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ABSTRACT1 

Parallel/distributed programming is a complex task that 
requires a high degree of expertise to fulfill the 
expectations of high performance computation. The 
Master/Worker paradigm is one of the most commonly 
used because it is easy to understand and there is a wide 
range of applications that match this paradigm. However, 
there are certain features, such as data distribution and the 
number of workers that must be tuned properly to obtain 
adequate performance. In most cases such features cannot 
be tuned statically since they depend on the particular 
conditions of each execution. In this paper, we show a 
dynamic tuning environment that is based on a theoretical 
model of Master/Worker behavior and allows for the 
adaptation of such applications to the dynamic conditions 
of execution. The environment includes a pattern based 
application development framework that allows the user to 
concentrate on the design phase and makes it easier to 
overcome performance bottlenecks. 
Keywords: dynamic tuning, performance analysis, 
performance model 
 

1. INTRODUCTION 
Parallel/distributed processing is a highly promising 
approach to attaining the high computing capabilities 
required by many application fields. However, the use of 
these computing systems involves several features that are 
not considered in classical sequential processing: 
• Design and development of these applications imply the 

study and development of new parallel algorithms to 
solve the target problem. 

• Programming of these parallel algorithms requires the 
use of some message passing library (PVM, MPI) to 
communicate the processes cooperating in the 
application. Therefore, the programmer must use a set 
of new primitives and match the parallel algorithm to 
the possibilities of the library. 

• To accomplish the high performance expectations, 
programmers must analyze the performance of the 
application in order to determine the bottlenecks that 
appear during the execution of the application and 
modify the application to overcome them. 

• In many cases, the behavior of these applications varies 
depending on the input data set or on the platform under 
use. In other cases the behavior can change dynamically 
due to the evolving of the application or the dynamic 
features of the sy stem. In such cases, the tuning actions 
must be performed during the execution of the 
application, and this is a jeopardizing action. 

In this context, new software tools that help the user in the 
application specification, hiding the low level details 
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related to process communication, and automatically 
tuning the application performance are needed. It is 
necessary to offer a certain program specification 
framework that represents a higher level of abstraction. 
Such framework provides a set of well-defined structures 
in such a way that the programmer selects the structure 
under use and specifies the features directly related to the 
particular application (e.g. data sets, functionality). Finally, 
the framework generates all the code using the appropriate 
message passing library. In this approach, the programmer 
is constrained to use a given set of structures, but the 
specification is much simpler. On the other hand, since the 
applications follow well-known structures it is possible to 
develop performance models of such structures and tune 
the application performance on the fly. 
In this paper, a complete environment that allows the 
programmer to develop a parallel/distributed application 
by using a programming framework and to execute the 
application under the control of an automatic and dynamic 
tuning system is presented. Section 2 describes the 
framework design for developing Master/Worker 
applications. Section 3 presents the performance model 
designed for this kind of application. In Section 4 we 
introduce the tuning system (MATE) and the integration 
of the performance model for Master/Worker applications. 
Section 5 shows some experimental results with an N-
Body problem application developed using the framework 
and tuned by MATE. Finally, Section 6 presents some 
conclusions. 
 

2. FRAMEWORK DESIGN 
We consider that the frameworks have to fulfill the 
following requirements: 
• They should be generic and flexible. Any application 

that matches the design pattern implemented by the 
framework could be written using it. 

• They should be easy to use. The framework’s 
implementation details must be hidden to the 
programmer providing a clear and easy to understand 
API.  

• They should be efficient.  Although these frameworks 
will be integrated into an automatic tuning environment, 
efficiency cannot be neglected.  

• They should be independent of the underlying 
communication library. Library functions should not be 
directly included in the framework code. 

From another point of view, the objective of using these 
frameworks in a dynamic tuning environment sets an extra 
requirement:  
• They must be designed to simplify the monitoring and 

