Shortened version to appear in Proc. Parallel ComputingC@aalaga, Spain, 12-16 Sept., 2005).

Holistic Hardware Counter Performance Analysis of Paralld Programs
Brian J. N. Wyli¢, Bernd Moht, Felix Wolf*

#John von Neumann Institute for Computing, Forschungsaendiilich, D-52425 Julich, Germany

The KOJAK toolkit has been augmented with refined hardwarlopaance counter support, in-
cluding more convenient measurement specification, additimetric derivations and hierarchical
structuring, and an extended algebra for integrating ipleltexperiments. Comprehensive auto-
mated analysis of a hybrid OpenMP/MPI parallel program,AB& Purple sPPM benchmark, is
demonstrated with performance experiments on equisizatfiEER-11-based IBM Regatta p690+
cluster, Opteron-based Cray XD1 cluster and UltraSPAR®d%ed Sun Fire E25000 systems. Au-
tomatically assessed communication and synchronisagdonmance properties, combined with a
rich set of measured and derived counter metrics, providaiatic analysis context and facilitate
multi-platform comparison.

Contents
1 Introduction 1
1.1 Initial KOJAK approach e 2
2 Refined design for hardware counter measurement and analis 3
2.1 Structured analysis via metric hierarchies 3
2.2 Flexible metric specification and customisation b
2.3 Holistic analysis via integration of multiple experime 6
3 Results 6
3.1 Analysispresentation e 7
3.2 Comparative experimentanalysis e 9
4 Future work 14
5 Conclusion 16
A Definition of counter measurement sets and derived metric ierarchies 18
A.1 Hardware counter measurementsets 18
A.2 Counter metric hierarchy definition 23

1. Introduction

Modern microprocessors have integrated event countexdwdfiier low-overhead access to a po-
tential wealth of execution performance information, enpassing the utilisation and efficiency of
various functional units and the memory and cache hierashiyough microprocessors from differ-
ent manufacturers, and also within microprocessor fasjileovide broadly similar functionality,
there are often very significant differences: variation iagessor architecture and memory/cache
hierarchy are reflected in corresponding event provisiad,\@hen combined with restrictions on

Dagstuhl Seminar Proceedings 05501
Automatic Performance Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/507

2

which (and how many) events may be measured simultanedushgteatly complicates perfor-
mance measurement and analysis.

Various libraries have addressed the measurement issuesdlipg a portable application pro-
gramming interface to event counter control and access (@Ad! [7]). Along with interfacing to
system libraries, these offer standardised definitionfh®most important and universally available
events, and mappings to the native events provided by eaafopnocessor. Additional events may
be derived from one or more native events (if the procesgmpa@ts their simultaneous measure-
ment) and imposed counter time-sharing/multiplexing maywige a means for approximating the
measurement of multiple counters within a single prograeceton. Although these approaches
address the goal of acquiring a richer set of measurememtparticular experiment, it is notable
that there is corresponding additional complexity whicmpticates interpretation. There may also
be ambiguities in the definitions of events (such as whetbecidative instructions are included in
event counts or not) which must also be taken into accourmbgltineir analysis.

Interpretation and analysis of performance counters resfibre been hindered, limited to a very
small subset of the potentially usable events, and oftenifspéo particular processor platforms.
One goal of our current work has been to investigate the extban it is possible to incorporate a
wider range of counter metrics, both universal and plattspacific, and exploiting multiple mea-
surement experiments where necessary, for holistic asalyexecution performance.

The analysis of parallel applications executing in distrlll and shared memory computer sys-
tems is of particular interest, due to the additional coxipfeand opportunities to exploit compre-
hensive execution information for improved performance.

1.1. Initial KOJAK approach

Previous developments of the KOJAK performance measurearehanalysis environment for
parallel programs, which supports many current computstesys, offer a suitable vehicle for pur-
suing this investigation [1]. KOJAK provides semi-autoimatbstrumentation of user applications
and automatic analysis of performance problems arising freefficient usage of parallel program-
ming interfaces (such as MPI and OpenMP) [2,3]. Performamroblems are classified by type
and quantified by severity, for investigation via an intékecbrowser (CUBE) which presents an
integrated, hierarchical view of performance behavioalt, gath and process/thread of execution.

A basic infrastructure also exists in KOJAK for measuringmi@r events and their incorporation
into hierarchical analyses alongside communication amdtlgpnisation metrics. One approach
extended KOJAK'’s portable execution tracing to directlglie counter measurements and in-
corporate them in its various analyses [4]. Another incoafes hardware counter analysis from
separate platform-specific profiling tools with KOJAK’s owrecution trace analysis [5]. In both
cases, counter measurements/metrics are related to pragr system entities (i.e., the call tree,
processes and threads) and quantified. While the secondaagbpinas a limited separated hierarchy
of raw counter measurements, the first was an initial attemassess corresponding time penalties
and integrate these with KOJAK'’s directly-measured tinasdd performance properties.

Quantifying time-penalties for event counts was promisimgwvever, further investigation with
additional metrics highlit the limitations of the approactWhere KOJAK identified a metric tu-
ple (call-path and thread) with an occurrence rate aboveslmwba certain threshold, it derived a
performance penalty as the entire measured execution firtiabtuple; in effect it used an upper
bound on the actual penalty, for want of a better approxiomatComparing the derived performance
penalties with those directly measured from cycles-batdlceunters (on platforms which support
them, e.g., UltraSPARC [10]), showed that while they wermalty representative, they were also
significantly exaggerated. In this case, the measured fpeenabuld have been used to adjust the

3

performance penalty derivations to improve their accurdoyugh the derivations would inevitably

be platform-specific (and it would generally not be possiblguantify the actual penalties). Fur-

thermore, the performance of a tuple is ultimately due totiplel causes, manifesting in multiple

counter metrics and also non-counter metrics (e.g., congation and synchronisation times), in

complex dynamic relationships, such that it is not posdibkccurately determine the time penalty
related to a single count measurement. Although the exatigerof particular performance aspects
can be broadly in-line with their actual severity, and asdugnefit analysis, in practice it was found
to have a detrimental impact on the analysis as a whole, ljystdmpromising its integrity.

2. Refined design for hardware counter measurement and anadys

A more robust foundation for incorporating event countsrrbardware counters into perfor-
mance experiments is to integrate them in separate meatarchies presented alongside that for
measured time metrics. This is particularly the case wheyetanumbers of counters are measured
for analysis. Since it is rare that processors support $anabus measurement of all of the coun-
ters of interest, multiple measurements with subsets afitevs may be required, with these partial
experiments integrated into a single comprehensive aisalpssistance can also be provided with
specification of appropriate sets of counters for measungraad multiple presentation hierarchies
may be valuable during analysis.

These various aspects have been addressed to refine KOJAKrségr counter-based analysis
within the existing framework of MPI and OpenMP communigatand synchronisation analysis.

