Bananas, Dark Worlds, and AspectH

(Group 5 Discussion)

Silvia Breu, Nuno Rodrigues, Marc Schlickling

Abstract

This report summarises our idea of code clone detection in Haskell
code and refactorings based on identified clones as it evolved in our
group-of-three discussion.

1 Motivation

Looking at the code example below, we observe a certain level of redundancy,
in particular structural redundancy, such as (pattern matching), if-then-else-

constructs, and |recursion||.

add0dds :: Integral a => [a] -> a

add0dds =0

add0dds (h:t) = if odd h then h + (add0dds t) else |add0dds t

remNeg :: (Ord a, Num a) => [a] -> [a]
remNeg =0
remNeg (h:t) = if h >= 0 then h : (remNeg t) else

getReflex :: Eq a => [(a,a)] -> [(a,a)]
getReflex =0
getReflex ((x, y):t) = if (x == y) then (x, y) : (getReflex t)

else ||getReflex t

But how can we automate the process to find such recurring and some-
what redundant patterns? Should we investigate the source code directly, or
is it better to find an intermediate representation, that abstracts the source
code to a level where these patterns can be identified more easily, detached
from the actual name of variables etc.?

Dagstuhl Seminar Proceedings 05451
Beyond Program Slicing
http://drops.dagstuhl.de/opus/volltexte/2006 /491

2 Functional Control Graph and Functional Con-
trol Tree

As it would be very inconvenient to identify such redundancy by hand in the
code, especially these structural similarities, we propose a special structure
called functional control graph. Its entry node carries the name of the func-
tion, its other nodes each represent an expression from the Haskell code of
that function. The edges can but may not necessarily be labeled: T (true)/F
(false) for a step that requires the previous expression to be true/false, and
parameter names in case any parameters are passed along.

Considering the Haskell code example above, we get the following func-
tional control graph for the function add0dds which takes a list of integers
and returns the sum of all odd integers in that list:

For the function remNeg which takes a list of integers, removes all neg-
ative numbers within, and returns the adjusted list, the functional control
graph looks as follows:

Comparing the two graphes, we can recognise a common structure be-
tween them, that represent again the (structural) redundancy in the code.
To find code clones, e.g., in C code, there already exist several approaches.
[Kri01] identifies similar subgraphs in attributed directed graphs, namely in
program dependence graphs. This is done by mapping identical nodes and
identically labeled edges. Another approach was presented by [BYMT9S§]
and works on abstract syntax trees. There, all nodes in the level before the
last get assigned a hash value which are then propagated up the tree. Thus,
the same types of nodes (e.g., variable nodes, constant nodes, ++ operator)
get the same hash value and code clones are uncovered by identical hash val-
ues. Furthermore, there exist many algorithms in graph theory to identify
isomorphic subgraphs, e.g., by [Bac01].

However, often NP-hard problems on graphs, such as identifying isomor-
phic subgraphs, become easier on special kinds of graphs such as trees. Thus,
we re-model our functional control graph slightly to a functional control tree.
For each incoming edge in a node of the control graph that represents a re-
cursive call to another function, we build its own destination node. Instead
of then adding an edge from each new node to the entry node of the recur-
sively called function, we annotate the recursive call node with the name of
the recursively called function, and—if necessary—any arguments that are
passed on. The previously existing edge from the recursive call node to the
entry node of the recursively called function is deleted. This results for the
function add0dds in the following tree:

\
/
PO
@@
\

3 Functional Patterns

By using the above graph and tree representation of functional programs
and by combining it with other well known clone detection techniques, we
were able to discover some structural basis that all programs from our exam-
ple shared. Still we have to investigate more about what are this underlying
commonalities and how may we take advantage of them whenever they ap-
pear in code.