dynamic modification of generated applications. 
To fulfill these requirements a great deal of care was taken 
over a design that uses object oriented techniques that 
allow for the encapsulation of the framework behavior and 
implementation, while leaving it down to the programmer 
to specify only those methods where the solution for the 
computational problem must be computed. This design is 
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based on the fact that for any programming paradigm 
(master-worker, pipeline, divide and conquer, and so on) 
two different elements are clearly distinguished:  first, the 
processes which are in charge of performing the 
computation, and which have specific behavior in 
accordance with their role in the paradigm, and second the 
management of the data that has to be interchanged 
between those processes. 
The resulting class structure is shown in Figure 1, where 
we can see that for each kind of process in a programming 
paradigm the related framework includes a class (Process 
class) to encapsulate its behavior, defining as virtual those 
methods that will be used by the programmer in a derived 
class (MyProcess class) to specify the particular 
computation performed by the process. In this derived 
class the programmer must codify the specific 
computation of the application through computation 
methods, as well as other methods for initialization and 
finalization code.  
It can be seen that the framework also includes classes that 
encapsulate the management of the data that will be 
exchanged between processes (Communication 
management class). The idea is that an object of a 
particular process class owns an object of a 
communication management class associated with this 
kind of process. The communication management object is 
responsible for managing the logical channels used to 
communicate the process with others, and the data that is 
communicated through these channels. This object offers 
programmers a communication interface. 

Fig. 1. Class structure for frameworks. 

There are only two methods used by the communication 
management class that should be overwritten by the 
programmer, the method used to make partitions in the 
process data, which has to be sent to other processes, and 
the one used to fill process data structures with data 
received from other processes (Partition methods).  This 
design is aimed at making data structures used in the 
process computation independent of data structures used 
in the information interchange with other processes, but 

maintaining the flexibility to decide how to map one kind 
of structure over the other.   
Finally, to fulfill the requirement for an independent 
communication library, we have defined a communication 
class to encapsulate the communication library functions.  
This communication class offers a standard interface to 
PVM and MPI that is used by the communication 
management class and therefore hidden to programmers. 
This class is automatically generated by a tool (CCG – 
Communication Class Generator) that uses data 
configuration information given by the programmer.   
 
Master/Worker implementation of Nbody problem 
The framework has been used to develop a Master/Worker 
brute force Nbody application [5]. This application 
involves processing the force iteration between a set of n 
bodies in a 2D space for each instant of time. In every 
instant, the new position of each body is calculated and the 
current velocity is updated by the influence of the other 
bodies. This application was chosen because it can scale 
for a high number of workers and the computation effort is 
spitted in framework iterations. 
The framework provides an infrastructure for developing 
an application under the Master/Worker paradigm. To 
develop a master/worker application the user has to extend 
the two Master and Worker base classes. Each of these 
two classes has virtual C/C++ methods that should be 
overwritten by the user code. Communication between the 
user code and the framework is made by polymorphism 
and the attributes inherited in the sub classing process. 
The first step towards building a new application is to 
execute call the “create.sh” script file that generates a 
directory tree containing all the files needed by passing the 
application name. This creates a “master” and a “worker” 
directory containing the specific master and worker code 
provided by the framework, and skeleton classes that 
should be filled with the user code. The user should only 
modify the “_mymaster.cpp” and “_mymaster.h” in the 
“master” directory, and “_myworker.cpp” and 
“_myworker.h” in the worker directory. 
Another directory created is the “struct”, and this contains 
the user structures including the “myinstruct.h” and 
“myoutstruct.h” files. The user should edit these files and 
place C/C++ code definition of the input and output data 
structures. After coding the input and output structures, the 
user needs to code the master and the worker class. The 
framework used supports iterations and provides 
synchronous and asynchronous execution. This affects the 
way the master distributes the tasks between the workers. 
Framework execution involves a series of events that 
should be coded by the user. These basic events are master 
initialization (“_M_Initialize”), worker initialization 
(“_W_Initialize”), master data partition (“_M_Partition”), 
worker do work (“_W_DoWork”), worker final work 
(“_W_FinalWork”), master data recovery (“_M_Recover”) 
and master final work (“_M_FinalWork”). 
In the NBody implementation, the function 
“_M_Initialize” is used to allocate memory for the array of 
bodies, and each body position and velocity are initialized. 
The _W_Initialize work member function is used to 
initialize the result buffer, an array for storing the 
computation result data. Each input structure is the set of 
bodies and the range of processing, which tells the worker 
the subset of bodies to process. Task generation is based 
on the number of available workers and the division is 
performed equally, each worker receives approximately 
the same amount of work (“_M_Partition”). The 
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“_W_DoWork” of worker consists of processing input 
structures. The input structure process consists of 
calculating, for each body within the defined range, the 
result acceleration based on the mass and the distance 
between the bodies. Result acceleration changes the 
current velocity, direction and position of the bodies. The 
process output result is an output structure containing the 
new position and velocity of the processed bodies. After 
processing each input structure, the corresponding result is 
placed in an output structure and stored in a custom 
worker attribute called “spaces”. The collection of results 
is queued in the “_W_FinalWork” function and the 
“spaces” attribute is empted. The worker member function 
used to recover the data was “_W_DoWork”, and the code 
simply copies the result content to the common body list 
structure. The “_M_FinalWork” function is used to store 
the result body list values to file. 
 