2.1. Structured analysis via metric hierarchies

Defining hierarchies of related counter events both pre/ateimproved structure for navigating
and interpreting the relationships between events (suckai@sreferences encompassing loads and
stores, or hits and misses at different levels of cache andang and assessing their significance
(e.g., cache misses as a proportion of references). In sases cit can be clear that a single natural
hierarchy of related events can be defined. Generally, hexvavset of event data may profitably
be structured in several hierarchies, where it may not bsiplesto determine in advance which
is most valuable: indeed, the various hierarchies are aftenplementary rather than redundant.
Furthermore, while part of a hierarchy may be platform/pssor-independent, it is desirable to
be able to include available platform/processor-specifents for a more complete and detailed
understanding of execution performance, which itself mail e platform-specific.

For example, consider the hierarchy of caches used to iregh@/performance of data accesses
from memory. When a program requires data that’s not alréadlge processors’ registers, then
that data must be loaded from system memory (which is tylgicatlers of magnitude slower than
processor speed) or one of several hierarchical levelsafirediate storage known as cache: caches
closer to the processor (and often actually on the procéssdi) are faster, but of necessity smaller
in capacity, than caches further out and closer to memoryursatisfied data access is attempted
from each level of cache (perhaps simultaneously), withctiehe providing the data registering a
‘hit" and lower caches registering ‘misses’: along with tiequired data, accompanying data from
the same cache line or block is also loaded into the lowerefagso that subsequent accesses which
are temporally and spatially proximate will also benefitwlewer, to do so, some (older) data must
be evicted from the lower cache.

A general categorisation of data (and instruction) acsegsguely associates them with the level
of cache or system memory from which they are provided,whkere they hit:

DATA_ACCESS = DATA HIT_L1$ + DATA HIT_L2$ + ... + DATA H T_MEM

4

It can also be inferred that misses occurred in lower levieteiohe. Data accesses to each level can
be reads/loads or writes/stores, offering the next gemkraion:

DATA HI T_L1$ = DATA LOAD FROM L1$ + DATA STORE | NTO L1$

Itis worth noting that this general hierarchy, while applyto a variety of processors and systems,
contains elements which will not apply on all: e.g., IBM p6#ROWER4-11 [8] has three levels of
cache whereas Opteron [9] and UltraSPARC-III/IV [10] ongvk two, and while the latter can reg-
ister stores into each level of cache (and memory) the foomér registers stores into L1 cache
which write-through to the rest. This is readily handledhathe proposed structuring, as the inap-
plicable L3 cache measurements can be treated as zerad\(akle equivalent to a non-functional
L3 cache).

Provision of hardware counters also varies considerablprogessor/system. Opteron has a
counter to measure data accesses directly, so an Opteeoiiispefinition can be used,

DATA_ACCESS = DC_ACCESS # Opteron

however, data accesses must be derived fronsghgosition of other events on UltraSPARC-III/IV
and POWER4-II, and such composed metrics are fundamenthketdierarchical structure. L1
cache read and write hits can not be measured directly by thr@SPARC or POWER4-II counters,
however, they can be determined bgaanputation® with measured counters:

DATA LOAD FROM L1$ = DC rd - DC rd_m ss # US-3/4
DATA STORE INTO L1$ = DC w - DC wr_mi ss # US-3/4
DATA LOAD FROM L1$ = PM LD REF L1 - PMLD M SS L1 # POWER4
DATA_STORE_INTO L1$ = PM ST_REF L1 - PM ST_MSS L1 # POWER4

Opteron doesn't provide counters which can distinguish &¢he read and write hits, or even
allow their combination to be measured directly, howewes tan also be computed instead:

DATA HI T_L1$ = DC_ACCESS - DC_M SS # Opteron

Similarly, data load hits from L2 cache on UltraSPARC-M/tequires the computation:
DATA LOAD FROM L2$ = DC_rd_niss - EC rd_miss # US-3/4

While such computed metrics provide a valuable means fopteting the general hierarchies,
when compositions are not available, they don't provideltbeefit of extending the hierarchies in
the way that composed metrics naturally do. For exampla,ldat hits from L2 cache are composed
from multiple native events on Opteron and POWERA4-II, retipely:

DATA_LOAD_FROM L2$
DATA LOAD FROM L2$

DC L2 _REFILL_ O + DC L2_REFILL_E + DC L2 REFILL_S # Opt
PM DATA_FROM L2

PM_DATA_FROM L25_MOD + PM DATA FROM L25_ SHR

PM DATA FROM L275_MOD + PM DATA FROM L275_SHR # PONER4

+ + 111

Although these compositions have quite different constitumeasured counters, they naturally
extend the general hierarchy with additional platformesiiedetail, which can offer further insight
for performance tuning on the respective platforms. Whaehe(dual-core) POWERA4-II processor
has its own local L2 cache, it shares this with the other @m®saes on its multi-chip module (MCM,

1The termcomputation is defined as a general calculation which can include sulresc(and potentially other arith-
metic operations), whereasmposition is defined to be strictly additive.

5

L25) and the processors on the other MCMs in its node (L2T5)f ehich are faster than accessing
L3 cache (which is similarly shared), so local versus remh@teache accesses impact performance.
This process of deriving hierarchies of new metrics from positions and computations of avail-
able measurements is able to create quite comprehensicessad relationships for data, instruction
and TLB accesses (and associated hits and misses), witheaagjstructure extended by additional
platform-specific components. Metrics which are not agtlie, or can’t be derived from available
measurements can be omitted. When a composition is onlialhagatisfied by available measure-
ments, it can still be valuable to retain it, but it should eady indicated as incomplete, such as

by including * in its label. (Where a particular set of measurements uelsuch partially satisfied

derivations, these may subsequently be completed whenimegs are combined.) Partial com-
putations can have negative values or values in excess iofpilaent, such that it's generally not
prudent to retain them: in most cases, measurements carobpegr such that those required for
computed metrics are kept in the same group to avoid this.

Similar structuring can also be applied to the types of uttton processed by various functional
units and cycles-based counters for related busy/stalidiageriods. In these cases, more of the
measurements are platform-specific and while it’s stillgilale to have a hierarchical relationship,
there are typically more ‘gaps’ corresponding to unmedsdafanaccounted events. There can also
be considerable ambiguity regarding particular eventgla@dounters which measure them. For ex-
ample, since storing floating-point data is typically dogehe floating-point unit (FPU), this is of-
ten naturally accounted as a floating-point event (e.d®MrFPU_FI Nor FP_PI PE_COVPLETI ON):
where this is not desired, the corresponding event measuntggg.PM FPU_STQorFP_ST_PI PE)
can be relocated to another category, suckiEMORY. Often, however, it may not be possible to dis-
tinguish the different kinds of events counted by particdilenctional units. There may also be
inconsistency between counting instructions issued apgktivhich actually complete.

While a general classification and hierarchy of a varietyrotcpssor events can be developed, it
is ultimately necessary to refer to the respective procaessmuals (and associated documentation
of native counter events) to assess their significance [8—10

2.2. Flexible metric specification and customisation

Metric structuring which specifies (presumed) relatiopshetween events provides a mecha-
nism for helping to navigate and understand those reldtipss While generic hierarchies such as
those described offer one particular structuring, altévaar complementary structures may also be
defined and preferable in some cases. Measured events whichiierarchy must simply be listed
separately (as is the case when no relationships are aszbaigth a metric).

