
Development and Tuning Framework of Master/Worker Applications

Anna Morajko, Eduardo César, Paola Caymes-Scutari, José G. Mesa, Genaro Costa, Tomàs Margalef, Joan
Sorribes, Emilio Luque

Computer Architecture and Operating Systems Dept. Universitat Autònoma de Barcelona.
{Anna.Morajko, Eduardo.Cesar, Tomas.Margalef, Joan.Sorribes, Emilio.Luque}@uab.es

{paola, genaro}@aomail.uab.es
josegabrielmesa xeenarts@gmail.com

ABSTRACT1

Parallel/distributed programming is a complex task that
requires a high degree of expertise to fulfill the
expectations of high performance computation. The
Master/Worker paradigm is one of the most commonly
used because it is easy to understand and there is a wide
range of applications that match this paradigm. However,
there are certain features, such as data distribution and the
number of workers that must be tuned properly to obtain
adequate performance. In most cases such features cannot
be tuned statically since they depend on the particular
conditions of each execution. In this paper, we show a
dynamic tuning environment that is based on a theoretical
model of Master/Worker behavior and allows for the
adaptation of such applications to the dynamic conditions
of execution. The environment includes a pattern based
application development framework that allows the user to
concentrate on the design phase and makes it easier to
overcome performance bottlenecks.
Keywords: dynamic tuning, performance analysis,
performance model

1. INTRODUCTION
Parallel/distributed processing is a highly promising
approach to attaining the high computing capabilities
required by many application fields. However, the use of
these computing systems involves several features that are
not considered in classical sequential processing:
• Design and development of these applications imply the

study and development of new parallel algorithms to
solve the target problem.

• Programming of these parallel algorithms requires the
use of some message passing library (PVM, MPI) to
communicate the processes cooperating in the
application. Therefore, the programmer must use a set
of new primitives and match the parallel algorithm to
the possibilities of the library.

• To accomplish the high performance expectations,
programmers must analyze the performance of the
application in order to determine the bottlenecks that
appear during the execution of the application and
modify the application to overcome them.

• In many cases, the behavior of these applications varies
depending on the input data set or on the platform under
use. In other cases the behavior can change dynamically
due to the evolving of the application or the dynamic
features of the sy stem. In such cases, the tuning actions
must be performed during the execution of the
application, and this is a jeopardizing action.

In this context, new software tools that help the user in the
application specification, hiding the low level details

1 This work was supported by the MCyT under contract

number TIN 2004-03388 and partially funded by the
Generalitat de Catalunya – Grup de recerca consolidat
2001-SGR-00218.

related to process communication, and automatically
tuning the application performance are needed. It is
necessary to offer a certain program specification
framework that represents a higher level of abstraction.
Such framework provides a set of well-defined structures
in such a way that the programmer selects the structure
under use and specifies the features directly related to the
particular application (e.g. data sets, functionality). Finally,
the framework generates all the code using the appropriate
message passing library. In this approach, the programmer
is constrained to use a given set of structures, but the
specification is much simpler. On the other hand, since the
applications follow well-known structures it is possible to
develop performance models of such structures and tune
the application performance on the fly.
In this paper, a complete environment that allows the
programmer to develop a parallel/distributed application
by using a programming framework and to execute the
application under the control of an automatic and dynamic
tuning system is presented. Section 2 describes the
framework design for developing Master/Worker
applications. Section 3 presents the performance model
designed for this kind of application. In Section 4 we
introduce the tuning system (MATE) and the integration
of the performance model for Master/Worker applications.
Section 5 shows some experimental results with an N-
Body problem application developed using the framework
and tuned by MATE. Finally, Section 6 presents some
conclusions.

2. FRAMEWORK DESIGN
We consider that the frameworks have to fulfill the
following requirements:
• They should be generic and flexible. Any application

that matches the design pattern implemented by the
framework could be written using it.

• They should be easy to use. The framework’s
implementation details must be hidden to the
programmer providing a clear and easy to understand
API.

• They should be efficient. Although these frameworks
will be integrated into an automatic tuning environment,
efficiency cannot be neglected.