3. PERFORMANCE MODEL FO R THE 
NUMBER OF WORKERS 

In this section, we present the problem of determining a 
suitable number of workers for an M/W application. We 
will only consider this problem for homogeneous M/W 
applications, defining these as applications where all tasks 
(i.e. a set of data to be processed by each worker) are 
approximately of the same size and require the same 
processing time. In fact, these kinds of application perform 
similarly to a balanced M/W application with the same 
total processing time and the same global communication 
volume, as shown in [1]. 
For this analysis, we have assumed the following 
terminology to identify the different parameters that will 
form part of the performance model: 
• tl = fixed network time overhead per message, in ms. 
• ? = communication cost per byte (inverse bandwidth), 

in ms/byte. 
• V = total data volume, in bytes. 
• n = current number of workers in the application. 
• Tc = total computing time (S tci ) 
• Tt = total time spent on an application iteration 

(execution time).  Our objective is to estimate and 
minimize this magnitude. 

• Nopt = number of workers needed to obtain the 
minimum Tt (best performance). 

It can be seen that the parameters that must be monitored 
to apply the performance model associated to an M/W 
application are: 
• tl and ? which could be calculated at the beginning of 

the execution and should be re-evaluated periodically to 
make allowances for the adaptation of the system to the 
network load conditions. 

• Sizes of messages that the master sends to workers and 
when it receives results from them, in order to calculate 
the portion of the data volume sent to workers (p*V) 
and the portion received from them ((1-p)*V).  

• The time the workers spend on each task has to be 
measured in order to calculate the total computing time 
(Tc). 

We have shown in [1] the analysis performed in order to 
construct the performance functions associated to this kind 
of application and the expressions for calculating the 
optimal number of workers for different situations. 
In a Master/Worker application the Master initially 
distributes data among workers, and then those workers 
make some processing on this data. Finally, each worker 
sends its processing results back to the Master. We have 

called iteration to this process, and we have defined the 
expressions to calculate the total iteration time given 
different conditions:   
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In [1] we assumed that the total data volume was constant, 
so increasing the number of workers implied smaller 
messages. Consequently, considering that tci = Tc/n, vi = 
p*V/n (some portion p of the overall data volume which is 
distributed among the workers), and vm = (1-p)*V/n (the 
remaining portion of the overall data volume which are the 
results that workers return to the master) we could rewrite 
the above expressions as: 
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If we calculate dTt/dn = 0 for expression (2) and (3) we 
will obtain the expressions to calculate the number of 
workers needed to minimize Tt, which is: 

nnV* *2 )nV*  (tl*n

and ssynchronou is  protocol if

Tctl ++>+ λλ
      

 

 tl
TcVpNopt

)*)1(( +−= λ               (4) 

 

 )
n

V*p
*  (tl

 and usasynchrono is  protocol if

λ>
    

or 
 

3



 )**()*((n
 )**(

 and synchronusnot   is protocol if

tlVpTcV
andnVptl

−+≤
≤

λλ
λ

    

 

tl
TcVNopt

)*( += λ         (5) 

 
As we said before, these expressions are valid when the 
total amount of data remains constant, but in the NBody 
application the whole data is sent to each worker, which 
means that data volume depends on the number of workers. 
As a consequence, expressions (1) and (2) become: 
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And expression (5) becomes: 
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4. MATE 

In this section we present MATE (Monitoring, Analysis 
and Tuning Environment) [2, 3] that provides dynamic 
automatic tuning of parallel/distributed applications. 
During run-time MATE automatically instruments a 
running application to gather information about the 
application’s behavior. The analysis phase receives events, 
searches for bottlenecks by applying a performance model 
and determines solutions for overcoming such 
performance bottlenecks. Finally, the application is 
dynamically tuned by applying the given solution. 
Moreover, while it is being tuned, the application does not 
need to be re-compiled, re-linked or restarted. To modify 
the application execution on the fly MATE uses the 
technique called dynamic instrumentation [4]. 
MATE consists of the following main components that 
cooperate among themselves, controlling and trying to 
improve the execution of the application: 
• Application Controller (AC) – a daemon-like process 

that controls the execution of the application on a given 
host (management of processes and machines). It also 
provides the management of process instrumentation 
and modification. 