A flexible approach is therefore taken, which provides thecgration of metric relationships in
a text file which is read to configure and structure the ansilyspecifications shown in the previous
subsection are extracts from such a file. The default spatidic can then be overridden to pro-
vide alternative analyses when desired. Examples of geard platform-specific metric hierarchy
specifications are provided in Appendix A.2.

A specification file also offers convenience during measergmollection, providing definitions
of groups of counters which can usefully be collected in thmea measurement, i.e., taking into
account restrictions on the number and types of events #rabe counted simultaneously. (As
mentioned previously, measuring certain events togethadvantageous when they are required to
compute derived metrics.) Examples of counter measurese¢nfor are provided in Appendix A.1:
HPM/PMAPI [8] and PAT [13] also provide and use similar sfieations of groups of counters,
though these can neither be modified nor extended by usefSuite [14] and HPCToolkit [15] also
provide configurable eventlist and derived metric spedibcea in XML for Intel/Linux platforms,

6

whereas Paraver [16] and ParaProf [17] support interasipeeification of derived metrics, with
re-use of such specifications in subsequent analyses.

Althoughiitis possible to use PAPI preset names for coumtereeate notionally-portable groups,
it is preferable to specify platform-specific groups dikeah terms of native events (provided by
PAPI), since many of the relevant native events have no sporeding PAPI preset definition and
combination of presets is still subject to the same platfepacific limitations.

2.3. Holistic analysis via integration of multiple experinents

Analysis of hardware counter measurements, and metricadems therefrom, can take two broad
approaches. The first sticks strictly to what can be reliaef{ermined from a single measurement
experiment (as is the case for HPM [8] and Appreritide]), and as such is significantly limited
by the flexibility and capabilities of the actual monitoringrdware provided by the processor. Sev-
eral, separate experiments with different sets of measemesimay be considered, with the implicit
understanding that the execution may be quite differentaichecase. An alternative uses time-
sharing or multiplexing to automatically change the evemésmsured throughout the duration of an
experiment, and extrapolate from these partial measureseea larger set of approximate measure-
ments. [11,12] Whereas this has the convenience and behbfndling a single execution, it can
be compromised by variations in behaviour within the execufthough these may be small if the
execution is sufficiently regular and long with respect ®time-sharing period).

Requiring multiple executions is a significant overheadyéneer, it also provides an opportunity to
consider possible run-to-run variations and incorpotagetin the analysis. While past results are no
guarantee of future performance, they can help indicaté rahge of performance can reasonably be
expected. This is particularly useful for deterministipigations when the hardware configuration
is unchanged and executions occur in a relatively contigtiedicated) environment.

KOJAK’s CUBE algebra operators [5] allow experiments to benbined to produce the mean
of multiple related experiments or to aggregate experiseantaining different hardware counter
metrics. Combining both approaches can be used to reduem+um variations and extend the
metric analyses to the set of experiments. Furthermoregliffexence of two experiments can be
calculated to examine variations between them.

The existing merge utility produced an experiment with then of metrics, call-paths and pro-
cess/thread measurements in input experiments. This weasded to integrate experiments con-
taining identical call-path and process/thread treesdifigrent sets of measured and derived hard-
ware counter metrics. Measurements replicated in moredhamxperiment are averaged, however,
measurements contributing to metric compositions whieloaty partially fulfilled in individual ex-
periments are accumulated to allow the compositions to bepteted. Where available, measured
metric values are also retained in preference to partiallgmuted or accumulated values.

3. Results

To demonstrate these new KOJAK capabilities, three congmrgiie sets of experiments consist-
ing of complementary groups of hardware counter measuresmese collected on an IBM Regatta
p690+ cluster, Cray XD1 cluster and Sun Fire E25000 (SF25dhg the ASC Purple sPPM v1.1
benchmark [18]. This application uses a simplified piecew&rabolic method (PPM) to solve a 3D
gas dynamic problem on a uniform Cartesian mesh. It is writb@stly in Fortran 77 (with some C
utility routines) and can simultaneously exploit multgading for shared-memory parallelism and
domain decomposition with message passing for distribpéedllelism: the double-precision (64-
bit) hybrid parallelisation tested used 32 MPI processeh ®ath 2 OpenMP threads. The processes

7

were partitione@ x 4 x 4 inthe X xY x Z dimensions, a configuration chosen to offer a reasonably
close comparison between the experiments on the diffeysterms, rather than being optimised for
any particular system.

Preparation of the instrumented application executabesdwone by prependingnst-pomp to
the commands that invoke the compiler and linker. This russwce preprocessor to automati-
cally instrument the application’s 12 OpenMP parallel D©Ogs, 41 explicit barriers and various
additional single and master blocks, and link instrumem®tP| and POMP libraries along with
the PAPI library for hardware counter measurements. Toigeoadditional context for the analysis,
while avoiding overheads associated with automaticalfrimenting the entry and exits of every
application routine, the program’s main phases and the &egmnes using MPI and OpenMP had
also previously been manually annotated with POMP registrumentation directives [6]. When
the instrumented applications are executed in the usuabiagand with optional hardware counter
measurements configured through an environment varidb&istrumented events are recorded in
per-thread trace buffers which are subsequently mergedhisingle trace for each execution.

The experiments used two p690+ nodes of an IBM Regatta cl(rstening AlX 5.2 and con-
nected via HPS) consisting of 4 MCMs with 4 dual-core POWHRtocessors, 32 nodes of a Cray
XD1 cluster (running GNU/Linux 2.6 and connected via Rapi@ network) each with two AMD
Opteron 248 processors, and a Sun Fire E25000 (runningi$8lawith dual-core UltraSPARC-
IV processors. On the IBM system, 6 experiments were c@te@vith up to 8 counters in each),
whereas 10 experiments (each with 4 counters) on the XD1 @mgderiments (each with 2 coun-
ters) on the E25000 were required to acquire a comparal#édédetail. Several additional exper-
iments were collected to investigate platform-specifidqgrenance aspects outside the core analysis
hierarchies. These sets of experiments were subsequectisporated into a single composite anal-
ysis experiment for each platforf.

3.1. Analysis presentation

KOJAK’s CUBE browser presents its analysis in three linkeds$, for performance properties,
call-tree (or code region), and system tree (machinesgge®s and threads as appropriate), as shown
in Figure 1 which has three views of the analysis of the IBM@68omposite experiment.

Performance properties calculated from patterns of evdettified in the execution traces, are
organised in the leftmost tree as a hierarchy from most gén@most specific. The hierarchy of
time-based metricsI{me) includes assessments of MPI and OpenMP overheads, withrtender
of the execution time propertykecution) considered to be productive user code. Detailed descrip-
tions for metrics are shown in a separate window when regdes¥letrics directly measured or
derived from performance counters are shown in additiomabichies below the timed metrics (or
listed separately if they are not associated with any seekifierarchy).

The middle pane has the application call tree as found inrdeetof the execution, consisting
of regions (often routines) containing other called regicbpenMP parallel regions (and barriers,
etc.), and calls to MPI functions. Alternate views are pded for a flat region/routine profile or
grouping by source module. From a selected call-site oedakgion, corresponding source code
can be shown in a separate window.

