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Abstract. An approach for automatically generating loop invariants using

quantifier-elimination is proposed. An invariant of a loop is hypothesized as
a parameterized formula. Parameters in the invariant are discovered by gen-

erating constraints on the parameters by ensuring that the formula is indeed

preserved by the execution path corresponding to every basic cycle of the loop.
The parameterized formula can be successively refined by considering execu-

tion paths one by one; heuristics can be developed for determining the order in

which the paths are considered. Initialization of program variables as well as
the precondition and postcondition of the loop, if available, can also be used

to further refine the hypothesized invariant. Constraints on parameters gener-

ated in this way are solved for possible values of parameters. If no solution is
possible, this means that an invariant of the hypothesized form does not exist

for the loop. Otherwise, if the parametric constraints are solvable, then under
certain conditions on methods for generating these constraints, the strongest

possible invariant of the hypothesized form can be generated from most general

solutions of the parametric constraints. The approach is illustrated using the
first-order theory of polynomial equations as well as Presburger arithmetic.

1. Introduction

Since Floyd-Hoare-Dijkstra’s inductive assertion method, using pre/postconditions
and loop invariants, was proposed in the late sixties for verifying properties of im-
perative programs, discovering invariants of loops automatically has been viewed
as a considerable technical challenge. There have been many attempts to address
this problem since the pioneering work of [8, 10, 18]; the success however has been
limited. As a result, research in program verification has suffered considerably.
Recently, there appears to be a revival of research activities relating to mechani-
cally discovering loop invariants, especially using abstract interpretations and the
associated widening operators [4, 5, 20, 21, 24].

This paper explores the use of quantifier elimination methods for generating
loop invariants. A loop invariant is hypothesized to be a parameterized formula in a
first-order theory in which certain free variables in a formula are called parameters,
much in the spirit of the work on deducing subsidiary conditions in the mid 80’s on

* This report discusses the method presented in a seminar given by the author on November
20, 2003 in the Computer Science Department Colloquium Series at the University of New Mexico.
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geometry theorem proving by Wu Wen-Tsun [30, 31], Chou [1] and the author [12,
13].1 By considering every possible basic cycle arising from the execution of a given
loop, the goal is to successively deduce constraints on these parameters such that for
values of parameters satisfying these constraints, the instantiated formula is indeed
a loop invariant. Once all the basic cycles have been considered, the constraints
on parameters generated through this process are solved. For every assignment of
parameter values for which the associated constraints hold, the instantiated formula
is shown to be a loop invariant.

If a method for generating constraints on parameters (for example, quantifier
elimination) is powerful enough that the constraints on parameters produced by
the method are logically equivalent to the verification condition obtained by con-
sidering all basic cycles of a given loop, then even stronger claims can be made.
It can be shown that if there is no solution for parameters from the constraints
generated (or there is only a trivial solution), then an invariant of the hypothesized
form does not exist for the given loop. Further, if there is a finite description of
all solutions of constraints on parameters, then the hypothesized formula can be
instantiated using this finite description to get the strongest possible invariant (of
the hypothesized form) of the loop. Such a claim cannot be made, however, in
case of approximations made either in generating a verification condition (e.g., ab-
stracting boolean expressions and tests appearing in a program in case they cannot
be expressed in the language in which invariants are specified) or the algorithm
for generating constraints on parameters from the verification conditions does not
preserve equivalence. Other kinds of approximations using abstract interpretations
may be possible as well.

Constraints on parameters appearing in a parameterized formula hypothesized
as an invariant can be successively generated by considering every basic cycle
through the program location (typically the beginning of the loop) to which the
invariant is associated. If there is more than one basic cycle in a given program,
order in which different basic cycles are considered can be arbitrary; heuristics can
be developed to consider basic cycles in various orders so as to reduce the work
involved in generating constraints for subsequent basic cycles.

We identify conditions on a first-order theory for it to be useful for writing
invariants in parameterized form so that the proposed method is applicable. It is
shown that Presburger arithmetic, the theory of polynomial equations as well as
Tarski’s theory of real closed fields satisfy these conditions. The proposed method
is illustrated using examples. We have found the method to be simple enough to
be taught in undergraduate courses for discovering loop invariants. The examples
discussed in this paper as well as many other examples have been done by hand.

In the next subsection, some recent related work on automatically generating
loop invariants is discussed. After discussing some preliminaries in Section 2, the
proposed approach is illustrated in detail using an example in Section 3; a polyno-
mial equation is hypothesized to be an invariant. Section 4 gives the main steps of

1In my opinion, Wu Wen-Tsun proposed a new perspective for theorem proving by proposing
the following questions: Given a finite set of hypotheses, does a conclusion follow? And, if it does
not follow, under what conditions on certain variables in the hypotheses and conclusions (which

he called parameters), does the conclusion follow? He formulated this as a generic consequence
relation using the concept of genericity in elimination theory and algebraic geometry since the
objective was to ensure that a given conjecture is true for all values of variables and almost all
values of parameters.
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the proposed approach. Section 5 discusses three logical theories with the desired
properties so that formulas in the associated languages can be used for assertions
about programs. Section 5 discusses an example that illustrates how the proposed
approach can generate multiple independent invariants of a loop in a program.
Section 6 discusses another example illustrating the behavior of the proposed ap-
proach if the loop in a program does not have an invariant of the hypothesized form.
Section 7 concludes with some remarks for future work. The presentation in the
paper is deliberately kept informal with lots of illustration. A more comprehensive
technical treatment will be presented in a subsequent paper.

1.1. Related Work. In the seventies, Wegbreit and his colleagues [27, 28,
10], Elpas et al [8], Manna and Katz [18] proposed writing the semantics of assign-
ment statements in the body of a loop as recurrence equations (also called difference
equations), finding an explicit expression for the value of each program variable as
a function of the number s of loop iterations and then eliminating the variable
s to obtain invariant predicates. They were however unable to demonstrate the
effectiveness of their techniques for nontrivial loop programs.