• Dynamic monitoring library (DMLib) – a shared library 
that is dynamically loaded by AC into an application 
process to facilitate instrumentation and data collection. 
The library contains functions that are responsible for 
registration of events with all required attributes and for 
delivering them for analysis. 

• Analyzer – a process that carries out the application 
performance analysis, it automatically detects existing 
performance problems “on the fly” and requests 
appropriate changes in order to improve the 
performance of the application. 

An important issue is the representation of knowledge of 
the performance problems that we can utilize when 
optimizing an application. In MATE, we use the following 
terms for knowledge: measure points, performance model, 
tuning points/actions. A measure point is a location in a 
process where the instrumentation must be inserted in 
order to provide measurements. A performance model 
consists of activating conditions (conditions in the 
application behavior considered to be a bottleneck) and/or 
formulas that model the application, allowing 
determination of the optimal conditions. Tuning points are 
the application components that must be changed to 
improve performance. Tuning action represents the action 
that must be performed on a tuning point. The knowledge 
required to represent the performance model of an 
application bottleneck is specified in a component called a 
“tunlet”.  
 
Tunlet implementation 
To dynamically tune the number of workers the 
cooperative approach must be chosen since it is required 
to have certain information about the application. We 
implemented a specific tunlet using the knowledge 
provided by the framework presented above. The 
application is based on iterations where all processes 
repeatedly perform all operations. In every iteration, the 
master distributes tasks to a specified number of workers 
and then waits for the results. It must synchronize the 
results before the next iteration. Worker processes 
calculate the results and send them back to the master. 
The tunlet that optimizes the number of workers requires 
run-time monitoring of the functions responsible for 
exchanging messages (sending and reception functions 
implemented in the framework). In particular, for these 
functions every entry or exit in the master process and in 
all worker processes is monitored. Instrumenting these 
functions and measuring the amount of data sent to the 
workers and received by the master, the total 
computational time of workers, the network overhead and 
bandwidth we are able to perform, are all measurements 
required by the performance model presented in Section 3 
(expressions (6) and (8)). 
During execution, the application should be aware of the 
current number of workers. The model is evaluated after 
every iteration when all measurements gathered from that 
iteration are available. If the computed optimal number of 
workers differs from the current number of active workers, 
the associated tuning procedure is invoked. In this case, 
we require the application to be prepared for the potential 
changes. For this, the framework provides a specific 
variable that represents the current number of workers, 
embedded in the developed application. MATE will 
change this variable by automatically updating its value 
related to the current environment conditions, and this new 
value will be used in the next iteration. This can only be 
done between two iterations because it is difficult to 
change the current work distribution that is already being 
processed. Once the number of workers has been adjusted, 
the work can be distributed adequately to all running 
workers. 
If there are any new workers to be added, new machines 
(processors) are required for them. There is no sense in 
running a new worker on the same machine as one where 
another worker is already running. In such a situation we 
would not gain anything since the CPU time is divided 
between both workers, unless the target machine is 
multiprocess.  
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5. EXPERIMENTAL RESULTS 
This section presents the experimental results obtained by 
applying the tuning environment to a base framework for 
Master/Work application. To conduct the experiments, we 
selected a brute force 2D N-Body implementation 
presented in Section 2. Experiments were conducted on a 
cluster of homogenous Pentium 4, 1.8 Ghz, (SuSE Linux 
8.0) connected by 100Mb/sec network. Each experiment 
was performed many times and the average of the 
execution time for the application was calculated. 
Since we need to control the load in the system to 
reproduce the experiments several times, we created 
certain load patterns, so that we can introduce and modify 
certain external loads to simulate the system’s time-
sharing. We defined load patterns, in particular an 
gradually ascending load pattern and a variable load 
pattern; then for each one of they we executed the 
application with several fixed number of workers (1, 2, 4, 
8, 16, 19) and also under the control of the MATE tuning 
environment where the number of workers is adapted 
dynamically. In every scenario, each Worker was executed 
in an individual machine.  
We have conducted our experiments in two scenarios: 
• In the first scenario, N-Body was executed on different 

number of workers, without any tuning.  
• In the second scenario the application was executed 

under MATE applying the tuning of the number of 
workers. The application started with one worker and 
then during the execution the number is changed 
according to the model described in Section 3. In this 
scenario one machine of the cluster was dedicated to 
run the analyzer, so that the analysis does not introduce 
additional overhead in the application. 