Finally, the leftmost pane shows the (physical) machinesratdes and (virtual) processes and
threads, similarly hierarchically structured: MPI proses are labelled by their rank, and OpenMP
threads by their OpenMP thread identifier, with usually dhky master thread (number 0) in each
process participating in inter-process MPI communication

2Ultimately, 32 experiments were collected and unified fer 8F25k.

. CUBE WER4_combo.cube

~_CuB OWER4_combo.| ‘

10‘ ZEI|

3El| 40‘ 50 B0

File Wiew Help
Performance Matrics | Call Tree | Systam Tree
=[] 00 Tme =] 00 main 3| = [0.0 18M Regatta pag0s =
i [0.0 MPI_nit =[] 0.0 MPI_COMM_WORLD
] 22 mrl =] 0.0 Somp parallel @main.F-417 =[] 0.0 Frocess 0
[] oaomp [1ainit [18 Mread 0
[4.3 Idle Threasts =[] 0.0runhyd 1 15 Tread 1
1000 CYCLES [0.0 igomp master @runkyd3.F459 = [0.0 Process 1
1000 INSTRUCTION (] 0.0 tgomp barrier @runhyd3 F538 [15 Mread o
1000 DATA_ACCESS [156 hycxy [1.8 Thread 1
1000 INST_ACCESS [] 0.0 1gomp barrier @runhyd3 F549 =[] 0.0 Process 2
1000 ~TLB_ACCESS [] 0.0 1gomp barrier @runhyd3 F552 [18 Mread 0
|] 18 Thread 1
[] 0.0 gomp barrier @runhyd3 FE56 = [00 Process 3
[] 0.0 igomp karrier @runhyd3. FS61 [15 Mread o
[15.2 hyozz [15 Tread 1
[] 0.0 Somp karrier @runhyd3 F567 [3.2 Process ¢
[] 0.0 1gomp barrier @runhyd3 F570] 32 Process S
[175 hyetzy [] 32 Process &
[] 0.0 $omp barrier @runhyd3 F576 [] 30 Frocess 7 |
[] 0.0 gomp barrier @runhyd3 F570 [] 32 Frocess 8
] 160 hydyx [32 Frocess o
[] 0.0 tgomp barrier @runhyd3 F585] 3.2 Process 10
[] 0.0 Somp karrier @runhyd3 F588] 30 Process 11
] 158 hyoex] 3.1 Process 12
[] 0.0 1gomp barrier @runhyd3 F534 [] 3.1 Process 13
[0.0 $omp master @runhwd3 FB01 [3.1 Process 14
(] 0.0 igomp karrier @runhyd3 F513 = [30 Process 15
[oo [3.1 Process 16
[0.0 t$omp ibarrier @rmain FE97 / [3.1 Process 17 7

File ¥iew Help 70 &0 a0
—— |32 %z |Executi0n = hydyz ->: 2596.379522 (15.779%) incl
=[] 00 Tme A= voman 315 [0.0 1BM Regatta pagos =
= 925 Execution [oo mP_mit =] 0.0 MPI_COMM_WORL
=[] 0.1 MFI =[] 0.0 %omp paralel @main F-417 =[] 0.0 Frocess 0
=[] 0.0 Communication [7ainit [25 Mread o
=[] 00 Collective =[] 00runhyd [0.0 Tread 1
[0.0 Early Recuce [0.0 tomg master @runkye3 F = [0.0 Process 1
[0.0 Late Broadeast [0.0 thomg barrier @runhyd3.F [25 readio
[0.0 hyd=y [00 Thread 1
=[] osrzr [] 0.0 tgomp barrier @runhyd3.F =[] 0.0 Frocsss 2
[[] 0.0 Late Receiver [] 0.0 i$omp barrier @runhyd3.F) [] 28 Thread 0
[05 Late Sender [0.0hydyz [0.0 Thread 1
[o0 Rma [0.0 o barrier @runhyd3.F) =[] 0.0 Process 3
[oo [0.0 thomp barrier @runhyd3.F [&8 Mreadi 0
[00 synchrarization [0.0hyazz [00 Thread 1
=] o.oomp [] 0.0 tpomp barrier @runhyd3.F [1.0Process 4
[1 00 Aush [] 0.0 i$omp barrier @runhyd3.F) [05 Frocess s
[] 0.0 Fork [0.0hydzy] 21 Process & |
= [0.0 Synchrorization [0.0 tomp barrier @runhyd3.F [&6 Process 7
=[] o0 Barrier [0.0 o barrier @runhyd3.F) [1.1 Process &
= 00 Explicit [0.0 hdys [09 Process @
] 0.8 it at Barrier [0.0 omg barrier @runhyd3.F) [2.2 Process 10
[0.0 mplist [0.0 gomp barrier @runhya3.F|_| [5.6 Process 11
[[] 0.0 Lock Campetition [] 0.0 hydsx [25 Process 12
[4.3 Idle Threasts [] 0.0 $omp barrier @runhyd3.F [2.3 Process 13
1000 CYCLES i =[] 0.0 torp master @runhyd3 F [25 Process 14
100.0 INSTRUCTION =[] 00 ghimas [&5 Process 15
100.0 DATA_ACCESS 2 ; [25 Process 16 7
| cuos: rowena.como | gy
File Wiew Help 10 20 30 40 50
|32 x2 |Wa\t at M x N -> MPI_Alreduce: 116.950025 (0.710739%) incl
Perfarmance Mefrics
——
= [ooTme Al o Dnnm A 15 [00 IBM Fegatta paao+ 5
926 Execution [o8 MPLkit = 0.0 MPI_COMM_WORL
=1 04 MeI =] 0.0 omp paralel @main Fd17 =[] 0.0 Process 0
=+-] 0.0 Commurication O 73t [] 00 Threaei 0
=+ 00 Collective =] 0.0runhwd [28 Threas 1
[00 Early Reduce [[] 0.0 tgomp master @runhyd3 F =] 0.0Frocess 1
[T] 00 Late Broadcast] 8.3 i$omp barrier @runhyd3.F) [0.0 hread 0
[oawaitat hxn [o.0hydsy [25 Mrean 1
=[] o0& PP [0.7 o barrier @runhyd3.F) =[] 0.0 Process 2
[0.0 Late Receiver [0.0 tsomp barrier @runhyd3.F [08 Mread o
Oo 5 Late Sencler [n0hyayz [28 Thread 1
[] oo Rm [0.7 tgomp barrier @runhyd3.F =[] 0.0Frocess 3
[1oomo (] 0.0 i$omp barrier @runhyd3.F) [0.0 hread 0
[0.0 synchronization [0.0hydzz [&5 Thread 1
=[] ooomp [0.5 tomp barrier @runhyd3.F [1.0Process &
[0a Aush [0.0 o barrier @runhyd3.F) [o0& Process s
[0.0 Fark [0.0hyazy [2.1 Process 6 |
=+-[] 0.0 Synchronization [0.7 tomg barrier @runhyda.F [86 Process 7
=[] 0.0 Barrier [0.0 gomp barrier @runhyd3.F [1.1 Process &
=[] 0.0 Explicit [] 0.0 hydyx [] 0.8 Process @
[0.7 tgomp barrier @runhyd3.F) [22 Process 100
[0.0 mp [0.0 o barrier @runhyd3.F [&5 Process 11
] 0.0 Lack Competition [0.0 hyds= [25 Process 12
[4.3 Idle Threarts [0.7 tsomp barrier @runhyd3.F) [2.3 Process 13
1000 CYCLES I~ [0.0 igorp master @runhyed F| [25 Process 14
100.0 INSTRUCTION [.5 Process 15
100.0 DATA_ACCESS 7] o1 fini / [] 2.5 Process 16 /
] I~ K]
‘ 10 ‘ 20 30 | 40 ‘ 50 F
|32 e |Wa\t at Barrier -= Isomp barrier @runhyd3 F:B13: 117.055165 (0.711378%) incl.