Karr [17] gave an algorithm for finding linear equalities as loop invariants.
This work was extended by Cousot and Halbwachs [5], who applied the concept
of abstract interpretation [4] to finding linear inequalities as invariants. Another
extension of Karr’s work has been recently proposed by Müller-Olm and Seidl [21],
who generate using linear algebra techniques, polynomial equations of bounded
degree as invariants in programs with affine assignments. In [3], Colón et al. have
used Farakka’s lemma and non-linear constraint solving for finding invariant linear
inequalities. This paper is inspired by [3].

Recently, Rodriguez-Carbonell and Kapur [23, 22] have proposed a general
abstract framework for computing loop invariants using fixed point computation
on formulas generated from the body of a given loop. They showed how this frame-
work can be instantiated to give a sound and complete algorithm for computing
conjunction of polynomial equations as loop invariants. They demonstrated the
use of Gröbner basis algorithms for computing such loop invariants on a family of
examples. The main advantage of that approach over the proposed method is that
it does not assume any a priori bound on the degree of a polynomial as an invariant.
Most interestingly, if there is an invariant of the loop that can be expressed as a
conjunction of polynomial equations, their approach will find it without having to
know their maximum degree; if such an invariant does not exist, their approach
can find that as well, whereas the proposed approach can only determine that the
invariant of the hypothesized form does not exist.

The proposed approach is, however, simpler to understand and implement.
It is somewhat related to an approach the author was made aware of in Novem-
ber/December 2003 as reported in [25]; polynomial invariants whose form is a priori
determined (called templates) are computed using an extended Gröbner basis algo-
rithm over templates. They also suggested comprehensive Gröbner basis algorithms
as well as the theory of real closed fields for quantifier-elimination, but opined that
such techniques for constraint solving are intractable even for simple programs.
They recommended a collection of weaker techniques under the heading “a practi-
cal alternative” and heuristics for solving constraints. A more detailed comparison
of their heuristics with the proposed approach is needed since we have succeeded in
solving many problems by hand using the proposed approach. Also, the proposed
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approach gives different results than theirs on many examples, which suggests that
our approach is more widely applicable and generates stronger invariants.

2. Preliminaries

We will assume a simple imperative programming language that supports mul-
tiple assignment statement, conditional statement, and loop; further, expression
evaluation is side-effect free and there are no pointers allowed.

An invariant at any program point is a formula relating program variables
such that whenever control passes through the point during the execution of the
program, the formula is true. A loop invariant of an imperative program is typically
a property of program variables that holds at the beginning of every iteration of a
loop in the program. A loop invariant can be shown to follow from an inductive
assertion requiring that for every possible execution path corresponding to any basic
cycle during the execution of the body of the loop, the assertion is preserved by
the path. Loop invariant generation is thus typically inductive assertion generation
[3]. We will abuse the terminology a bit, and often use loop invariant and inductive
assertion interchangeably.

A path in a program is assumed to be a sequence of assignments, possibly
interspersed with boolean tests arising due to conditional statements and loops.

For a given loop L, let p1, · · · , pk be all possible basic cycles2, consisting of
boolean tests and assignment statements, each of which starts at the beginning of
the body of the loop and ends at the same point. For a formula I(x̄) to serve as a
loop invariant, it must be the case that the Hoare triple

{I(x̄)} pi {I(x̄)},
where pi stands for the code fragment corresponding to the path pi, and x̄ is the
tuple of all of the variables in the program.

2.1. Axiomatic Semantics of Assignment. Below we review the axiomatic
semantics of an assignment statement. Given a multiple assignment statement and
the associated Hoare triple, where P,Q are respectively precondition and postcon-
dition of the statement, we have:

{P} 〈x1, . . . , xl〉 := 〈e1, . . . , el〉 {Q} if and only if (P ⇒ Q|〈e1,...,el〉
〈x1,...,xl〉),

where Q|〈e1,...,el〉
〈x1,...,xl〉 stands for the formula obtained from Q by simultaneously replac-

ing all free occurrences of x1, . . . , xl by e1, . . . , el, respectively; xi’s are assumed to
be distinct.3 This is the backward propagation semantics.

An equivalent formulation of the semantics of an assignment statement is based
on forward propagation; however new variables must be introduced to distinguish
between the values of program variables before and after the assignment. A multiple
assignment statement can be viewed as a finite set of rewrite rules of the form

2A basic cycle of a program is a path in which the beginning point and the end point are the

same and the rest of the path is free of any cycles.
3If Q is not quantifier-free, one has to be careful in performing substitutions; the free variables

appearing in ei’s should not get captured by the scope of quantifiers in Q; to avoid that, quantified

variables may need be renamed. For simplicity, we will assume that Q is quantifier-free so that
we do not have to worry about this requirement.
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x′
1 → e1, . . . , x

′
l → el, . . ., where x′

1, . . . , x
′
l are the new variables introduced to

stand for the values of x1, . . . , xl after the assignment.
For an instance, consider a path pi arising from the body of a loop,

〈x1, . . . , xl〉 := 〈e1, . . . , el〉; 〈x1, . . . , xl〉 := 〈f1, . . . , fl〉; b1;
〈x1, . . . , xl〉 := 〈g1, . . . , gl〉; b2

consisting of two assignment statements followed by a test followed by another as-
signment statement followed by another test. Given a Hoare triple {I} pi {J}, there
are two ways to generate a verification condition: (i) using backward propagation,
we get:

I ⇒ ((b1 ⇒ (b2 ⇒ J)|〈g1,...,gl〉
〈x1,...,xl〉)|

〈f1,...,fl〉
〈x1,...,xl〉)|

〈e1,...,el〉
〈x1,...,xl〉).

The above formula is expressed in terms of x1, . . . , xl, standing for the values of the
variables at the beginning of the path.