• They should be independent of the underlying
communication library. Library functions should not be
directly included in the framework code.

From another point of view, the objective of using these
frameworks in a dynamic tuning environment sets an extra
requirement:
• They must be designed to simplify the monitoring and

dynamic modification of generated applications.
To fulfill these requirements a great deal of care was taken
over a design that uses object oriented techniques that
allow for the encapsulation of the framework behavior and
implementation, while leaving it down to the programmer
to specify only those methods where the solution for the
computational problem must be computed. This design is

Dagstuhl Seminar Proceedings 05501
Automatic Performance Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/505

based on the fact that for any programming paradigm
(master-worker, pipeline, divide and conquer, and so on)
two different elements are clearly distinguished: first, the
processes which are in charge of performing the
computation, and which have specific behavior in
accordance with their role in the paradigm, and second the
management of the data that has to be interchanged
between those processes.
The resulting class structure is shown in Figure 1, where
we can see that for each kind of process in a programming
paradigm the related framework includes a class (Process
class) to encapsulate its behavior, defining as virtual those
methods that will be used by the programmer in a derived
class (MyProcess class) to specify the particular
computation performed by the process. In this derived
class the programmer must codify the specific
computation of the application through computation
methods, as well as other methods for initialization and
finalization code.
It can be seen that the framework also includes classes that
encapsulate the management of the data that will be
exchanged between processes (Communication
management class). The idea is that an object of a
particular process class owns an object of a
communication management class associated with this
kind of process. The communication management object is
responsible for managing the logical channels used to
communicate the process with others, and the data that is
communicated through these channels. This object offers
programmers a communication interface.

Fig. 1. Class structure for frameworks.

There are only two methods used by the communication
management class that should be overwritten by the
programmer, the method used to make partitions in the
process data, which has to be sent to other processes, and
the one used to fill process data structures with data
received from other processes (Partition methods). This
design is aimed at making data structures used in the
process computation independent of data structures used
in the information interchange with other processes, but

maintaining the flexibility to decide how to map one kind
of structure over the other.
Finally, to fulfill the requirement for an independent
communication library, we have defined a communication
class to encapsulate the communication library functions.
This communication class offers a standard interface to
PVM and MPI that is used by the communication
management class and therefore hidden to programmers.
This class is automatically generated by a tool (CCG –
Communication Class Generator) that uses data
configuration information given by the programmer.

Master/Worker implementation of Nbody problem
The framework has been used to develop a Master/Worker
brute force Nbody application [5]. This application
involves processing the force iteration between a set of n
bodies in a 2D space for each instant of time. In every
instant, the new position of each body is calculated and the
current velocity is updated by the influence of the other
bodies. This application was chosen because it can scale
for a high number of workers and the computation effort is
spitted in framework iterations.
The framework provides an infrastructure for developing
an application under the Master/Worker paradigm. To
develop a master/worker application the user has to extend
the two Master and Worker base classes. Each of these
two classes has virtual C/C++ methods that should be
overwritten by the user code. Communication between the
user code and the framework is made by polymorphism
and the attributes inherited in the sub classing process.
The first step towards building a new application is to
execute call the “create.sh” script file that generates a
directory tree containing all the files needed by passing the
application name. This creates a “master” and a “worker”
directory containing the specific master and worker code
provided by the framework, and skeleton classes that
should be filled with the user code. The user should only
modify the “_mymaster.cpp” and “_mymaster.h” in the
“master” directory, and “_myworker.cpp” and
“_myworker.h” in the worker directory.
Another directory created is the “struct”, and this contains
the user structures including the “myinstruct.h” and
“myoutstruct.h” files. The user should edit these files and
place C/C++ code definition of the input and output data
structures. After coding the input and output structures, the
user needs to code the master and the worker class. The
framework used supports iterations and provides
synchronous and asynchronous execution. This affects the
way the master distributes the tasks between the workers.
Framework execution involves a series of events that
should be coded by the user. These basic events are master
initialization (“_M_Initialize”), worker initialization
(“_W_Initialize”), master data partition (“_M_Partition”),
worker do work (“_W_DoWork”), worker final work
(“_W_FinalWork”), master data recovery (“_M_Recover”)
and master final work (“_M_FinalWork”).
In the NBody implementation, the function
“_M_Initialize” is used to allocate memory for the array of
bodies, and each body position and velocity are initialized.
The _W_Initialize work member function is used to
initialize the result buffer, an array for storing the
computation result data. Each input structure is the set of
bodies and the range of processing, which tells the worker
the subset of bodies to process. Task generation is based
on the number of available workers and the division is
performed equally, each worker receives approximately
the same amount of work (“_M_Partition”). The

