Combinations of decision procedures

Disconnection Tableaux with Link Blocking

Gernot Stenz (TU Miinchen, D)

The disconnection tableaux calculus is currently the most successful tableaux-
based method for first-order automated theorem proving. Among its character-
istics the branch saturation property is the most interesting.

20 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

This means that when an open branch cannot be extended in a non-redunant
manner, it describes a model for the formula. In practice, however, finding such
a model heavily depends on using the proper selection functions.

In our talk we describe link blocking, a new method of redundancy elimina-
tion similar to so-called "productivity restrictions" in other calculi like model
evolution. Here, as a kind of semantic guidance, the current branch is treated
like a candidate model that is continuously refined by applying inference steps.
Link blocking disallows the application of inference steps producing literals that
are already true in the candidate model. This way the termination behaviour
of the calculus becomes much more robust and independent of the branch and
inference selection functions employed.

In terms of proving completeness, link blocking requires an extension of the
exception-based representation (EBR) technique developed for actually extract-
ing a model from a saturated branch. The move from EBRs to candidate models
necessitated the introduction of an acyclic ordering on links no longer based
mainly on the instantiatedness of the involved literals.

For ground literals, the general technique of link blocking collapses to the
regularity restriction on branch literals. As regularity cannot be enforced for
proofs involving theory equality, link blocking promises to provide a more gen-
eral framework still applicable also in the equational case. Then, however, several
important questions have to be addressed regarding completeness and the de-
cidability of the candidate model entailment condition.

Keywords: First-order tableaux models disconnection

Canonizing Congruence Proofs
Aaron Stump (Washington University, USA)

In this talk, I describe a family of convergent term rewriting systems for putting
congruence proofs into canonical form. Congruence proofs are built from as-
sumptions using proof rules for reflexivity, symmetry, and transitivity, as well
as one congruence rule for every pair of function symbol and argument position
for that function symbol. The algebra of congruence proofs is shown to be that
of commuting group endomorphisms, under a certain extension of the condition
that assumptions are logically independent.

Convergent completions of this algebra are obtained first for k = 2 commuting
group endomorphisms, and then extended to the cases where k > 2. Obtaining
these completions is non-trivial, due to the commutation rules, which are not
orientable using LPOs or KBOs. For example, Waldmeister can obtain ground
convergent completions only up to k = 5, where the computation generates over
100 million critical pairs, takes 22 hours, and results in a saturated set of 670
rules and 11240 equations. In contrast, our method describes the completion for
all k > 2, and the completion for k = 5 consists of just 50 rules.

Keywords: Completion, congruence closure, Waldmeister, commuting group
endomorphisms
Joint work of: Stump, Aaron; Loechner, Bernd

Deduction and Applications 21

Solving Binary Integer Programs with DPLL(T)

Cesare Tinelli (University of Iowa, USA)

Binary Integer Programming (BIP), also known as pseudo-Boolean constraint
solving, is a special cause of linear integer programming in which all input vari-
ables range over the set 0,1. In this talk I will describe a method for readily build-
ing solvers for the feasibility of BIP programs on top of the DPLL(T) scheme for
satisfiability modulo theories. The method requires some simple preprocessing
of the input program and the implementation of a similarly simple theory solver
for the DPLL(T) scheme. I will present preliminary results showing that BIP
solvers built this way can be competitive with state-of-the-art BIP solvers.

Keywords: Binary integer programming, satisfiability modulo theories, pseudo-
boolean constraints, DPLL

Unification in assertion checking over logical lattices

Ashish Tiwari (SRI - Menlo Park, USA)

We explicate the connection between unification and assertion checking. Specif-
ically, we show that weakest preconditions can be strengthened by replacing
equalities by their unifiers, without losing any precision during backward analysis
of programs. Using this result, we establish the decidability of assertion checking
for programs (with nondeterministic conditionals) over the combined language
of linear arithmetic and uninterpreted symbols. This result is surprising since
the corresponding lattice has unbounded height. For loop-free programs, asser-
tion checking is coNP-complete. In contrast, programs over languages of the
individual theories have polynomial time assertion checking algorithms.