Using new variables introduced to refer to the values of x1, . . . , xl after each
assignment statement and by forward propagation, we get:

I(x1 . . . , xl) ⇒ (b1(x′′
1 , . . . , x′′

l ) ⇒ (b2(x′′′
1 . . . , x′′′

l ) ⇒ J(x′′′
1 , . . . , x′′′

l ))),

where the rewrite rules x′
1 → e1(x1, . . . , xl), . . . , x′

l → el(x1, . . . , xl), x′′
1 → f1(x′

1, . . . , x
′
l),

. . . , x′′
l → fl(x′

1, . . . , x
′
l), x′′′

1 → g1(x′′
1 , . . . , x′′

l ), . . . , x′′′
l → gl(x′′

1 , . . . , x′′
l ) relate old

variables to new variables after every assignment.
It can be shown that the above two formulations are equivalent.

3. A Detailed Illustration of the Proposed Approach

In this section, we give an informal overview of an automatic method for gen-
erating loop invariants; no assumption is made about the availability of pre or post
conditions surrounding a loop. If they are available, then they can be made use of;
otherwise, just the code is used for generating invariants.

The main idea of the proposed approach is to start with a quantifier-free for-
mula I(x̄, ū)4 where x̄ are the variables standing for program variables which are
possibly changing in a program, and ū are called parameters whose values need
to be determined for I to serve as an invariant. Constraints on parameters ū are
generated so that for all possible values of x̄, I is preserved by every execution path
of a given loop; this is done by considering all basic cycles of the loop.

Using Floyd-Hoare’s inductive assertion method, a verification condition Φ is
generated for all values of program variables x̄ with the parameters ū as its only free
variables. If ∃ū∀x̄ Φ is valid, it can be shown that there indeed exists an invariant
of the hypothesized form I(x̄, ū) with ū taking specific values; otherwise, such an
invariant does not exist. Further, if an equivalent quantifier-free formula, say P ,
on parameters ū can be computed from ∀x̄ Φ, then every assignment of parameter
values that makes P true gives an invariant I ′ obtained from I after instantiating
the parameters in it. Further, if a finite description of all assigments making P true
can be computed, then the strongest invariant (under certain assumptions) can be
generated. This is illustrated below using an example.

4Throughout the paper, we will consider quantifier-free formulas only as candidates for loop
invariants in order to keep the presentation simple. We believe that the proposed method can be

used to generate arbitrary formulas (with quantifiers) as invariants as well.
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3.1. Example. Consider the following simple program to compute the prod-
uct of two inputs.

function product (X, Y : integer) returns z: integer
var x, y: integer end var
〈x, y, z〉:=〈X, Y, 0〉;
while y 6= 0 do

if y mod 2 = 1 then 〈x, y, z〉:=〈2x, (y − 1) div 2, x + z〉;
[] y mod 2 = 0 then 〈x, y, z〉:=〈2x, y div 2, z〉;
end if

end while

3.1.1. Listing All Basic Cycles of a Loop and Generating the associated Hoare
Triples: There are two basic cycles for the loop:

(1) p1 consisting of two tests y 6= 0; y mod 2 = 1; followed by the multiple
assignment statement 〈x, y, z〉:=〈2x, (y − 1) div 2, x + z〉;

(2) p2 consisting of two tests y 6= 0; y mod 2 = 0; followed by the multiple
assignment statement 〈x, y, z〉:=〈2x, y div 2, z〉.

For a formula I(x, y, z) to be an invariant, it must be the case that
{I(x, y, z) ∧ y 6= 0 ∧ y mod 2 = 1} 〈x, y, z〉:=〈2x, (y − 1) div 2, x + z〉 {I(x, y, z)}

and
{I(x, y, z) ∧ y 6= 0 ∧ y mod 2 = 0} 〈x, y, z〉:=〈2x, y div 2, z〉 {I(x, y, z)}.

Consider the second Hoare triple since its manipulation is easier. Using the
backward propagation semantics of the multiple assignment statement, we get:

(I(x, y, z) ∧ y 6= 0 ∧ y mod 2 = 0) ⇒ I(2x, y div 2, z),
where I(2x, y div 2, z) stands for the formula obtained by replacing x, y, z by
2x, y div 2, z, respectively in I (this is yet another notation for I|〈2x,y div 2,z〉

〈x,y,z〉 ).5

3.1.2. Hypothesizing I: Suppose that I(x, y, z) is a polynomial equation in
x, y, z in which the degree of every variable is at most 1. In other words,
I(x, y, z) = (A xyz + B xy + C xz + D yz + E x + F y + G z + H = 0),
where A,B,C, D, E, F,G, H are parameters whose values must be determined.

3.1.3. Generating Constraints from Hoare Triples one by one: Path 2: Substi-
tuting for I in the above formula obtained from the second Hoare triple, gives:
((A xyz + B xy + C xz + D yz + E x + F y + G z + H = 0)∧ y 6= 0∧ y mod 2 = 0)
⇒ (A 2x(y div2) z + B 2x(y div 2) + C 2xz + D (y div 2)z

+E 2x + F (y div 2) + G z + H = 0).
Since y mod 2 = 0, we can replace y by 2u:

((A 2xuz + B 2xu + C xz + D 2uz + E x + F 2u + G z + H = 0) ∧ u 6= 0 ⇒
(A 2xuz + B 2xu + C 2xz + D uz + E 2x + F u + G z + H = 0).

The goal is to find values of parameters A,B,C, D, E, F,G, H such that the
above formula is valid for all values of x, y, z. In general, if a theory admits
quantifier-elimination, then we need to find a quantifier-free formula equivalent
to the above formula universally quantified over x, u, z; this formula is only in
A,B,C, D, E, F,G, H. In case, the hypothesis is a conjunction of polynomial equa-
tions and the conclusion is a polynomial equation, then quantifier-elimination can

5An interested reader can easily verify that the forward semantics of the assignment statement
will give an equivalent result.
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be done using parametric Gröbner basis construction [14] (also called comprehen-
sive Gröbner basis in [29]). Crudely speaking, the simplification is done by case
analysis on the coefficients of the terms appearing in a formula, e.g, whether A = 0
or not, B = 0 or not, etc; more details can be found in [14, 29].