Process
class

MyProcess
class

Init and End methods

Computation methods

Accessory methods

Communication
management

class

MyComMan
class

Partition met hods

Accessory methods

Communication
class

Communication
class generation

tool (CCG)

Data
config.

PVM
MPI?

2

“_W_DoWork” of worker consists of processing input
structures. The input structure process consists of
calculating, for each body within the defined range, the
result acceleration based on the mass and the distance
between the bodies. Result acceleration changes the
current velocity, direction and position of the bodies. The
process output result is an output structure containing the
new position and velocity of the processed bodies. After
processing each input structure, the corresponding result is
placed in an output structure and stored in a custom
worker attribute called “spaces”. The collection of results
is queued in the “_W_FinalWork” function and the
“spaces” attribute is empted. The worker member function
used to recover the data was “_W_DoWork”, and the code
simply copies the result content to the common body list
structure. The “_M_FinalWork” function is used to store
the result body list values to file.

3. PERFORMANCE MODEL FO R THE
NUMBER OF WORKERS

In this section, we present the problem of determining a
suitable number of workers for an M/W application. We
will only consider this problem for homogeneous M/W
applications, defining these as applications where all tasks
(i.e. a set of data to be processed by each worker) are
approximately of the same size and require the same
processing time. In fact, these kinds of application perform
similarly to a balanced M/W application with the same
total processing time and the same global communication
volume, as shown in [1].
For this analysis, we have assumed the following
terminology to identify the different parameters that will
form part of the performance model:
• tl = fixed network time overhead per message, in ms.
• ? = communication cost per byte (inverse bandwidth),

in ms/byte.
• V = total data volume, in bytes.
• n = current number of workers in the application.
• Tc = total computing time (S tci)
• Tt = total time spent on an application iteration

(execution time). Our objective is to estimate and
minimize this magnitude.

• Nopt = number of workers needed to obtain the
minimum Tt (best performance).

It can be seen that the parameters that must be monitored
to apply the performance model associated to an M/W
application are:
• tl and ? which could be calculated at the beginning of

the execution and should be re-evaluated periodically to
make allowances for the adaptation of the system to the
network load conditions.

• Sizes of messages that the master sends to workers and
when it receives results from them, in order to calculate
the portion of the data volume sent to workers (p*V)
and the portion received from them ((1-p)*V).

• The time the workers spend on each task has to be
measured in order to calculate the total computing time
(Tc).

We have shown in [1] the analysis performed in order to
construct the performance functions associated to this kind
of application and the expressions for calculating the
optimal number of workers for different situations.
In a Master/Worker application the Master initially
distributes data among workers, and then those workers
make some processing on this data. Finally, each worker
sends its processing results back to the Master. We have

called iteration to this process, and we have defined the
expressions to calculate the total iteration time given
different conditions:

))***2v*(tl

and)v* ((tl if 2

1-n

0i
i

i

1

0

mii

m

n

i
ii

vtcvtl

vtcvtlTt

λλλ

λλλ

+++>+

≤∗++∗+∗=

∑

∑

=

−

=

Or
)* (* imii vtlifvtltcvtlnTt λλλ >∗++++∗=

Or

)***2v*tl*(n

 and protocol) us(synchrono if

)1(

1-n

0i
i

1

0

mii

m

n

i
ii

vtcvtl

vtcvtlnTt

λλλ

λλ

+++>+

∗++∗+∗+=

∑

∑

=

−

=

In [1] we assumed that the total data volume was constant,
so increasing the number of workers implied smaller
messages. Consequently, considering that tci = Tc/n, vi =
p*V/n (some portion p of the overall data volume which is
distributed among the workers), and vm = (1-p)*V/n (the
remaining portion of the overall data volume which are the
results that workers return to the master) we could rewrite
the above expressions as:

)))**/()*((

)*((

)1()2(

tlVpTcVn

and
n

Vptlif

n
VpTcnpVtlTt

−+≤

∗≤

−∗++∗∗+∗=

λλ

λ

λλ

 (1)
Or

)
n

V*p
*if(tl

)
n

V*p
* tl(if *

λ

λλ

>

>+++∗=
n
V

tl
n

Tc
tlnTt

 (2)
Or

)**2V*tl*(n

 and protocol) us(synchrono if

)1()1(

n
Tc

n
Vtl

n
V

p
n

Tc
VptlnTt

++>+

−∗++∗+∗+=

λλ

λλ

 (3)

If we calculate dTt/dn = 0 for expression (2) and (3) we
will obtain the expressions to calculate the number of
workers needed to minimize Tt, which is:

nnV* *2)nV* (tl*n

and ssynchronou is protocol if

Tctl ++>+ λλ

 tl
TcVpNopt

)*)1((+−= λ (4)

)
n

V*p
* (tl

 and usasynchrono is protocol if

λ>

or

3

)**()*((n
)**(

 and synchronusnot is protocol if

tlVpTcV
andnVptl

−+≤
≤

λλ
λ

tl
TcVNopt

)*(+= λ (5)

As we said before, these expressions are valid when the
total amount of data remains constant, but in the NBody
application the whole data is sent to each worker, which
means that data volume depends on the number of workers.
As a consequence, expressions (1) and (2) become:

 *)*2(

n
VTcnVntl

Tt wm ∗++∗+∗
=

λλ

 (6)

and

 **
n

V
tl

n
TcVtlnTt w

m λλ ++++∗= (7)

And expression (5) becomes:

tl
TcVN w

opt
)*(+= λ if)

n
V

* (tl mλ> (8)

m
w

opt V
TcVN *

)*(
λ

λ += if not (9)

4. MATE

In this section we present MATE (Monitoring, Analysis
and Tuning Environment) [2, 3] that provides dynamic
automatic tuning of parallel/distributed applications.
During run-time MATE automatically instruments a
running application to gather information about the
application’s behavior. The analysis phase receives events,
searches for bottlenecks by applying a performance model
and determines solutions for overcoming such
performance bottlenecks. Finally, the application is
dynamically tuned by applying the given solution.
Moreover, while it is being tuned, the application does not
need to be re-compiled, re-linked or restarted. To modify
the application execution on the fly MATE uses the
technique called dynamic instrumentation [4].
MATE consists of the following main components that
cooperate among themselves, controlling and trying to
improve the execution of the application:
• Application Controller (AC) – a daemon-like process

that controls the execution of the application on a given
host (management of processes and machines). It also
provides the management of process instrumentation
and modification.

• Dynamic monitoring library (DMLib) – a shared library
that is dynamically loaded by AC into an application
process to facilitate instrumentation and data collection.
The library contains functions that are responsible for
registration of events with all required attributes and for
delivering them for analysis.

• Analyzer – a process that carries out the application
performance analysis, it automatically detects existing
performance problems “on the fly” and requests
appropriate changes in order to improve the
performance of the application.

An important issue is the representation of knowledge of
the performance problems that we can utilize when
optimizing an application. In MATE, we use the following
terms for knowledge: measure points, performance model,
tuning points/actions. A measure point is a location in a
process where the instrumentation must be inserted in
order to provide measurements. A performance model
consists of activating conditions (conditions in the
application behavior considered to be a bottleneck) and/or
formulas that model the application, allowing
determination of the optimal conditions. Tuning points are
the application components that must be changed to
improve performance. Tuning action represents the action
that must be performed on a tuning point. The knowledge
required to represent the performance model of an
application bottleneck is specified in a component called a
“tunlet”.

