Making Slicing Mainstream
How can we be Weiser?

Karl Trygve Kalleberg Tracy Hall
Institutt for Informatikk Department of Computer Science
Universitetet i Bergen Hertfordshire University
PB 7800 Hertfordshire, AL10 9LB
N-5020 Norway United Kingdom
karltk@ii.uib.no t.hall@herts.ac.uk

Ran Ettinger
Programming Tools Group
Computing Laboratory
Oxford University
Oxford OX1 3QD
United Kingdom
rani@comlab.ox.ac.uk

2005-11-30

Abstract

By now, the concept of program slicing has been known in the research
community for around 25 years. As a research topic, it has enjoyed a fair
share of popularity, evidenced by the number of articles published on the
topic following Mark Weiser’s seminal paper. However, outside research
circles, program slicing appears to be virtually unknown.

In this report, we take the premise that program slicing is both tech-
nically relevant, and has a sufficient theoretical foundation, to be applied
in practice within the software industry. With this premise in mind, we
ask ourselves, “what are the mechanisms by which we as a community
could make program slicing mainstream”?

1 Introduction

The survey papers on slicing by Tip [Tip94], Binkley and Gallagher [BG96], and
Binkley and Harman [BHO4] tell us that program slicing has a rich and long
history in the research community. While the original concept of static slicing
was envisioned as a debugging and program comprehension aid, slicing has now
gone in multiple directions, including dynamic slicing [KL88] and amorphous
slicing [HBDO3].

Despite its academic success, the industrial presence of program slicing is
low, and this fact was the source of much debate at the Beyond Program Slicing
seminar held at Schlof§ Dagstuhl, October 2005. Indeed, when asked, the semi-
nar participants could name no existing debugger that includes slicing, though
it was pointed out that for a number of years, a slicing patch against the GNU

Dagstuhl Seminar Proceedings 05451
Beyond Program Slicing
http://drops.dagstuhl.de/opus/volltexte/2006 /486

Debugger existed, but that this has now fallen by the wayside and is no longer
maintained.

In this report, we would like to go beyond the question we heard so often
at the seminar (“if slicing is so great, why is nobody using it?”) and offer
suggestions for how the slicing community can improve this situation. As with
any marketing ploy, we take as a given that the concept and theory of slicing
is relevant and applicable in the software industry. For our target audience —
the slicing community — this should not be too controversial, considering the
number of research papers describing possible applications of slicing produced
by said community.

Our contribution towards the goal of mainstreaming slicing is to list and
discuss a number of mechanisms which may be helpful in raising the awareness
of program slicing. The list is a result of a brainstorming session by the authors
during the Beyond Program Slicing seminar. It should be emphasized that not
all the ideas are our own. The ones we have taken from other seminar attendees
will be clearly marked.

The remainder of this report is organized as follows. In Section 2, we look at
some other techniques and methodologies that have enjoyed mainstream popu-
larity in the last 20 years of computing history and see if there are lessons to
be learned from their stories. In Section 3, we present a (non-exhaustive) list of
mainstreaming mechanisms inspired by other success stories, and ask how they
might be applied to slicing. In Section 4, we show the results of a survey we
conducted among the Beyond Program Slicing seminar attendees, and interpret
the results in Section 5. In Section 6, we discuss what the attendees believe are
the ways forward for achieving wider adoption of program slicing.

The report ends in Section 7, were we summarise and conclude our findings.

2 Successful Techniques and Methodologies

The software industry is full of successful techniques and methodologies that
aid the production of software. One could imagine that the process of main-
streaming program slicing should follow an easy two step procedure: (1) Find
a popular technique which is similar to slicing, and (2) investigate how that
technique became so successful. It is beyond the scope of this report to offer
any kind of taxonomy of development techniques and methodologies. We can,
therefore, offer no such measure of similarity between techniques. However,
from looking at the successful techniques described below, it is clear that their
popularization shares many common mechanisms. We therefore believe that
such common mechanisms are well worth considerating in the case of slicing.

The remainder of this section is devoted to brief discussions of some of the
most popular contemporary methodologies and techniques for software construc-
tion. It is important to realize that we do not claim any form of equivalence
between these techniques. The only thing they have in common, and the reason
why we picked them, is that they are all highly popular.