Figure 1. KOJAK analyses of hybrid OpenMP/MPI sPPM experiment on IBVM6P0+ cluster:
exclusive Execution Time fairly equally attributed to théxskey hydrodynamics routines (upper),
MPI Communication Collective Wait at XN predominantly inglblmax MPI_Allreduce (middle),
and OpenMP Synchronization Explicit Wait at Barrier mostiy final runhyd barrier (lower).

9

The tree-based presentation in each pane allows nodes bvahyo be expanded to reveal their
children, or closed to conceal them: the metric values shaitim nodes are inclusive when they
include concealed children or exclusive when expandedlaidc¢hildren are visible and have their
own metric values. Selection of a node in the performanceicsdtee determines that that metric is
shown in the other trees, and the selected node in the caliurtner refines the analysis presented in
the system tree to only that call-path. Percentage valubiperformance metrics pane are relative
to the root of their respective hierarchy, whereas the ssdlemetric determines the base value for
the percentages in the middle pane, and the call-pathfregiected there determines the base value
for the percentages in the system tree. Details for the gusedection are provided in the status area
at the bottom, below the colour scale for the boxes shown &étth value.

Selectively opening the nodes in each tree with the mosifgignt values (readily identified by
the colours of their associated boxes) provides a straigh#rd yet powerful mechanism for as-
sessing and refining performance problems, isolating thgaths where they occur, and reviewing
their distribution across processes and threads. An additgraphical display using the virtual or
physical topology is available for large-scale applicasio

3.2. Comparative experiment analysis

Table 1 summarises the three experiment configurations sacliBon performance measure-
ments, taken from Figure 1 and similar analyses for the XILS#F25k platforms. For this analysis,
execution times (and other absolute measurements) ar@rgsstant than relationships between
measurements, whether within a set of experiments or betasts.

Wall-clock execution time of 180s (163s in thenhyd computational kernel) on the XD1 com-
pares with 280s (241s imunhyd) on the Regatta and 885s (867gumhyd) on the SF25k for each
experiment. Parallel initialisation overheads (in thiephase) amount to 1.9% of execution time on
the Regatta and 1.8% on SF25k versus 0.5% on the XD1, withalamte attributed predominantly
to therunhyd computational kernel, within which the six routines resgbte for the hydrodynam-
ics each account for roughly equal shares of the total, anel q@od load balance over the 64 threads
(32 processes) on each platform.

The respective proportions of total execution time atteluto MPI are 1.7% on XD1 and 2.2%
on Regatta and significantly larger with 7.6% on SF25k. Ihgasing each case further, this corre-
sponds primarily to point-to-point communication, withétmaster threads of) every fourth process
responsible for contributing twice as much as the otherse.MRBI_Allreduce in glblmax at the end
of the main computation loop irunhyd is also found to require a significantly higher collective
wait time on the Regatta, totalling 505s (1.0%) on SF25k ahitsX0.71%) on Regatta versus 15s
(0.14%) on the XD1.

OpenMP runtime costs on the XD1 are attributed 3.3% of totatetion time, which is notably
higher than the 1.2% on SF25k and 0.9% on Regatta. Thesertirerfoategorised as explicit barrier
synchronisation wait time in each case. Whereas this islynatibuted to the six hydrodynamics
routines on the XD1, with only 4% in the barrier at the end &f tbmputational loop, on the SF25k
and Regatta that final barrier is attributed 87% and 82% tisedy.

Some potentially important differences in the MPI and Opénédmmunication and synchroni-
sation costs can therefore be seen in the three experinhmenisyer, they also demonstrate broadly
similar parallelisation efficiencies.

Proceeding beyond the parallel execution, communicatahsynchronisation times, additional
performance metrics are provided by and derived from harelwaunters measurements. While
subsets of the counter-based metrics are available inichdilexperiments, in combination they
offer comprehensive insight into the processors’ exeautio

10

Platform IBM p690+ cluster Cray XD1 Sun Fire E25000
Processor POWERA4-II Opteron-248 UltraSPARC-IV
Core dual 1700 MHz | single 2200 MHz dual 900 MHz

Counter registers

8 (restricted)

4 (unrestricted)

2 (restricted)

Cluster network

High Perf. Switch

RapidArray

Fire Link (unused)

Operating System IBM AIX 5.2 GNU/Linux 2.6 Sun Solaris 9
Compiler IBM XL 9.1 Portland Group 6.0 Sun Studio 10
MPI POE 4.2 Cray MPICH 1.2.6] HPC ClusterTools &
SMP nodes 2 (full, dedicated)| 32 (full, dedicated) 1 (partial, shared)
MPI processes 4x4/node 1/node 32/node
OpenMP threads 2/process 2/process 2/process
Time [sec.]

Wall 280 180 885

> init (inclusive) 5 (1.9%) 1 (0.5%) 14 (1.8%)
> runhyd (inclusive) 241 (97.8%) 163 (99.2%) 867 (97.7%)
Total 16455 10856 49769

> Execution (exclusive)

> MPI

> > Comm P2P

> > Comm Coll Wait at NxN

> > > glblmax MPI_Allreduce
> OpenMP

> > Synch Expl Wait at Barrier

15240 (92.6%)
364 (2.2%)
218
127
117 (92.2%)
142 (0.9%)
142

9956 (91.7%)
182 (1.7%)
153

17

15 (89.3%)
354 (3.3%)
354

44742 (81.1%)
3772 (7.6%)
3118

527
505 (95.7%)
588 (1.2%)
580

> > > last barrier inrunhyd 117 (82.2%) 15 (4.2%) 505 (87.1%)
Counter metrics [107]

CYCLES 25911 22090 38789

> STALL 15499 (70.2%) 24581 (63.4%)
INSTRUCTION 15377 17678 21197

> FLOATING_POINT 7208 (46.9%) | 11704 (66.2%) 8649 (40.8%)
> BRANCH 1287 (8.4%) 967 (5.5%) 923 (4.3%)
> > BRANCH_MISP 90 (0.6%) 14 (0.1%) 29 (0.1%)
INST_ACCESS 4202 6575 8793

> INST_HIT_L1$ 4201 (100%) 6575 (100%) 8789 (100%)
INST_TLB_MISS 0.008 0.002 0.004
DATA _TLB_MISS 5.014 5.753 2.991
DATA _ACCESS 5235 7456 6887

> DATA _HIT_L1$

> DATA _HIT _L2$

> DATA _HIT _L3%

> DATA_HIT_MEM

> > DATA _LOAD _FROM_MEM

5092 (97.3%)

129 (2.5%)
7 (0.1%)
7 (0.1%)
7

7230 (97.0%)
194 (2.6%)

32 (0.4%)
20

5594 (81.2%)
1255 (18.2%)

37 (0.5%)
11

L2 cache locality
L2 cache store mix

99% of loads

90% of accesses

56% of misses
78% of accesses,
7% of which RTO

Table 1. Hybrid OpenMP/MPI sPPM experiment configurations & execuwin statistics summary.

