Towards a Meta-Model for Service Properties
by Jens Hundling
Dagstuhl, Germany 2005
Dagstuhl Seminar (05452) on Service Oriented Computing (SOC)

Service Oriented Computing offers a promising approach for global businesses and inte-
grated, virtual enterprises that achieve common business goals. For realizing an exhaustive
Service Oriented Architecture, some basic research is still necessary and a consensus has to be
reached about key aspects. We argue that one key aspect is a common (meta-) model of en-
riched service descriptions, especially for all use cases related to service discovery and service
selection. A first step towards enriched service description is modelling the service's proper-
ties, also known as Quality of Services (Qo0S).

The envisioned service properties are often subsumed either under Quality of Services
(QoS) or non-functional properties. Since these terms are used with controversial meanings,
they will be discussed here shortly. Functional properties describe what the service does and
non-functional properties describe how the service does it. The first step towards using a ser-
vice is requesting the service broker for available and suitable services. This request is cur-
rently based on the functional properties of the requested services. There is a lot of research
already underway to handle this; e.g. some current approaches suggest semantic annotations
for service descriptions. Thus, functional equivalence can be defined on two concrete ser-
vices, i.e. a service can easily be replaced by a functional equivalent service with more suit-
able non-functional properties, e.g. lower cost, faster execution, and higher security. This
functional equivalence goes along with the basic SOC principle of loose coupling.

Nevertheless, if there are several services available and functionally adequate for the re-
quest, how does the requestor select one specific service? The provider of the service might
be a first selection criterion, but what if a provider offers several service, e.g. a "gold" and a
"silver service" or a "premium, deluxe and a standard edition™ of his service? Again, the obvi-
ous answer is selecting the cheapest and the fastest; but what about reliability, availability and
security? Even more, what about properties like purity, insurance, colour, taste and tempera-
ture? All of these (non-functional) properties might be selection criteria in a specific domain.
Generally speaking, some kind of ranking or, more generally, comparison must be possible.
For automated discovery and selection, service descriptions need to be specified in a formal,
computer-readable way. Additionally, properties of services that are beyond technical inter-
face specifications should possibly be modelled, e.g. by including QoS properties.

Additionally, in a service-oriented environment, it is often hard to decide whether a cer-
tain property is functional or non-functional. Consider the property duration (typically consid-
ered to be non-functional) in a request like: "Transportation of goods within in 24 hours". A
consumer (i.e. service requestor) uses some (other) technology to find services with this capa-
bility. Thus, the consumer gets a set of adequate services. The request is specified more pre-
cisely by stating "within 24 hours", which might also be considered as functional requirement,
because a functionally equivalent service has to match this mandatory property. Similar ex-
amples can be found for other properties like costs or security, which are often regarded as
non-functional properties. To sum up, whether a property is functional or non-functional, is
not depending on the property itself, but on the request. Quality of Services is also a widely
used term. QoS constraints are sometimes defined as a synonym for non-functional con-
straints. Other approaches see QoS as a subset of properties of Web services. Furthermore,
some approaches separate properties in functional, non-functional and quality aspects. There
are also authors claiming that QoS implies aspects, which can be both, functional and non-
functional.

Dagstuhl Seminar Proceedings 05462
Service Oriented Computing (SOC)
http://drops.dagstuhl.de/opus/volltexte/2006/529



Considering all the problems mentioned above, we suggest a meta-model for service
properties. To mention some important aspects of the meta-model, it should be based on the
domain (i.e. the permissible values like "all positive numbers" or "Red, Green, White"), the
mathematical scale (e.g. nominal, ordinal, interval or ratio scale), and the metric (i.e. how and
where to measure the values as well as the measuring units). These aspects have some impli-
cations. For example, for a nominal scale it is not possible to give a common ranking, because
no ordering is defined per se. Thus, the desirability has to be specified somehow, e.g. by stat-
ing maximal/minimal values or explicitly stating a single best and worst value of the domain.
Using the meta-model, it should be possible to specify the properties of interest for a specific
domain and thereby building a model for the service properties of the domain. In the next
step, the providers of that domain can specify their concrete service properties and requestors
can define constraints (e.g. budget restrictions and deadlines) and their desirability ("Red is
better than Green and White is the worst").

Service properties, or more precisely the meta-model, have to be embedded in a general
service model for Service Oriented Architectures and should be related to Service Level
Agreements. In a next step, the meta-model should help to aggregate the properties of a com-
posite service. A composite service is build from several services that are orchestrated, i.e.
control- and data-flow is defined. Thus, a composite service builds a process with services as
process steps. Obviously, the properties of the composite service are somehow related to or
dependent of the properties of the composed services.

References

e Jens Hundling: Modelling Properties of Services. Proceedings of the First European
Young Researchers Workshop on Service Oriented Computing April 21-22 - 2005,
Leicester , U.K.

Contact

Jens Hundling

Hasso Plattner Institute for IT-Systems Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
Jens_Huendling@hpi.uni-potsdam.de
http://bpt_hpi.uni-potsdam.de/