The above formula can easily be simplified to give:
((A 2xuz + B 2xu + C xz + D 2uz + E x + F 2u + G z + H = 0) ∧ u 6= 0 ⇒

(C xz −D uz + E x− F u = 0).
The conclusion cannot be simplified any further. One possibility for the above
formula to be valid for all values of x, u, z is that the polynomial (C xz −D uz +
E x− F u) is identically equal to 0; this implies that the coefficient of every term
in the polynomial is 0: C = D = E = F = 0. There are other possibilities as well
for the above formula to be valid but we will not discuss them here.
Path 1: To consider the first basic cycle, it is not necessary to start with the original
hypothesized formula. Instead, we can use I to be:(A xyz+B xy+G z+H = 0) after
noting that C = D = E = F = 0 from the constraints generated while considering
the second path. Using the backward semantics of the assignment statement, we
get

((A xyz + B xy + G z + H = 0) ∧ y 6= 0 ∧ y mod 2 = 1) ⇒
(A 2x((y − 1)div2)(x + z) + B 2x((y − 1)div2) + G (x + z) + H = 0).

Since y mod 2 = 1, replacing y by 2u + 1 gives:
(A x(2u + 1)z + B x(2u + 1) + G z + H = 0) ⇒

(A 2xu(x + z) + B 2xu + G (x + z) + H = 0).
This formula can be simplified to give:

(A x(2u+1)z+B x(2u+1)+G z+H = 0) ⇒ (2A x2u−A xz+(G−B) x = 0).
One possibility for the above formula to be valid for all values x, y, z is that if the
coefficient of every term in in the polynomial (2A x2u−A xz + (G−B) x = 0) is
0, implying that A = 0 and G−B = 0.

3.1.4. Solving Constraints from All Paths and Initial Values to Generate In-
variant: After considering both the paths of the loop in the above program, we
have:

I(x, y, z) = (B xy + B z + H = 0).

This formula can be verified to be an invariant of the above loop.
Using the initial values of the variables when the loop is entered, we get an

additional constraint as follows: I(X, Y, 0) = (B XY + H = 0), which gives H =
−B XY . Substituting for H in I above:

I(x, y, z) = (B xy + B z −B XY = 0).

B can be factored out, thus giving

I(x, y, z) = (xy + z −XY = 0)

as an invariant of the above loop.
The reader can verify that I(x, y, z) = (xy+z−XY = 0) is indeed an invariant

of the loop. Furthermore, it can also be shown that this is the strongest possible
invariant expressed as a polynomial equation in which the degree of every variable
is at most 1.

If we had hypothesized that I(x, y, z) to be a polynomial in x, y, z in which the
degree of every variable was at most 3, even then the above method would have
resulted in a polynomial equation as an invariant in which xy + z−XY is a factor.
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This behavior of the proposed approach is illustrated using another example in
Section 6.

4. An Automatic Method for Generating Invariants

In this section, we present the method illustrated above for automatically gen-
erating invariants (inductive assertions) for imperative programs. The first step is
to fix a logical language to be used for specifying invariants. The language chosen
for the above example is the conjunction of polynomial equations. Later, we discuss
other languages and associated theories. Parametric forms of formulas serving as
invariants must then be identified. The theory associated with these parametric
forms should have the property that the verification condition generated from im-
perative programs involving these parametric invariants can be manipulated to get
constraints on parameters. To achieve that, some assumptions about the nature
of assignment statements and tests allowed will have to be made or alternatively,
approximations/abstractions will have to be used.

Given a program consisting of many loops (including nested loops and func-
tion/procedure calls), an assertion can be attached to the entry of each loop as
well as the entry and exit of every function definition (alternatively, every control
point in a program can be attached an assertion as in [3], where this labeling is
called an assertion map). There should be sufficiently many assertions to cover all
execution paths of a given program. For programs with simple loops (no nested
loops or function calls), it suffices to consider basic cycles. Here are the steps of
the method for mechanically generating inductive assertions.

(1) Generate all possible paths from one assertion to another assertion (includ-
ing itself); a path is either free of cycles or is a basic cycle. For each such
path, hypothesize with the end points, parameterized assertions, which
are quantifier-free formulas involving program variables and parameters.
Often, the same parameterized assertion can be used for the end points
and multiple paths, as was the case in the above example.

(2) For each path,
(a) formulate its Hoare triple. Get a formula from the Hoare triple (that

does not involve any code). It may not be possible to generate a
formula in the chosen language because boolean conditions serving as
tests in conditional statements and loops as well as assignments may
not be expressible in the language. In that case, a formula equivalent
to the Hoare triple cannot be genearted; instead approximate and
generate a formula weaker than the Hoare triple.

(b) From the formula, which is of the form ∀x̄ φ(x̄, ū), generate a con-
straint P (ū) on the parameters ū, which is a quantifier-free for-
mula over ū. Depending upon whether the logical language admits
quantifier-elimination as well as assumptions made in the procedure
for generating constraints on parameters, P (ū) is equivalent to or
implies ∀x̄ φ(x̄, ū).

(3) Do a conjunction of all constraints on parameters generated for each path.
If the conjunction is not satisfiable, implying there is no assignment of
parameters which satisfies all the constraints, then inductive assertions of
the hypothesized parameterized form can be proved not to exist for the
program (assuming no approximations were made in generating formulas
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equivalent to Hoare triples for the program as well as the constraint P (ū)
on parameters is equivalent to ∀x̄ φ(x̄, ū)). If the conjunction is satisfi-
able, then solve for the parameters, i.e., generate an assignment, say α
of parameters ū, satisfying each constraint in the conjunction. Instanti-
ate the parameterized assertions by assigning parameters in them by α;
the resulting assertions are then invariants for the program. Every such
assignment of parameters leads to inductive assertions for the program.