11

File Miew Help

Performance Metrics ‘ Call Tree ‘ Systam Tree
=] 0.0 Time 2 L= 0.0 main =[] 0.0 IBM Regatta psa0+
&1 92 B Execution] o1 mP_nit =[] 0.0 MPI_COMM_WOR
=] 0.1 mFl =[] 0.0 omp parallel @main. F:417 =[] 0.0 Frocess 0
=[] 0.0 Communication L o1 init] 21 hread
= 0.0 Collective = 0.0 rurkyd O 22 hreant 1
[oo Eary Reduce [0.0 1somp master @runhyd3. F453 =[] 0.0 Process 1
[] om0 Late Broadeast] 0.0 5omp barrier @runhyd3.F538] 18 Threadn
[] oswatat =i = 0.0 by] 15 hread
=] oaprzp [nondrystbs =1 0.0 Process 2
[oo Late Recsiver . 0.0bdry3czr] 15 readi0
[] 05 Late Sender [18.3 igomp do @runhyd3.FEE]] 1.4 Thread
[] o.0RmMa] 0.0 tpomp barrier @runhyd3.F549 0.0 Process 3
[]onoio] 0.0 tomp barrier @runhyd3 F552] 15 read i
[0.0 syrehronization = 0.0 hydyz] 08 Threa 1
=[] ooomp [0.0 bdrys2fs 4.3 Process 4
|:| 0.0 Flush D 12.7 $omp do @runhyd3.F975 3.3 Process 5
] ooFork] 0.0 tgomp barrier @runhyd3 F558 27 Process 6
D 0.9 Synchronization D 0.0 omp barrier @runhyd3 F:561 2.1 Process 7
O 4.3 e Thrsacs = 00 hydez 4.3 Process 8
1000 CYCLES L 0.0 bdrys3fs 3.2 Process 9
=T -42 INSTRUCTION D 15.4 g do @runkyed 3. F:2102 2.7 Process 10
=[] 00 BR&NCH] 0.0 tomp barrier @runhyd3 FS67 210 Process 11
D 7.8 BRAMCH_FPRED 0.0 ¥omp barrier @runhyd3.F:570 4.3 Process 12
W0 5 BRANCH_MIS =l 0.0 hyelzy 3.2 Process 13

=[] 0.0 INTEGER
] 137 PM_FRU_FIN
=[] 0.0 FLOATING_POINT
] 285 PM_FPU_aLL
10.4 PM_FPLU_FM&,
4.7 PM_FPU_FMOV_FEST [=
2.2 PM_FPU_FDIV

|
|
d
] o7 PM_FPU_FSQRT
|
EI

] o0bdrystbs

I s ey

di unkyel3.F
0.0 omp barrier @runhyd3 F576
0.0 Homp barrier @runhyd3 F.579
0.0 hycly=

] 0.0 bdrys3fs

D 15.4 $omp do @runhyd3 F:1541
0.0 ¥omp barrier @runhyd3. F.585
0.0 Momp barrier @runbyd3 F.558
0.0 byl

[0.0bdrys2fs

D 19.3 $omp do @runhyd3 F:1553
0.0 omp barrier @runhyd3 F.594

2.8 Process 14
24 Process 15
4.3 Process 16
3.3 Process 17
2.8 Process 18
24 Process 19
4.3 Process 20
3.3 Process 21
2.7 Process 22
2.1 Process 23
4.3 Process 24
3.3 Process 25
2.7 Process 26
2.0 Process 27

0.0 FM_FPU_DEMORM
0.0 PM_FPU_FRSF_FCONY
0 ~MEMORY =
[127 Pm_FPU_STF
] 226 PM_LSU_LDF
=[] 0.0 DATA_ACCESS
=1

0]

0

=

U OO B OO0 B OO0« # ® 00
OODDOO0NOODO00DDODODO0O0OO0O0O0OO0O00O00. O 4

I e Y s Y e e S |

|:| 0.0 DATA_HIT_L1% = 0.0 Momp master @runbyped3. FE01 4.3 Process 28
] 235 DaTA_STORE_INTO_L1%] 0.0aglkimax 3.2 Process 29
735 DATA_LOAD_FROM_L1$ [0.1 WPI_Alreduce 2.8 Process 30
=[] 00 DATA_HIT_L2g] 0.0 rPI_Barrier [2.3 Process 31
=[] 0.0 DATA_LOAD_FROM_L2% L 0.1 tomp barrier @runbyc iR
[=4 PM_DATA_FROM_LZ O oafii wCHBE Cactantan
] 0.0 PM_DaTA_FROM_L2S_SHR [0.0 omp ibarrier @main F697 | View Geometry Zoom Colors
] 0.0FPM_DaTA_FROM_L25_MOD] 0.0 MPI_Finalize =
] 0.0FM_DATA_FROM_L27S_SHR (1,3.3 |
] 0.0PM_DATA_FROM_L27S_MOD w
8,2
-] 00 DATA HIT_L3 Composed counter metric:
=] 0.0 DATA_LOAD_FROM_L3% : (1,313
] 01 PM_DaATA_FROM_LZ e
oo PMZDATA:FHCIMZLSS = DL Bl I (1,3, 0
=[] 0.0 DATA_HIT_MEM SR SR e o
=[] 00 DATA_LOAD_FROM_MEM e
] 01 PM_DATA_FROM_MEM
W 1000 INST ACCESS ¥ /
|| 1IZI| ZD‘ 30‘ 40‘] g0 T il] a0 100

|32 = |EIR."-‘\NCH_MISF' -=lomp do @runhyd3.F:1256 : 15,867 477,794 (0.103188%) incl.

Figure 2. KOJAK analysis of 6 combined hybrid sPPM executions on POWER-based IBM
Regatta investigating mispredicted branchBBANCHM SP in the parallel loop of one key routine.