Table 1 and Figure 2 summarize the experimental results 
to the variable load pattern. They show the execution time 
of N-Body application considering different number of 
workers and the execution time of N-Body under MATE. 
In each scenario N-Body was executed with the controlled 
variable load pattern.   
 

#workers 1 2 4 8 16 19 
Execution 

Time 
64,49 34,61 18,09 10,37 11,83 15,49 

N-Body + MATE Starting with 1 worker 
and then tuning 

Execution Time 10,92 
Table 1. Execution time of N-Body (in seconds) in 
different scenarios under a variable load pattern. 
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Fig. 2. Execution time of N-Body under a variable load 
pattern using different number of workers and MATE. 

 
Fig. 3. Number of workers adaptation along the N-Body 

execution under MATE and a variable load pattern. 
 
Table 2 and Figure 4 summarize the experimental results 
to the ascending load pattern. They show the execution 
time of N-Body application considering different number 
of workers and the execution time of N-Body under 
MATE and similarly as in previous experiment, in each 
scenario N-Body was executed with the controlled 
ascending load pattern.  
 

Table 2. Execution time of N-Body (in seconds) in 
different scenarios under an ascending load pattern. 
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Fig. 4. Execution time of N-Body under an ascending load 

pattern using different number of workers and MATE. 
 
In both experiments, N-Body while executing under 
control of MATE starts with only one worker. When 
MATE receives all data from the first iteration, it 
evaluates the performance model and immediately detects 
the need of adding workers to reach the optimal number 
related to the initial total work. Then during the execution 
of the application the load is changed and the number of 
workers is adapted to the optimal number provided by the 
performance model.  It can be seen in Figure 3 for variable 
load pattern and in Figure 5 for ascending load pattern. 
Then, as the time passed, load patterns vary and the 
number of workers in the application is adapted to use in 
each moment the number of workers needed to achieve an 
optimal performance. Notice that responses to the changes 
in the load pattern are introduced some iterations later in 
the application (normally one or two iterations). The 

#workers 1 2 4 8 16 19 
Execution 

Time 
73,23 37,11 19,28 11,76 13,05 14,50 

N-Body + MATE Starting with 1 worker 
and then tuning 

Execution Time 12,46 
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analysis is done collecting data of one iteration and MATE 
introduces the required modification on the following 
iteration. Sometimes, in front of considerable changes in 
the load system, it could be needed an additional tuning 
because the tunlet can evaluate the model with estimated 
optimal number of workers and readjust it. That is the case 
of the first and second adaptation in Figure 4.   
It can be observed that execution time of the application 
under MATE is close to the best execution times obtained 
by different fixed number of workers. However, the 
resources devoted to the application using the MATE 
tuning environment are taken considering the actual 
requirements of the application and are used when they are 
really needed. 

 
Fig. 4. Number of workers adaptation along the N-Body 
execution under MATE and an ascending load pattern. 

 
6. CONCLUSIONS 
Development of efficient parallel/distributed applications 
may be a difficult task for non-expert programmers. Tools 
must be provided that help a user in the development 
phase and provide automatic tuning of such applications.  
In this paper we have described the framework for 
developing Master/Worker applications and the dynamic 
performance tuning tool. The framework facilitates the 

development of the application, hiding the low level 
details and performance tuning can successfully be carried 
out on the fly. Using this environment, programmers can 
design the application in quite a simple way, and do not 
need to worry about performance analysis or tuning, 
because dynamic performance tuning automatically takes 
care of these tasks.  
The performance model for evaluating the optimal number 
of workers has been integrated in the MATE environment 
by the corresponding “tunlet”.  
We have conducted experiments with the 
parallel/distributed application developed using the 
presented framework and then tuned by the MATE 
environment. We have proved that it is effective and 
profitable. Running the application under MATE control 
has allowed for adaptation of the behavior to the existing 
conditions and improvements in performance. 
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