In case there are multiple solutions of the constraints on parameters,
find a finite description of all the solutions, if possible. Use this finite
description to instantiate parameters in the hypothesized inductive asser-
tions. An example below illustrates this.

As the reader would notice, for each path, the constraint on parameters can
be generated in parallel, independent of generation of other constraints. How-
ever, if done sequentially for paths, it is often helpful to incrementally simplify
parameterized assertions and use these simplified forms for generating constraints
on parameters from other paths, as illustrated in the above example. Particularly if
some parameters can be instantiated, do so to get simpler assertions possibly with
fewer parameters.

The following properties serve as a basis of correctness of the above method.

Lemma 1. Given a parameterized formula I(x̄, ū) such that ∀x̄ (I ⇒ I
(e1,...,el)
(x1,...,xl)

)
is equivalent to a formula P (ū) in parameters only, then for an assignment α of
parameter values, α(P (ū)) is true if and only if the instance J(x̄) = α(I(x̄, ū)) has
the property that {J(x̄)} (x1, . . . , xl) := (e1, . . . , el){J(x̄)}.

In case, ∀x̄ (I ⇒ I
(e1,...,el)
(x1,...,xl)

) is not equivalent to P (ū) but is implied by P (ū),
then for parameters values β that make P (ū) to be false, the instance J ′(x̄) =
β(I(x̄, ū)) may or may not satisfy {J ′(x̄)} (x1, . . . , xl) := (e1, . . . , el) {J ′(x̄)}.

Corollary 1. Given a constraint P on parameters ū as defined above in
Lemma 1 and two parameters assignments α1 and α2 making P true, J(x̄) =
α1(I(x̄, ū)) ∧ α2(I(x̄, ū)) also satisfies {J(x̄)} (x1, . . . , xl) := (e1, . . . , el) {J(x̄)}.

Under the assumption that boolean tests and assignments in a program are
not approximated so that the formula ∀x̄ (I ⇒ I

(e1,...,el)
(x1,...,xl)

) equivalent to each Hoare
triple can be computed, and further, the constraint P on parameters is equivalent
to ∀x̄ (I ⇒ I

(e1,...,el)
(x1,...,xl)

), it can be proved that J(x̄) = α1(I(x̄, ū))∧. . .∧αm(I(x̄, ū)) is
the strongest invariant. where α1 . . . αm characterizes all assignments representing
solutions to the conjunction of constraints P .

5. Admissible Theories

The proposed method requires that a theory used to express an inductive as-
sertion as a parameterized formula should have the following property: Given a
formula ∀x̄ φ(x̄, ū), generate a formula P (ū) such that P (ū) ⇒ ∀x̄ φ(x̄, ū). Even
better, if the theory has a quantifier elimination algorithm for such formulas, i.e.,
there is an algorithm to generate ∀x̄ φ(x̄, ū) ⇐⇒ P (ū), then stronger claims can
be made about the results produced by the proposed method. That is, it can be
shown that under certain restrictions on assignment expressions and boolean tests,
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if there are inductive assertions of the hypothesized form possible for a given pro-
gram, the proposed approach will find them; furthermore, such assertions will be
the strongest possible ones.

Below, we discuss three theories over numbers: (i) Presburger arithmetic in
which only linear polynomials related using =,≤ relations (on reals, rationals or
integers) can be expressed; (ii) polynomial equations with solutions over an alge-
braic closed field; and (iii) theory of real closed field, which generalizes Presburger
arithmetic and the theory of polynomial equations to include =,≤ relations on poly-
nomials over the field of reals. Each of these theories admits quantifier-elimination.
Furthermore, many heuristics can be employed to get constraints on parameters
from verification conditions.

5.1. Presburger Arithmetic. Consider the theory of Prebsurger arithmetic
over the integers with ≤,=, 0, s, +.6 It is well known that this theory admits
quantifier-elimination; Enderton’s book [9] gives one such method. Fourier-Motzkin’s
algorithm for projection (elimination of vaiables) as implemented in our theorem
prover Rewrite Rule Laboratory (RRL) [16, 15] can also be used; this is illustrated
below.

Without any loss of generality, it can be assumed that the formula from which a
variable x has to be eliminated is a conjunction of inequalities of the form aix ≤ pi

and qj ≤ bjx, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2 (equalities can be replaced by inequalities as
well).7 For every pair of inequalities in which x appears with opposite signs, i.e.,
ax ≤ p and bx ≤ q, where p, q do not have any occurrences of x, a is positive and b
is negative, the inequality 0 ≤ k1p + k2q is generated, where lcm(a, b) = k1a = k2b.
After all such pairs of inequalities have been considered, the resulting inequalities
do not have any occurrence of x. In the process, if any inequality of the form c ≤ 0,
where c is positive, is generated, then the formula is unsatisfiable.8 Otherwise, if the
unsatisfiability of a formula is not detected, the resulting formula after elimination
of variables may or may not be equivalent to the original formula depending upon
whether the eliminated variables are ranging over integers, rationals or reals.

Using the example below, it is shown how Fourier-Motzkin’s algorithm can be
generalized to do quantifier elimination from parameterized inequalities expreseed
using 0, 1,+,≤. The reader should have noticed that a parameterized inequality is
not expressible in Presburger arithmetic.

Consider the following example taken from [4, 5] and also discussed in [3].

var i, j: integer end var
〈i, j〉:=〈2, 0〉;

6The proposed approach works for Presburger arithmetic over the naturals, rationals as well
as the reals.

7In the case of rationals or reals, however, strict inequality of the form aix < pi and inequality

aix ≤ pi have to be distinguished as one cannot be transformed into the other, unlike in the case
of naturals and integers. In the case of rationals and reals, the coefficient of x, the variable being

eliminated, can be assumed to be 1. Further, if there is an equality relating a variable to other

variables, that can be used to eliminate one of the variables. Over the rationals as well as reals,
Fourier-Motzkin’s algorithm is complete in the sense that linear inequalities are satisfiable if and if
no inequality of the form c ≤ 0, where c is a positive number is generated. In the case of integers,
additional tests have to be performed.