12

x—ﬂﬁw

File ¥iew Help

[285 FP_aDD_FIFE =
[266 FF_MULT_FIFE

[10a FP_sT_FIFE
[] 22 FP_FAST_FLAG

=] 0.0 DaTA_ACCESS
87.0 DATA_HIT_L14 [=]
=[] 00 DaTa_HIT_L2g

=[] 00 DATA_STORE_INTO_L24
[21 pC_L2_REFILL_M

0.0 hydy=

[0.0 bdrgsars

D 10.8 $omp do @runhyd3 F:1541
2.0 $omp barrier @runbyd3.F585
0.0 igormp barvier @runbyd3. F588
0.0 hydzz=

I e

D 12.3 pomp do @runhyd3 F:1553
1.7 l$omp barrier @runhyd3.F594

05 Process 19
5.3 Process 20
2.8 Process 21
3.4 Process 22
05 Process 23
5.7 Process 24
3.0 Process 25
3.3 Process 26
0.5 Process 27

Ferformance Metrics ‘ Zall Tree | System Tree
=[] 0.0 Time = L= 0.0 main =[] 0.0 Cray ¥D1 Linux
= 91.7 Execution] oomP_init =[] 0.0 MPI_COMM_WORLD
=[] 01wl =] 0.0 $omp parallel @main. F:417 =[] 0.0 Frocess0
=[] 0.0 Communication L ozinit [25 Thread 0
=[] 0.0 Collective = 0.0 rurhyd [26 rea 1
[0.0 Early Reduce [0.0 13omp master @runhyd3 F459 =[] 0.0 Process 1
[] 0.0 Late Broadeast [0.1 130mp barrier @runhyd3.F539 [J 13 Threadn
] oz2wsitat W= N =] 00 ey] 15 hreag
=[] 14 pr2p [oobdrysibs =[] 00 Process 2
] 0.0 Late Receiver [0.0barys3czr [158 reanio
] 0.0 Late Sencler [105 1$amp do @runhyd3 . FE51] 19 hread
[0.0 ma [1.7 1gomp barvier @runbyd3.F548 [] 0.0 Process 3
[]omi [00 gomg barvier @runbyd3. FE52 [] 02 hread
[0.0 syrchronization = 00 hyayz [o2 mwean 1
=[] ooomr [0.0bdrys2rs [5.3 Process 4
[] 0.0 Fush [2.7 1$0mp do @runhyd3.Fa75 [] 25 Processs
] oo Fork [1.5 1gomp bartier @runkwd3.FS58] 27 Procesz &
=[] 0.0 Synckronization [00 somp barrier @rurkyd3 FS61 [05 Process 7
=[] 0.0 Barrier = 00 hydzz [5.8 Process &
L 3.3 Explicit] 0.0 berys3fs] 2.1 Process 9
] 0.0 mplict [215 $omp do @runhyd3. F:2102 [27 Process 10
[00 Lock Competition [1.5 omg barvier @runkyd3. FS67 [05 Process 11
O 34 1de Threads [0.0 gomp barrier @runkwd3.F570 [5.8 Process 12
100.0 CYCLES =1 00 ey] 2.1 Process 13
= 283 INSTRUCTION] 0.0bdrysibs] 2.7 Process 14
=[] 0.0BRANCH] 0.0 kdrys30zr [] 05 Process 15
[54 BR&NCH_PRED [5.3 Process 18
e “H_MISP | [22 1gomp barrier @runbyds F576 [3.0 Frocess 17
=] 0.0 FLOATING_POINT [00 13omp barrier @runhyd3.F579] 2.4 Process 13
| |
d
I:I
| |
| |
| |
I:I
I:I
| |
| |
E u

HEHHHEMHHHEHEHHEHEHHEHBEMHEBEEEMEBE

=1 |:| 0.0 DATA_LOAD_FROM_L2% =1 0.0 igormp magter @runhyd3 FE01 5.7 Process 28
[oopc_Lz_ReFLL_O [0.0 geimax 30 Process 29
D 05 DC_L2_REFILL_E D 0.0 MFI_Allreduce 3.4 Process 30
[] oopc_Lz2_REFILL_S [] 0.0 MPI_Barrier [] 05 Process 31
=[] 0.0 DATA_HIT_MEM] 05 homp barrier @runhyd3.FE13 [T T S i i
=[] 00 DaTA_STORE_INTO_MEM [onfini :
[02 DrC_svs_REFILL_M [0.0 Bomp ibarrier @main FE37 Miew Geometry Zoom Colors
=[] 00 DAT&_LOAD_FROM_MEM] 0.0 MPI_Firalize =
[] ooDpc_svs_REFILL_O 1.3,9
[] 0z pc_svs_REFILL_E (13,2
l:l 0.0 DECoYs AERILL.S reasured counter metric:
=[] 0.0INST_&CCESS i (1,31

FR_BR_MIS [Dpteron]

1000 AT HIT LTS Retired hranches mispredicted.

L 0.0MsT_HIT_L2g — {1,3,0)
] 0.0INST_HIT_MEM
1000 TLE_ACCESS
100.0 HT_MEM_TR&NSFER
0,0,0) Fi
W 1000 HT KO TRANSFER ¥/
I

pi

= M i~ — -
‘ ‘ | | ..iIFIIIIIIIIIFIIIIIIIIIFIIIIIIIIIFIIIIIIIIIFIIIIIIIIW
10 20 30 40 50 B0 70 &0 a0 100

|32 %2 |BHANCH_MISF’ -= 1fomp do @runhyd3.F:1258 : 3,293,071,841 (0.0186277%) incl.

Figure 3. KOJAK analysis of 10 combined hybrid sPPM executions on Qptebased Cray XD1
investigating mispredicted brancheé2RANCH.M SP in the parallel loop of one key routine.

13

-;1—EE”