Tunlet implementation
To dynamically tune the number of workers the
cooperative approach must be chosen since it is required
to have certain information about the application. We
implemented a specific tunlet using the knowledge
provided by the framework presented above. The
application is based on iterations where all processes
repeatedly perform all operations. In every iteration, the
master distributes tasks to a specified number of workers
and then waits for the results. It must synchronize the
results before the next iteration. Worker processes
calculate the results and send them back to the master.
The tunlet that optimizes the number of workers requires
run-time monitoring of the functions responsible for
exchanging messages (sending and reception functions
implemented in the framework). In particular, for these
functions every entry or exit in the master process and in
all worker processes is monitored. Instrumenting these
functions and measuring the amount of data sent to the
workers and received by the master, the total
computational time of workers, the network overhead and
bandwidth we are able to perform, are all measurements
required by the performance model presented in Section 3
(expressions (6) and (8)).
During execution, the application should be aware of the
current number of workers. The model is evaluated after
every iteration when all measurements gathered from that
iteration are available. If the computed optimal number of
workers differs from the current number of active workers,
the associated tuning procedure is invoked. In this case,
we require the application to be prepared for the potential
changes. For this, the framework provides a specific
variable that represents the current number of workers,
embedded in the developed application. MATE will
change this variable by automatically updating its value
related to the current environment conditions, and this new
value will be used in the next iteration. This can only be
done between two iterations because it is difficult to
change the current work distribution that is already being
processed. Once the number of workers has been adjusted,
the work can be distributed adequately to all running
workers.
If there are any new workers to be added, new machines
(processors) are required for them. There is no sense in
running a new worker on the same machine as one where
another worker is already running. In such a situation we
would not gain anything since the CPU time is divided
between both workers, unless the target machine is
multiprocess.

4

5. EXPERIMENTAL RESULTS
This section presents the experimental results obtained by
applying the tuning environment to a base framework for
Master/Work application. To conduct the experiments, we
selected a brute force 2D N-Body implementation
presented in Section 2. Experiments were conducted on a
cluster of homogenous Pentium 4, 1.8 Ghz, (SuSE Linux
8.0) connected by 100Mb/sec network. Each experiment
was performed many times and the average of the
execution time for the application was calculated.
Since we need to control the load in the system to
reproduce the experiments several times, we created
certain load patterns, so that we can introduce and modify
certain external loads to simulate the system’s time-
sharing. We defined load patterns, in particular an
gradually ascending load pattern and a variable load
pattern; then for each one of they we executed the
application with several fixed number of workers (1, 2, 4,
8, 16, 19) and also under the control of the MATE tuning
environment where the number of workers is adapted
dynamically. In every scenario, each Worker was executed
in an individual machine.
We have conducted our experiments in two scenarios:
• In the first scenario, N-Body was executed on different

number of workers, without any tuning.
• In the second scenario the application was executed

under MATE applying the tuning of the number of
workers. The application started with one worker and
then during the execution the number is changed
according to the model described in Section 3. In this
scenario one machine of the cluster was dedicated to
run the analyzer, so that the analysis does not introduce
additional overhead in the application.

Table 1 and Figure 2 summarize the experimental results
to the variable load pattern. They show the execution time
of N-Body application considering different number of
workers and the execution time of N-Body under MATE.
In each scenario N-Body was executed with the controlled
variable load pattern.

#workers 1 2 4 8 16 19
Execution

Time
64,49 34,61 18,09 10,37 11,83 15,49

N-Body + MATE Starting with 1 worker
and then tuning

Execution Time 10,92
Table 1. Execution time of N-Body (in seconds) in
different scenarios under a variable load pattern.

0

10

20

30

40

50

60

70

1 2 4 8 16 19 MATE

Case studies

Fig. 2. Execution time of N-Body under a variable load
pattern using different number of workers and MATE.

Fig. 3. Number of workers adaptation along the N-Body

execution under MATE and a variable load pattern.