8It is well-known that Fourier-Motzkin’s algorithm can be bad in the worst case. Other

algorithms including integer programming or linear programming in case of rationals can be used
as well; see, for example, [19].
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while true do
if true → 〈i, j〉:=〈i + 4, j〉;
[] true → 〈i, j〉:=〈i + 2, j + 1〉;
end if

end while

If the invariant for the above loop is hypothesized to be a polynomial equation,
it can be shown that there does not exist such an invariant (e.g., if I(i, j) = (c1i +
c2j + d = 0), then after considering both the paths, I simplifies to d = 0; to make
I satisfiable, d must be made 0, implying that I is true).

Suppose the invariant I(i, j) is an inequality of the form c1i + c2j + d ≤ 0,
where c1, c2, d are unknown. This leads to two verification conditions:

(c1i + c2j + d ≤ 0) ⇒ ((c1i + c2j + d) + 4c1 ≤ 0) and
(c1i + c2j + d ≤ 0) ⇒ ((c1i + c2j + d) + 2c1 + c2 ≤ 0).

And, from the initial values, the condition is 2c1 + d ≤ 0.
For this invariant of the above form to exist, Φ = ∃c1, c2, d[(2c1 + d ≤ 0) ∧

(∀i, j, (c1i + c2j + d ≤ 0) ⇒ ((c1i + c2j + d) + 4c1 ≤ 0))
∧(∀i, j, (c1i + c2j + d ≤ 0) ⇒ ((c1i + c2j + d) + 2c1 + c2 ≤ 0))]

is valid over the integers, which is indeed the case. Had Φ not been valid, the
invariant of the form c1i + c2j + d ≤ 0 does not exist.

Let Φ′(c1, c2, d) be such that Φ = ∃c1, c2, d Φ′(c1, c2, d). To generate an in-
variant, values of c1, c2, d that make Φ′(c1, c2, d) valid need to be computed. To
get the strongest possible invariant of this form, we are interested in finding all
possible values of c1, c2, d. The reader should note that the above formula falls
outside the language of Presburger arithmetic because of subformulas of the form
c1i + c2j + d ≤ 0, where c1, c2 are not numbers.

Below, we give a generalization of Fourier-Motzkin’s algorithm to get a formula
equivalent to Φ′. Consider first the subformula
φ(c1, c2, d) = ∀i, j, (c1i + c2j + d ≤ 0) ⇒ ((c1i + c2j + d) + 4c1 ≤ 0).
We will negate φ and find a quantifier-free formula equivalent to ¬φ, and then
negate the result back to get the quantifier-free formula equivalent to φ.

Negating φ gives the conjunction of the two literals9

¬φ = (c1i + c2j + d ≤ 0 ∧ −c1i− c2j − d− 4c1 + 1 ≤ 0).

The above pair of inequalities has the coefficient of i to be both c1 and −c1. Thus,
for eliminating i, two cases must be considered:

(1) c1 = 0: now, the inequalities do not have i any more since the above
literals become c2j + d ≤ 0 and −c2j − d + 1 ≤ 0. To eliminate j from it,
there are additional two subcases:
(a) c2 = 0: d ≤ 0 ∧ −d + 1 ≤ 0 which is unsatisfiable.
(b) c2 6= 0, in which case j can be eliminated by adding the two inequal-

ities giving 1 ≤ 0 implying this case is not possible either.
(2) c1 6= 0: i can be eliminated by adding the two inequalities giving −4c1 +

1 ≤ 0.

9We are abusing the notation by using i, j to stand for Skolem constants in ¬ φ.
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This gives the formula [¬(c1 = 0 ∧ c2 = 0) ∧ ¬(c1 = 0 ∧ c2 6= 0) ∧(c1 6= 0 ⇒
−4c1 +1 ≤ 0)], equivalent to ¬φ, which can be simplified. After negating it, we get
φ = (c1 = 0 ∨ c1 < 0).
Similarly, for ∀i, j, ((c1i + c2j + d ≤ 0) ⇒ ((c1i + c2j + d) + 2c1 + c2 ≤ 0)), an
equivalent formula obtained using the above steps is:

(c1 = 0 ∧ c2 ≤ 0) ∨ (c1 6= 0 ∧ (2c1 + 2c2) ≤ 0).

Combining all these subformulas together, the equivalent formula for Φ above is:

[(2c1 + d ≤ 0)∧ (c1 = 0∨ c1 < 0)∧ ((c1 = 0∧ c2 ≤ 0)∨ (c1 6= 0∧ (2c1 + 2c2) ≤ 0))],

which simplifies to:

P = [(d ≤ 0 ∧ c1 = 0 ∧ c2 ≤ 0) ∨ (2c1 + d ≤ 0 ∧ c1 < 0 ∧ 2c1 + c2 ≤ 0)].

For any values c1, c2, d that satisfy the above formula, c1i + c2j + d ≤ 0 is an
invariant.

All solutions of P can be written in terms of the generator set consisting of
〈c1 = 0, c2 = −1, d = 0〉, 〈c1 = −1, c2 = 2, d = 2〉 [26]. Corresponding to each
generator is an invariant. The conjunction of the invariants corresponding to these
generators is (−j ≤ 0 ∧ −i + 2j + 2 ≤ 0), which can be shown to be the strongest
invariant expressed as a conjunction of linear inequalities for the above loop.

As the reader would have noticed, one easy way to generalize Fourier-Motzkin
algorithm for quantifier-elimination of parameterized inequalities is to perform case
analysis. For a variable x to be eliminated, if the coefficient of x in an inequality
is a paremetric expression, three cases are considered making the coefficient nega-
tive, zero or positive. These constraints can be used to simplify other inequalities
in further processing. For an efficient use of constraints and other sophisticated
heuristics, see [19].