The functional control graphs we are using capture the way data flows
inside functions. Since one of the main characteristics that decides how data
flows in functional programs is recursion, maybe one of the main common
functional aspects we are identifying is recursion patterns. Indeed, if we
look at the recursion patterns used in our examples, we realise that they all
use toail recursion. This tail recursion is mainly responsible for the overall
similarities in the layout that all the graphs share.

Recursion patterns have been well studied in the past, for which [BM97,
MFP91] are good examples of. In fact, some of the recursion patterns pre-
sented in [BM97] fit very well in the patterns we have previously identified.

For the add0Odds, remNeg, and getReflex functions, one can find out
which recursion pattern fits better by noticing that all edges returning to
the entry node (the recursive edges), came from the h : ¢ node and that they
only re-utilise the tail ¢ of the input list.

This is a very common strategy in functional programming and can be
captured by a recursion pattern presented in [BM97] called catamorphism.
The following diagram shows how the pattern works and that the only thing
it needs to derive working solutions is a definition for the gene f. Now the
explicit recursion is hidden from the gene f, which just has to calculate the
intended result B from the case where the list is empty (represented by the
1 in the notation) and from the case where it has to combine an element of
the list (A) and a list already calculated with the desired result (B).

FA-2“~ 11 AxFA
afDFl lz’dﬂdxqm

Nevertheless, the above formalism only captures part of the similarities that
we found in the functional control graphs. In fact, we are only treating the
redundancy referring to the recursive edges, but there can be other kinds of
similarities in the graphs. For instance, in the presented example functions,

every graph has a control node based on a predicate, in the case of non empty
lists, which decides how the recursive call should be made. Such similarities
can also be captured and formalised, augmenting the above diagram to the
following one.

FA out 1+ AxFA
Gpol iid+4dx(fDF
B 1+ AxB

f
ct[g,m2] wid))?

1+ ((Ax B)+ (A x B))

By encapsulating the test p in the pattern, our gene f definition is even
more specific and captures more of the similarities previously identified by
the graphs analysis. With the newly discovered pattern definition, we can
now define all functions just by filling in the missing parts p, ¢ and g in the
following definition of the catamorphism gene.

f=(c+lgml]) - (id+ (w2 (p x id))?)

p is the desired test predicate, c is the constante being applied when the
input is an empty list, and g the function that combines an element of the
list with the result of applying the defining function to the rest of the list
whenever the predicate succeeds.

Besides having isolated the redundancy in function definitions, the above
method also delivers a formal definition over the functional calculus pre-
sented in [BM97]. This can then be used to formally calculate properties
over programs, or to refine the analysed programs.

4 Haskell Refactoring

For the refactoring of the found pattern, however, we do not need to intro-
duce a new aspect-oriented extension such as AspectH, or whatever called.
In the world of functional programming, Haskell is that powerful that we get
it for free. Applying the previously identified recursion patterns to the code
of our functions add0dds, remNeg, and getReflex we get the following refac-
tored pattern patl and the three “new” functions add0dds’, remNeg’, and
getReflex’. The usage of the refactored pattern in those three functions is

marked with a box ([pati]|).

patl :: (a => Bool) -> b -> (a => b -> b) -> [a] > b
patl pn £ [] =n
patl pn f (h:t) = if p h then f h (patl pn f t) else patl pn f t

add0dds’ :: Integral a => [a] -> a
add0dds’ = |patl]| odd 0 (+)

remNeg’ :: (Ord a, Num a) => [a]l -> [al
remNeg’ = =0 0
getReflex’ :: Eq a => [(a,a)] -> [(a,a)]

getReflex’ = (uncurry (==)) [1 ()

5 Conclusions and Future Work

We have introduced a new intermediate data representation for functional
programs, the functional control graph. Furthermore, we suggested the
application of some well-known code clone detection techniques in order
to identify recurring patterns in functional code. Some of these patterns
can then be formalised in the functional calculus, giving a string basis and
soundness to the program transformations that such patterns suggest.