Refactoring Refactoring is the reorganization of the internal structure of a
program with the aim of improving design, without alternating the external
behaviour of the program.

Improving programs as part of maintenance and evolution is well established.
The contribution of refactoring is its collection and popularization of concrete
recipies for code improvement, many of which have been built into modern
development environments.

The reasons refactoring has become popular include: attractiveness to devel-
opers — refactorings offer concrete solutions to everyday problems encountered
by developers; tools — the availiblity of refactorings inside modern development
environments have made them instantly accessible to every developer; books —
well-written cookbooks of refactoring recipies are accessible for many computer
languages; champion — Martin Fowler has taken on the champion role of refac-
toring, by writing books, articles and also by talking directly to the developers
of the popular IDEs.

Generative Programming Generative Programming is about bringing the
benefits of automation to software development. It is a methodology for de-
signing “families” of software products, so that members of such families, i.e.
individual software programs, can be constructed quickly at the customer’s re-
quest. Generative programming makes heavy use of models and automatic code
generation.

Popularity of this approach may in part be due to books — the book Gen-
erative Programming [CE00] by Czarnecki and Eisenecker gave the technique a
name, it has later been followed by Software Factories [GSCKO05] by Greenfield
et al of Microsoft; portals — on a related note, a web site called Code Genera-
tion Network [cod] carries interviews with researches and industry practitioners
about the application of code generation in general; commercial backing — both
the VisualStudio group at Microsoft and the developers of IntelliJ at JetBrains
are investing heavily in tools releated to generative programming.

Formal Methods Using strict mathematical techniques to design programs
and verify that they are correct according to a given specification is referred
to as using formal methods. Reasoning about the correctness of a program
involves relating program code to logic sentences and verify logically that the
code implements the desired behavior.

Even though formal methods have a reputation in some circles of being an
impractical technique for improving robustness and quality of software, we list
it as a success story. Many high-profile, mission-critical software systems have
been designed and implemented successfully using formal methods, including
the software to drive the Paris Metro, the design of the Firewire protocol and
the Playstation content protection scheme. A wide selection of books on various
formal methods exists. Most universities and colleges offer special courses on
the application of such techniques. Also, proof of correctness is common in any
university level course on algorithms.

Agile Methods Agile methods is a methodology that aims at producing high-
quality software in the face of changing requirements. The methodology empha-
sizes the importance of high quality source code and the individuals involved in
writing it, and downplays the focus on tools, processes, plans and contracts.
There has been a marked rise in awareness of the tools and techniques that
underlie agile methods in the later years. Over a dozen books have been written

on the topic of agile methods, spearheaded by authors like Kent Beck and Martin
Fowler. The books act to complement and explain the agile manifesto [agi].

Unit Testing Unit testing is a companion technique to extreme programming
and agile methods. The technique advocates writing tests of program function-
ality before you implement the code, thus forcing you to thing about what the
interface and behaviour is supposed to be, before focusing on how it can be real-
ized. The promise of unit testing is to catch regressions that may be introduced
during code maintenance and evolution.

The unit testing technique has been made practical for developers by the free
availability of small and robust unit testing frameworks, such as JUnit. These
frameworks were designed by respected developers, who have since written books
and fostered a community around their framework implementations.

Object Orientation Object-orientation enjoys its place as the dominant
paradigm for constructing software. It is employed for constructing anything
from embedded programs in mobile phones to the largest financial applications.

Over the years, the adoption of the object-oriented approach to designing
and implementing software has been helped by the presence of good and relevant
books on the topic; quality undergraduate courses in universities and colleges;
solid development tools; many high-profile success stories as well as vocal and
respected champions such as Bertrand Meyer and others.

From examining this list of success stories, we observe the presence of many
possible mainstreaming techniques. In the following section, we will discuss
many of them in greater detail.

3 Mainstreaming Mechanisms

This section lists a number of possible approaches to popularizing and main-
streaming program slicing. This is not a list of independent choices. On the
contrary, there are clear relationships between some of the alternatives. For
example, implementing better tools is in all likelihood a prerequisite for making
slicing attractive to ordinary developers, but these tools may come from the
industry itself if a business case for slicing could be made.