5.2. Quantifier-free Theory of Conjunctively Closed Polynomial Equa-
tions. If assignments in a program are polynomial expressions, its invariants ex-
pressed as polynomial equations can be generated using Gröbner basis construction
as was illustrated above in the first example in Section 3. A typical verification
condition in that case is (p1 = 0 ∧ . . . ∧ pk = 0) ⇒ q = 0, where p1, · · · , pk as well
as q are polynomials in variables x̄ and parameters ū.

In [14], a method for computing parametric Gröbner basis from a finite set
of parametric polynomials is given; comprehensive Gröbner bases introduced by
Weispfenning can also be used [29]. These methods can be adapted to perform
quantifier-elimination from parametric formulas of the form (p1 = 0 ∧ . . . ∧ pk =
0) ⇒ q = 0 to get an equivalent formula over the parameters. Parameters ū are
made lower than variables x̄ to be eliminated in term orderings used for compu-
tation; a block ordering in which the parameters ū as a block are lower than the
variables x̄ as a block often works well. For a conclusion polynomial equation q = 0
to follow from the conjunction of polynomial equations, q must be in the radical
ideal of the hypothesis polynomials {p1, . . . , pk}. It often suffices to compute the
Gröbner basis of the hypothesis polynomials, and use it to check whether the con-
clusion polynomial reduces to zero. In that case, the above formula is valid for all
values of parameters; otherwise, if the normal form of the conclusion polynomial q
is not 0, then a good heuristic is to require that in the normal form, the coefficient
of every term built using x̄, the variables to be eliminated, must be identically equal
to 0, which gives constraints on parameters. For completeness, it may be necessary
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to compute the Gröbner basis of the radical ideal of the hypothesis polynomials
and use it to reduce the conclusion polynomial. (For a related approach based on
refutational completeness for proving Euclidean geometry theorems as well as for
deducing subsidiary conditions as well as missing hypotheses of geometry problem
formulations, see [13].) Parametric constraints thus generated can themselves be
solved using linear algebra, if they are linear, or using Gröbner basis construction
if they are nonlinear.

The construction of a parametric Gröbner basis can be expensive due to branch-
ing based on the parametric coefficient of the leading term of a polynomial in a basis.
The following heuristic often works very well: (i) assume that the leading coefficient
of each polynomial pi is nonzero while computing their Gröbner basis (insofar as
this can be done consistently); (ii) once their Gröbner basis is computed, normalize
the conclusion polynomial q again assuming the leading coefficient of every polyno-
mial in the Gröbner basis is nonzero; (iii) if the normal form of q is 0, then under
the assumptions, the polynomial follows from the hypotheses; otherwise, assert the
coefficient of each term in the normal form of q to be 0. Collect all the constraints
and solve for them to generate an invariant. This was the approach used in the
above example as well as in the example in Section 6. While incomplete, the heuris-
tic has been found to work well on many examples; it is quite efficient in contrast
to having to compute a parametric (or comprehensive) Gröbner basis.

5.3. Theory of Real Closed Fields. The theory of real closed fields, whose
decidability was shown by Tarski in 1930’s, is the most expressive theory for speci-
fying polynomial constraints as invariants. In this theory, both ≤ as well as = can
be used as relations over polynomial expressions. Further, solutions are sought over
the field of real numbers, unlike the treatment in the previous subsection where the
solutions are over an algebraically closed field (e.g., the field of complex numbers).

The theory of real closed field admits quantifier-elimination. Decision proce-
dures for the theory has been extensively studied and implemented over the last
40 years; see [2]. Specialized implementation of decision procedures along with the
ones for low degree polynomial constraints are available–software packages REDLOG
[6] and QEPCAD [11] implemented on top of computer algebra systems REDUCE
and Maple, respectively, are particularly promising. Unlike in the cases of the the-
ory of polynomial equations and Presburger arithmetic, nothing special has to be
done to consider parametric formulas since even parameterized formulas are in the
theory; it suffices to make a distinction between variables and parameters. Finding
constraints on parameters thus amounts to eliminating universally quantified vari-
ables (standing for program variables) from the verification conditions generated
from considering all execution paths of a given loop. Once constraints on param-
eters are generated, their general solution can be obtained using also the decision
procedure for the theory.

The main drawback of the decision procedures for the theory of real closed field
is that even though their worst case complexity is doubly exponential in the num-
ber of variables, essentially the same as that of decision procedures for Presburger
arithmetic as well as for polynomial equations over an algebraically closed field,
these decision procedures in practice work only on toy small problems, unlike other
methods which work reasonably well on many interesting problems; an interested
reader may consult [7] for more details. We have done preliminary investigations
and the results are not encouraging, primarily because of the number of variables
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to be eliminated from verification conditions. Special heuristics need to be investi-
gated that can exploit the special structure of the formulas serving as verification
conditions. We omit the details here because of lack of space. In a forthcoming
paper, we will show how an existing implementation of a decision procedure for this
theory can be used to generate invariants of loop programs.

6. Conjunction of Formulas as an Invariant: Multiple Solutions for
Constraints on Parameters

Constraints on parameters generated from different execution paths in a loop
may not, in general, lead to the parameters getting totally determined. Instead, the
parameter constraints can have multiple solutions. The proposed method in such
a case produces a conjunction of formulas as an invariant, in which each formula
corresponds to an independent solution of parameter constraints. Under certain
conditions, such a conjunction of formulas can be shown to be the strongest possible
invariant of the loop of the hypothesized form. The example below illustrates this
as well as what happens if different parametric forms are hypothesized as assertions
of the same program.

Consider the following simple loop for computing the floor of the square root
of a natural number.

〈a, s, t〉:=〈0, 1, 1〉;
while s ≤ N do

〈a, s, t〉 :=〈a + 1, s + t + 2, t + 2〉;
end while

There is only one path in this loop consisting of the loop test and the assignment
statement: s ≤ N ; 〈a, s, t〉 :=〈a + 1, s + t + 2, t + 2〉.