Keywords: Abstract interpretation, weakest precondition, unification, NP-
hardness, decidability

Joint work of: Tiwari, Ashish; Gulwani, Sumit

Combatting SUMO and Terrorism with Vampire

Andrei Voronkov (Manchester University, GB)

We identify a number problem hampering the use of first-order theorem provers
for reasoning with large ontologies based on first-order logic and its extensions.

Then we describe a modification of the theorem prover Vampire able to reason
with ontologies containing over 20,000 first-order formulas with equality. We
also give a brief analysis of inconsistencies found by Vampire in the SUMO and
terrorism ontologies.

Keywords: Ontology reasoning inconsistency

22 F. Baader, P. Baumgartner, R. Nieuwenhuis and A. Voronkov

SPASS 4+ T

Uwe Waldmann (MPI fir Informatik, D)

We describe how we have linked decision procedures for arithmetic to the su-
perposition theorem prover SPASS; we discuss the capabilities, limitations, and
applications of such a combination; and we sketch extensions of the current im-
plementation.

Keywords: SPASS, superposition, theorem proving, decision procedures, arith-
metic

Reasoning about Incompletely Defined Programs

Christoph Walther (TU Darmstadt, D)

We consider automated reasoning about recursive partial functions with decid-
able domain, i.e. functions computed by incompletely defined but terminating
functional programs. Incomplete definitions provide an elegant and easy way to
write and to reason about programs which may halt with a run time error by
throwing an exception or printing an error message, e.g. when attempting to
divide by zero. We investigate the semantics of incompletely defined programs,
define an interpreter for those programs and discuss the termination of incom-
pletely defined procedures. We then analyze which problems need to be solved
if a theorem prover designed for verification of completely defined programs is
modified to work for incompletely defined programs as well. We also discuss how
to reason about stuck computations which arise when calling incompletely de-
fined procedures with invalid arguments. Our method of automated reasoning
about incompletely defined programs has been implemented in the verification
tool VeriFun. We conclude by discussing experiences obtained in several case
studies with this implementation and also compare and relate our proposal to
other work.

Keywords: Loose / Underspecifications, partial functions, program verification,
automated reasoning

Joint work of: Walther, Christoph; Schweitzer, Stephan

Full Paper:
http://www.inferenzsysteme.informatik.tu-darmstadt.de/ walther/

See also: Proceedings LPAR-12, Springer LNAI 3835, pp. 427-442 (2005)

http://www.inferenzsysteme.informatik.tu-darmstadt.de/~walther/

Deduction and Applications 23

Formal Verification of an Off-Line Result Checker for
Priorities Queus

Hans de Nivelle (MPI fiir Informatik, D)

We describe how we formally verified the result checker for priority queues that
is implemented in LEDA (a large software library developed at MPI).

A result checker of some datastructure is an additional datastructure that
checks all input and output of the first datastructure, and which is able to detect
when the first datastructure makes a mistake. We have developed a formalism,
based on the notion of implementation function, that links abstract specifica-
tions to concrete implementations. The formalism allows non-determinism in the
abstract specification that can be filled in by the concrete implementation. The
formalism is general: It can be used for testing, result checking and also for ver-
ification. Using the formalism, we have formally verified that, if the checker has
not reported an error up to a certain moment, then the structure checked by it
has behaved like a priority queue up to that moment.

For the verification, we made use of the first-order theorem prover Saturate.

Keywords: Verification of Object-Oriented Specifications, Result Checking,
Theorem Proving

Joint work of: de Nivelle, Hans; Piskac, Ruzica

	05431 Abstracts Collection Deduction and Applications --- Dagstuhl Seminar ---
	 Franz Baader, Peter Baumgartner, Robert Nieuwenhuis and Andrei Voronkov