Table 2 and Figure 4 summarize the experimental results
to the ascending load pattern. They show the execution
time of N-Body application considering different number
of workers and the execution time of N-Body under
MATE and similarly as in previous experiment, in each
scenario N-Body was executed with the controlled
ascending load pattern.

Table 2. Execution time of N-Body (in seconds) in
different scenarios under an ascending load pattern.

0
10
20
30
40
50
60
70
80

1 2 4 8 16 19 MATE

Case estudies

Fig. 4. Execution time of N-Body under an ascending load

pattern using different number of workers and MATE.

In both experiments, N-Body while executing under
control of MATE starts with only one worker. When
MATE receives all data from the first iteration, it
evaluates the performance model and immediately detects
the need of adding workers to reach the optimal number
related to the initial total work. Then during the execution
of the application the load is changed and the number of
workers is adapted to the optimal number provided by the
performance model. It can be seen in Figure 3 for variable
load pattern and in Figure 5 for ascending load pattern.
Then, as the time passed, load patterns vary and the
number of workers in the application is adapted to use in
each moment the number of workers needed to achieve an
optimal performance. Notice that responses to the changes
in the load pattern are introduced some iterations later in
the application (normally one or two iterations). The

#workers 1 2 4 8 16 19
Execution

Time
73,23 37,11 19,28 11,76 13,05 14,50

N-Body + MATE Starting with 1 worker
and then tuning

Execution Time 12,46

5

analysis is done collecting data of one iteration and MATE
introduces the required modification on the following
iteration. Sometimes, in front of considerable changes in
the load system, it could be needed an additional tuning
because the tunlet can evaluate the model with estimated
optimal number of workers and readjust it. That is the case
of the first and second adaptation in Figure 4.
It can be observed that execution time of the application
under MATE is close to the best execution times obtained
by different fixed number of workers. However, the
resources devoted to the application using the MATE
tuning environment are taken considering the actual
requirements of the application and are used when they are
really needed.

Fig. 4. Number of workers adaptation along the N-Body
execution under MATE and an ascending load pattern.

6. CONCLUSIONS
Development of efficient parallel/distributed applications
may be a difficult task for non-expert programmers. Tools
must be provided that help a user in the development
phase and provide automatic tuning of such applications.
In this paper we have described the framework for
developing Master/Worker applications and the dynamic
performance tuning tool. The framework facilitates the

development of the application, hiding the low level
details and performance tuning can successfully be carried
out on the fly. Using this environment, programmers can
design the application in quite a simple way, and do not
need to worry about performance analysis or tuning,
because dynamic performance tuning automatically takes
care of these tasks.
The performance model for evaluating the optimal number
of workers has been integrated in the MATE environment
by the corresponding “tunlet”.
We have conducted experiments with the
parallel/distributed application developed using the
presented framework and then tuned by the MATE
environment. We have proved that it is effective and
profitable. Running the application under MATE control
has allowed for adaptation of the behavior to the existing
conditions and improvements in performance.

7. REFERENCES
1. César, E., Mesa, J.G., Sorribes, J., Luque, E. “Modeling

Master-Worker Applications in POETRIES”. IEEE 9th
International Workshop HIPS 2004, IPDPS, pp. 22-30.
April, 2004.

2. Morajko, A., Morajko, O., Jorba, J., Margalef, T.,
Luque, E. “Dynamic Performance Tuning of
Distributed Programming Libraries”. LNCS, 2660, pp.
191-200. 2003.

3. Morajko, A., Morajko, O., Margalef, T., Luque, E..
“MATE: Dynamic Performance Tuning Environment”.
LNCS, 3149, pp. 98-107. 2004.

4. Buck, B., Hollingsworth, J.K. “An API for Runtime
Code Patching”. University of Maryland, Computer
Science Department, Journal of High Performance
Computing Applications. 2000.

5. Wilkinson, B., Allen, M.: "Parallel programming -
Techniques and Applications Using Networked
Workstations and Parallel Computters". Pearson
Prentice Hall. Second Edition. ISBN 0 13 140563
2. 2005.

6