6.1. Linear Equation as an Invariant. Let us hypothesize the invariant
I(a, s, t) to be a linear polynomial equation of the form: A a + B s + C t + D = 0.
The verification condition generated is:
(A a+B s+C t+D = 0∧ s ≤ N) ⇒ A (a+1)+B (s+ t+2)+C (t+2)+D = 0.
Simplifying it leads to: (A a+B s+C t+D = 0)∧s ≤ N ⇒ (A+B (t+2)+2C =
B t+(A+2B+2C) = 0). This formula is valid if B t+(A+2B+2C) = 0 for any t,
implying that B = 0∧A+2B+2C = 0, which simplifies to A = −2C,B = 0. So the
invariant becomes −2C a+C t+D = 0. Using the initial values, we get: C +D = 0
implying that D = −C. The invariant gets further refined to: −2C a+C t−C = 0,
which after removing C as a factor gives:

−2a + t− 1 = 0

as the invariant. It can be proved to be the strongest linear polynomial invariant
of the above loop.

6.2. Nonlinear Polynomial Equation as Invariant. Suppose the invariant
is hypothesized to be a polynomial equation of degree 2. That is,
I(a, s, t) = u1 a2 +u2 s2 +u3 t2 +u4 as+u5 at+u6 st+u7a+u8s+u9t+u10 = 0,
where u1, · · · , u10 are parameters. After simplifying the verification condition, the
following constraints on parameters are generated:

1. u1 = −u5, 2. u7 = −2u3−u5 +2u10, 3. u8 = −4u3−u5, 4. u9 = 3u3 +u5−u10.
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The above set of constraints has infinitely many solutions. Each solution can be
obtained from an independent set of 3 solutions obtained by making exactly one of
the independent parameters, u3, u5 and u10, to be 1 and assigning each of u2, u4, u6

to be 0. Values of other parameters are then determined.

(1) Assigning u10 = 1, gives u7 = 2, u9 = −1; all other parameters are 0; the
polynomial 2a − t + 1 = 0 is an invariant; recall that this is also the in-
variant generated when I is hypothesized earlier to be a linear polynomial
equation.

(2) Assigning u5 = 1 gives u1 = u7 = u8 = −1, u9 = 1; all other parameters
are 0; this gives −a2 + at− a− s + t = 0 as another invariant.

(3) Assigning u3 = 1 gives u7 = −2, u8 = −4, u9 = 3; all other parameters
are 0; one gets the polynomial t2− 2a− 4s+3t = 0 as the third invariant.

Consider the conjunction of the invariants corresponding to all independent solu-
tions of the above constraint set. This formula can be shown to be the strongest
invariant of the above loop, expressed in the polynomial equation form in which the
degree of every variable is at most 2. Every other such invariant can be obtained
from these three invariants; this is so because every solution of the above constraint
set can be expressed in terms of the above independent solutions.

7. Hypothesizing an Invariant of Unsuitable Form

We show how the proposed method works in case a formula that cannot serve
as an invariant is hypothesized to be an invariant since this is not known a priori.

Consider again the example introduced in Section 3. In contrast to a polyno-
mial equation in which every variable has at most degree 1, suppose I(x, y, z) is
hypothesized as a linear equation in x, y, z. As we shall see below, the proposed
method would discover that no linear equation can serve as an invariant;.

Let I(x, y, z) = (A x + B y + C Z + D = 0).
Considering the path p2, the verification condition generated is:

(A x + B y + C z + D = 0 ∧ y 6= 0 ∧ y mod 2 = 0) ⇒
(A 2x + B (y div 2) + C z + D = 0).

After substituting 2u for y, the conclusion above becomes: 2A x+B u+C z+D = 0.
The formula is not valid if both A 6= 0 and B 6= 0; the formula equivalent to it,
in terms of A,B,C, D, is (A = 0 ∧ B = 0) ∨(A 6= 0 ∧ B = 0 ∧ C = 0 ∧ D = 0)
∨(A = 0∧B 6= 0∧C = 0∧D = 0). The reader can easily verify that for the values
of parameters satisfying these constraints, the above formula is indeed preserved
by path p2.

Considering the path p1 using I(x, y, z) with the above constraint, we get: (A =
0∧B = 0∧C = 0)∨(A 6= 0∧B = 0∧C = 0∧D = 0). First makes D = 0, giving the
trivial invariant true. From the second condition, the invariant is Ax = 0. From
the initial values, we get A = 0, again giving the trivial invariant. This analysis
implies that the loop in the program does not have a linear equation as an invariant
as hypothesizing an invariant of this form trivializes to true.

As this example illustrates, the proposed approach will not generate an incor-
rect invariant.
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8. Concluding Remarks

We have presented an approach for automatically generating invariants of loop
programs using quantifier-elimination techniques. The method uses parameterized
formulas for specifying invariants in which parameters are determined based on
the constraints generated from requiring these formulas to serve as inductive asser-
tions of the program. We have illustrated the approach using programs for which
assertions can be expressed in three related theories–(i) linear inequalities, (ii) poly-
nomial equalities and finally, (iii) polynomial inequalities and equalities which sub-
sume (i) and (ii); each of these theories admits quantifier elimination. Under certain
conditions on programs and based on the power of quantifier-elimination techniques,
the approach can generate the strongest possible invariants of pre-determined forms;
it can also deduce if invariants of such forms do not exist for a given program. If
assertions are hypothesized to be parameterized polynomial equations, a heuristic
for generating constraints on parameters from verification conditions is given us-
ing Gröbner basis techniques . The main advantage of the approach is that many
example programs can be handled by hand; thus, it can be used in undergraduate
courses on programming and algorithms to teach loop invariants.

The approach is currently being implemented and its effectiveness needs to
be further investigated. It will be worth exploring how quantifier-elimination tech-
niques can exploit the special structure of the verification conditions generated from
programs. Most importantly, there is a need to investigate richer logical languages
in which properties of complex data structures, including arrays, records, etc. can
be expressed, to which the proposes approach can be extended.
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