1. A Champion — A Slicing Tsar or Tsarina

Does the slicing community need a slicing champion?

By this we mean a person who takes on the job of advocating and lobbying
for program slicing in various fora, such as industry conferences, magazines
and journals, one who socalizes with industry practitioners and developers of
established tools and methodologies.

2. A Slicing Consortium

Do we need a formal entity, like a consortium, to take on the job of defining
and advocating slicing?

In the modeling community, there was a unification of several alternative
modeling approaches and languages throughout the 90s into the now popular
UML language, which is controlled by the Object Management Group. A sim-
ilar organization, be it a foundation, consortium or other legal entity, could be

founded to garner industry support and contribution in the process of main-
streaming slicing.

3. A Slicing Manifesto

Is having a clearly written manifesto which proclaims the purpose, techniques
and philosophy of slicing useful for popularizing slicing?

The availability of manifestos has historically been instrumental in many po-
litical as well as technical movements. The GNU Manifesto by Richard Stallman
helped set a vision for the GNU project and the development of Free Software.
The Agile Method community also has a manifesto that explains the philosophy
behind their development methodology. A similar vision for slicing may help fix
the idea in the minds of beginning practitioners.

4. More Industry Involvement

Will recruiting industry support be an effective way of reaching the main-
stream?

Time and again, we see that some software companies decide to fully embrace
a particular approach or technique, at least to get good PR. IBM did this with
the philosophy of open-source a few years ago, Microsoft is pursuing service-
oriented architectures (SOAs), Sun decided to really push Java, even through
TV ads, IBM is persuing autonomic computing, which at present is mostly a
vision. While slicing is not a philosophy nor a language, having an established
industry mover may do a lot to raise awareness and produce the tools and
know-how required for widespread industrial application.

5. More Empirical Evidence

Does slicing need more empirical evidence before people will start to apply it
industrially?

A recent survey by Binkley and Harman [BH04] documents the current state
of empirical evidence in favour of slicing, but does not offer unassailable evidence
for the usefulness of slicing. More evidence would make it easier to sell slicing
to software developers and organizations.

6. University and College Education

Will teaching slicing to undergrad students help slicing reach the “trenches”
and from there gain wide acceptance?

In most undergrad programmes, courses on various programming paradigms
are given, and for software engineering programmes, the popular development
methodologies are also covered. By covering slicing in detail in the context
of such courses, a new generation of slicing-aware developers may enter the
industry and demand slicing tools. With time, this could possibly extend to
include industrial training courses for practicing developers seeking to upgrade
their skill set.

7. Prestigious Success Stories

Do we need to find and publicise cases where slicing has “saved the day”?

Most practitioners in the field only accept tested and tried techniques and
methodologies, to minimize risk. Anecdotal evidence advocating one technique
over another by established authorities account for a lot in the decision of which
tools, techniques and methodologies to select for upcoming projects.

8. A Text Book

Will a definitive text book on slicing help establish slicing as useful and viable
tool for developers?

From the previous section, we saw that most of the successes we considered
all had one or several good, authorative references that explain central concepts

and techniques. No such book exists for slicing, and this may act as an im-
pediment to adoption, simply because potential slicers have a difficult time in
learning the technique. Additionally, basic introductory books such as “The
Program Slicing Cookbook” or “Slicing for Dummies” may help get newcomers
up to speed quickly.

9. A Discussion Forum

Can gathering the slicing community in a publicly visible discussion forum
help attract newcomers?

Most communities have one or several hubs for discussion, be they mailing
lists, web forums or newsgroups. When newcomers to slicing try to apply the
tools and techniques gleaned from the existing literature, finding experienced
assistance is difficult.

10. Widening of Application/Usefulness of Slicing

Should more effort be put into going beyond program slicing, and also slice
other artifacts?

A nice demonstration of this was shown by Juergen Rilling, who had applied
slicing techniques to program designs and other artifacts in the development
process, with the aim of improving the understanding of the system as a whole.

11. Latching on to Established Mainstream Techniques

Can we ride the wave created by another success story?