By the analysis of the treated example, as well as some other more
complex ones, we strongly believe that the recursion pattern identification
can entirely be based on the functional control graph of the program. Even
more, we believe that there can be other types of graph/tree similarities
that can automatically be discovered and treated accordingly, similar to the
predicate pattern found in the presented example.

The HaRe' project is related to the results of our preliminary work,
where we target refactoring of functional programs. Nevertheless, their ap-
proach is quite different form ours. First, they do not make any use of
explicit intermediate representations of the programs besides an annotated
abstract syntax tree. Second, their approach is more focused on pure refac-
torings applicable to concrete places in the code while our approach focusses
more on a general view of all the entities in a functional program and tries
to identify common patterns in such definitions. These are then refactored
to reduce the quantity and redundancy in the source code.

Future work will pass by the classification of common recurring (redun-
dant) patterns, their respective transformations, and theoretic justification.
The selection of the most relevant graph and tree clone analysis algorithms
applied to our functional control graph will also be subject of future research.

"http://www.cs.kent.ac.uk/projects/refactor-fp /hare.html

References

[Bac01]

[BMY7]

[BYM™98]

[Kri01]

[MFPY1]

Sabine Bachl. Isomorphe Subgraphen und deren Anwendung
beim Zeichnen von Graphen. PhD thesis, University of Passau,
2001.

R. Bird and O. Moor. The Algebra of Programming. Series in
Computer Science. 1997.

Ira D. Baxter, Andrew Yahin, Leonardo M. De Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using abstract
syntax trees. In ICSM, pages 368-377, 1998.

Jens Krinke. Identifying similar code with program dependence
graphs. In Proc. Figth Working Conference on Reverse Engi-
neering, pages 301-309, 2001.

E. Meijer, M. Fokkinga, and R. Paterson. Functional pro-
gramming with bananas, lenses, envelopes and barbed wire. In
J. Hughes, editor, Proceedings of the 1991 ACM Conference on
Functional Programming Languages and Computer Architecture,
pages 124-144. Springer Lect. Notes Comp. Sci. (523), 1991.

A Second Code Example

Original version

data Tree a = Leaf a | Node a (Tree a) (Tree a)

preorder ::
preorder (Leaf a)

(0rd a, Num a) => Tree a -> [a]
if a > 0 then [a] else []

preorder (Node b left right) = if (b > 0)

evenTSum ::

then b : (preorder left) ++ (preorder right)
else (preorder left) ++ (preorder right)

Integral a => Tree a -> a

evenTSum (Leaf a) = if (even a) then a else 0
evenTSum (Node b left right) = if (even b)

minPos ::

minPos (Leaf a)
minPos (Node b left right)

then b + (evenTSum left) + (evenTSum right)
else (evenTSum left) + (evenTSum right)

(0rd a, Num a) => Tree a > a

if a > 0 then a else -1

if b >0
then min (min b (minPos left)) (minPos right)
else min (minPos left) (minPos right)

Refactored version

data Tree a = Leaf a | Node a (Tree a) (Tree a)

pat2 :: (a => Bool) => b -> (a ->b) > (@ ->b ->b ->Db) -> (b -> b -> b) ->
Tree a -> b

pat2 pn g £ h (Leaf a) = if p a then g a else n
pat2 pn g £ h (Node b left right) = if p b

then f b (pat2 pn g £ h left)

(pat2 p n g £ h right)
else h (pat2 pn g £ h left)
(pat2 p n g £ h right)

preorder’ :: (Ord a, Num a) => Tree a -> [a]

preorder’ = pat2 (> 0) [1 (\x > [x]) (\x y 2 => x : y ++ z) (++)
evenTSum’ :: Integral a => Tree a -> a

evenTSum’ = pat2 odd 0 id (\x y z -> x + y + z) (+)

minPos’ :: (Ord a, Num a) => Tree a -> a

minPos’ = pat2 (> 0) (-1) id (\x y z -> x ‘min‘ y ‘min‘ z) min