Agile methods are associated with refactoring and unit testing which are
both established by now. Much of the literature on refactoring and unit test-
ing explains how these techniques complement object-orientation, thus creating
an association between themselves and one of the most popular programming
paradigms. Much of the work on slicing has been in the context of imperative
languages, and slicing may therefore have missed the OO-train so far.

Andreas Zeller and his group made the case for riding the popularity of
Eclipse by developing slicing tools that integrate well into the Eclipse Tools
Platform.

12. Make It Popular to Developers

Should our target group be developers?

The reasoning for convincing developers is as follows: By educating devel-
opers on the benefits of slicing, they will demand slicing tools from their tool
vendors, and argue the value of such tools to their management.

13. Make It Popular to Managers

Should our target group be managers?

By convincing management of cost savings, or other tangible benefit offered
by slicing, it may be possible to attain a “buy-in” at the higher level in or-
ganizations, who will then dictate or recommend their staff to employ slicing
techniques.

14. Better Tool Implementations

Will providing better tool implementations help make program slicing more
widespread?

If we take the old adage build it and they will come to heart, the best way
forward would be to construct one or several robust implementations of the
most promising ideas offered in the slicing literature.

15. A Slicing Challenge

Is holding a grand slicing challenge of slicing a good way for raising aware-
ness of the technique?

The Defence Advanced Research Project Agency (DARPA) in the United
States has for the last few years held an annual Grand Challenge for autonomic
navigation of robot vehicles. On a less grand scale, there is an annual Inter-
national Conference on Functional Programming (ICFP) contest for producing
the best working implementation for some particular problem. Perhaps a simi-
lar kind of challenge, perhaps even yearly, could be beneficial in the process of
mainstreaming program slicing.

16. A Slicing Portal [Jens et al 2005]

Would the slicing community be served with a common point of presence on
the internet, a portal?

This suggestion was put forth by Jens Knoop and his group at the sem-
inar. The presentation proposed the creation of a web site in the style of
www.program-transformation.org, only for slicing. Such a web site could
contain tools, documentation, online discussion groups, project inventories, ref-
erences to research people, groups and projects.

4 An Informal Survey

Based on the mainstreaming mechanisms described in the previous section, we
conducted an informal survey among the seminar attendees to asses what they
thought to be the most effective mechanisms, and which of the mechanisms
they themselves were willing to contribute to. Each participant was asked to
pick three different mechanisms and rank these in order of importance. Each
participant was also asked to mark any and all mechanisms they were willing
and felt capable of contributing to.

Each mechanism in Section 3 has a question. These were the questions given
to the survey participants. In total, we received 30 responses which went into
producing the Figures 1-3.

In Figure 1, we show the distribution of only the first choice, i.e. each
person’s first choice. From this we see that there is a clear bias towards having
better tool implementation and more empirical evidence for the usefulness of
slicing. If we weigh the three choices made by each person, we get the result
shown in Figure 2. Here, we have assigned a weight of three to the top choice,
a weight of two to the second choice and a weight of one to the third choice.
We still see the preference for better tool implementations at the top, but now
the more general goal of making slicing attractive to developers has made it to
second place. Empirical evidence is now rated third. In Figure 3, we see the
results from asking what the attendees were willing and able to contribute to.
Again, producing tools is a clear first, with education a clear second.

5 Discussion

From the results in Section 4, we can see a marked preference in the community
for a bottom-up approach to spreading awareness of slicing. The desired target
group in industry is clearly the developer, as is evidenced by the three most
highly rated choices, namely improved tools, popularizing slicing to developers
and more empirical evidence.

First Choice

5 — Empirical Evidence
14 — Tools

7 — Success Stories

12 — Attract Developers
4 — Industry Involvement
6 — Education

13 — Attract Managers

1 — Champion

11 — Latching On

10 — Wider Application
8 — Book

2 — Consortium

3 — Manifesto
16 — Portal
15 — Challenge

9 — Discussion Forum

Figure 1: The distribution of the first choice of mechanism.

Weighted Choice

14 — Tools

12 — Attract Developers
5 — Empirical Evidence
10 — Wider Application
13 — Attract Managers

8 — Book

7 — Success Stories

4 — Industry Involvement

6 — Education

15 — Challenge
16 — Portal
1 — Champion

2 — Consortium
11 — Latching On
9 — Discussion Forum

3 — Manifesto

Figure 2: The distribution of a weighted choice of the three most important mecha-

nisms. The first choice has three weights, choice two has two weights and choice three

has one weight.

Contribution

[
[|
[|
[|
[] |
| [|
| [|
| [|
| [|
| | [|
| | [|
i] |
	[
	[
	[
[[]
S, A oW 2O NN A 2 g o
T ‘I*’ 1 CI" [N 'T" 'I\’ [CI” | f
» 5 m @ m
c 9 » sz o0 g 2 g) 2 s » 3 ¢ U o o
v 3 = o § = o)
= = =1 o O = = = = o (=] [e] c
g 3 g 2 ¢ 8 2 2 g 5 * g g &
2 5 o § o & 2 a2 < = 237 5 = @
3 9 5 3 o g = » 53
o - = ® 3235 235 Fm >
L 3 g s 2 < <
) o = < 9 2 g
«Q 2 @ ® © © o
o 5 ° 3 53 3
¢ 8 5 3 8
2

Figure 3: The mechanisms the attendees were most in contribution to.

There is clear correspondence between the first choice in Figure 1 and the
weighted choice in Figure 2. Not suprisingly, tools and developers are rated as
the most important mechanisms in both cases.

Figure 3 shows the distribution of the answers to the question of participa-
tion. The graph reflects the demographic of the attendees, which are all from
academia. Contributing to better tool implementations and more empirical ev-
idence are rated highest. A a second group of mechanisms share the third place
in these ratings — a text book on slicing, education at college and university
level, as well as a slicing portal.

As part of our survey, we added a question where the participants were asked
to nominate a slicing champion. The responses to this questions made it clear
that no such one person should be nominated.

6 Further Work

The results clearly indicate the direction in which the majority of the community
is interested in taking, namely producing slicing tools for software developers.

We would like to point out that the construction of a slicing portal is proba-
bly the goal which is easiest to attain in the short term. In fact, Jens Krinke is
already committed to searching for hosting facilities for one. Gathering the slic-
ing community under slicing.org!, would go a long way towards a common
point of presence for the slicing community and potential slicers.

Another point we would like to make is that while there was little interest
in finding a slicing champion, perhaps a slicing working group may be worth
considering.

1Which is still not registered to anybody at the time of writing.

7 Conclusion

In this report we have presented more than a dozen mechanisms for mainstream-
ing program slicing. Based on this list, we have conducted a small and informal
survey inside the slicing community about which mechanisms are believed to be
most fruitful, and which mechanisms the members of the community are most
likely to contribute to.

From the survey, we see a clear engineering bias, which favours the construc-
tion of tools and techniques targeted at software developers. This bias is evident
both in what the participants rate as important and what they are willing to
contribute to.

Acknowledgements The authors would like to thank Tibor Gyiméthy for
joining our group towards the end of the Dagstuhl seminar. We would also to
thank Barry Pekilis for many insightful comments on early drafts of this report.

10

References

[agi]
[BGIG]
[BHO4]

[CE00]

[cod]

[GSCKO5]

[HBDO3]

[KL8S)

[Tip94]

The agile manifesto. http://agilemanifesto.org. Last visited: 2005-
11-30.

D Binkley and K Gallagher. A survey of program slicing. Advances
in Computers, 1996.

D. Binkley and M. Harman. A survey of empirical results on program
slicing. Advances in Computers, 62, 2004.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative program-
ming: methods, tools, and applications. ACM Press/Addison-Wesley
Publishing Co., 2000.

Code generation network. http://www.code-generation.net. Last
visited: 2005-11-30.

Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software
Factories: Assembling Applications with Patterns, Models, Frame-
works, and Tools. Wiley, 2005.

Mark Harman, David Binkley, and Sebastian Danicic. Amorphous
program slicing. J. Syst. Softw., 68(1):45-64, 2003.

B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett.,
29(3):155-163, 1988.

Frank Tip. A survey of program slicing techniques. Technical report,
Amsterdam, The Netherlands, 1994.

11