File Miew Help
Performance Metrics ‘ Call Tree ‘ Systam Tree
=] 0.0 Time 2 L= 00 main =[] 0.0 Sun Firs E25000
&1 &1.1 Execution] 0.3 MP_nit =[] 0.0 MPI_COMM_%ORL
=] 0.3 mPl =[] 0.0 omp parallel @main.F:417 =[] 00 Process 0
=[] 0.0 Communicatiorn L o1 it [] 24 Tread 0
= 0.0 Collective = 0.0 rurkyd [1.0 Mrean 1
[oo Eary Reduce [0.2 somp master @runhyd3. F453 =[] 00 Frocess 1
[] om0 Late Broadeast] 0.0 igomp barrier @runhyd3.F533] 18 mresdn
] 1 waitat s n = 0.0 by] 0.4 Thread
=] 5.1 Pz [o0 bdrystbs =[] 00 Process 2
[oo Late Recsiver [00 bary3o2r [3 mreado
[1.1 Late Sender [10.9 13amp do @runhyd3.FEE1 [] 0.7 hread
[]oowo] 0.0 tpomp barrier @runhyd3 F543 =[] 00 Process 3
] 0.0 synehronization] 0.0 tomp barrier @runhyd3 F552 [] oamread o
=] ooomp = 0.0 hydyz [0.2 Trea 1
] 0.0 Fush [00 baryszrs [38 Process 4
] ooFork [131 Bomp do @runhyd3.F:975 [] 35 Process s
=] 0.0 Synchronization] 0.0 tgomp barrier @runhyd3 F553 [] 45 Process 6
=—{_] 0.0 Barrier] 0.0 tgomp barrier @runhyd3 FS61 [1.1 Process 7
=[] 0.0 Explicit = 00 hydez [#4 Process &
[1.2 wait at Barr] 00 bdryssfs [] 22 Process @
[o0 mplict [18.7 Bomp do @runhyd3. F2102] =4 Process 10
[0.0 Lock Competition] 0.0 tomp barrier @runhyd3 FS67 [15 Process 11
[101 1dle Threass [0.0 somp barrier @runhyd3 F570 [#1 Process 12
=[] 385 CYCLES = 00 hedzy [33 Process 13
=[] 00~8TALL] 00 bdrysibs [5.3 Process 14
] 08 ~DIsPATCH [23 bary3ozr [1.4 Process 15
O 27rs~unNT_UsE [soProcess 16
] 346 ~RECIRCULATE [0.0 1somp barrier @runhyd3 F578 [15 Process 17
=1 54.5 INSTRUCTION] 0.0 1gomp barrier @runhyd3.F578] 2.4 Process 13
=[] 0.0BRAMCH = 0.0 bwdyx] 30 Process 19
] 42 BR&NCH_FRED O 00 bdrys3fs [32 Process 20
Q0.1 BRANCH_MISF | [135 1gomp do @runhyd3 F1841 [26 Process 21
=[] 0.0 FLOATING_POINT] 0.0 somp barrier @runhyd3 F585] 40 Process 22
] 223 FA_pipe_completion] 0.0 tpomp barrier @runhyd3 F5a3 [2.1 Process 23
] 150 FM_pipe_completion =] 00 kydss [32 Process 24
=[] 0.0 DATA_ACCESS [o0 baryszfs [25 Process 25
=[] 00 DATA_HIT_ L1 O oobdrystar [4 Process 28
D 16.2 DATA_STORE_INTO_L1% D 17.8 1$omp do @runhyd3. F:1553 D 4.0 Process 27
£5.0 DATA_LOAD_FROM_L1%] 0.0 tgomp barrier @runhyd3. F594 [] 55 Process 23
=[] 0.0 DaTA_HIT_L2% =—{] 0.0 womp master @runhyd3 FEO1 [34 Process 2a
] 141 D&TA_STORE_INTO_L2§ = 00 giimasx [15 Process 30
] 41 DATA_LOAD_FROM_L2%] 0.4 MPI_Alreduce [1.2 Process 31
=[] 0.0 DATA_HIT_MEM [] 0.0 mMPI_Barrier * CUBE Cartesian
D 0.4 DATA_STORE_INTO_MEM D 0.0 Yomp barrier @runbyd3 FE1 i
] 02 paTa_LOAD_FROM_MEM] oofini Miews Geometry Zoom Colors
=[] 00IMST_&CCESS = [0.0 1omp ibarrier @main F:537]
1000 INST_HIT_L1%] 0.0 MPI_Finalize .3.9)
] 00 INST_HIT_L2% - .3,2)
[o0 MST_HIT_MEM
1000 ~TLEB_ACCESS Composed counter metric: (1,313
=[] 00 88M_LOCALITY BRAMNCH_MISP G
=[] 0.0 EC_mIssES = BRANCH_MISP_TAKEN (1,30
=1 D 405 EC_miss_local + BRANCH_MISP_UNTAKEMN
D 0.9 EC_miss_mtag_remote -
[330 EC_miss_remote :
[257 EC wh £ {0.0.0) r
[-1 [
-l [- -
1EI| ZD‘ 30‘ 40‘ ad g0 T il] a0 100
|32 HE |EIH.*‘-‘«NCH_MISF' -= l§omp do @runhyd3.F:1258 : 5,387 ,368,202 (0.0254153%) incl.

Figure 4. KOJAK analysis of combined hybrid sSPPM executions on UItRSRC-IV-based Sun
SF25k investigating mispredicted branch@RANCH.M SP in the parallel loop of one key routine.

14

Figures 2, 3 and 4 show partially expanded integrated mietei@rchies derived from hardware
counter measurements for each platform, focussing on thpoption of mispredicted branches
(BRANCH_M SP). While relatively small in each case, at 0.58% of all instions (7.0% of branches)
it is considerably larger for POWER43Ithan the 0.08% (1.5%) of Opteron and 0.14% (3.1%) of
UltraSPARC-IV. Depending on the selected call-path, it$®&een to vary considerably by thread,
with some threads notably more affected than the othersdiBtigbution is most readily seen from
the virtual process topology display: Opteron has a pddrtupronounced distribution. Examining
the respective counters which measure branch stall cylitegsahis to be investigated further.

Figure 5 shows that both POWERA4-1I and Opteron processoes $i2% of data accesses hit L1
cache versus only 81% for UltraSPARC-1V, however, it is theréasingly costly accesses that miss
L1 cache and must be satisfied from higher caches and menairgréhmost significant and warrant
further investigation. On Regatta p690+ loads which missadhe are seen to come predominantly
from local L2 cache KM DATA FROM L2), which combined with its large L3 cache means that
only 0.14% require to come from memory. UltraSPARC-IV andedpn have smaller, two-level
caches, however, and whereas only 0.16% of UltraSPARC-I¥ decesses are loads from mem-
ory, at 0.27% for Opteron it is almost twice as high as POWERdrthermore, only 56% of the
UltraSPARC-IV L2 data access misses are found to be & lrti ss_| ocal), with the remainder
satisfied from remote processor boards in the SF26Kr{i ss_r enot e).

This integration of platform-specific measurements, withierarchies of generic metrics derived
from the available hardware counters, supports ready ifdeiton of performance-critical aspects
of parallel execution which can be refined in their detail.

4. Future work

The existing hardware counter metric measurement setsrasdration hierarchies defined for
Opteron, POWER4 and UltraSPARC-III/1V should be completadmwith similar specifications for
other platforms supported by KOJAK and PAPI: e.g., IBM Blee@/L (PowerPC), Cray X1, MIPS,
Alpha, Intel Pentium and Itanium. In each case, the avalablinters and their relationships need
to be carefully investigated to guide the drafting of appiate specifications.

The current specifications can also be augmented with additmeasurement sets and hierar-
chies, and alternatives compared. These have the potenpiadvide extra value and insight, though
too many could become awkward and confusing. Where ap@teprnodification or replacement
of those currently provided should be considered.

Cycles-based metrics could be readily converted to timeseaonds using the processor clock
frequency, if this were recorded in the traces collecteddit\ahal recording of the type of processor
would also assist with selection of appropriate measurésets and hierarchies.

The integration of separate hardware counter measuremalysas into combined analyses could
be made more robust by only reading base counter measurefmamteach input experiment and
doing the calculations of derived metrics (according todagault or provided specification) during
the merge. Determination of the completeness of computé&dasieand whether incomplete deriva-
tions should be retained, is best undertaken with all measents available. Potential inconsisten-
cies between the preliminary analyses with Expert usinfgi@iht metric hierarchy specifications
would also be avoided. These benefits come at the cost ofadiply this analysis in the initial
analysis and ultimate integration steps.

3A partial explanation for the larger absolute number of mésictions reported for POWER4 is that the provided
counters record issued (rather than completed) brandiegnpact on the branch misprediction rate is unclear.

15

File View Help
Perfarmance hetrics | Call Tree | System Tree
=[] 0.0 Time 3 = O oomain = 5[] 0.0 1BM Regatta peao+ A
= 92,5 Execution [o1 mPL_mit = [0.0 MPI_COMM_WORL
[zzmrl =] 0.0 thorp parallel @main.Fid17 =[] 00 Process o
[aomp O ot [15 hread 0
[4.3 1ale Threads =+-[] 0.0 runhyd [18 Tread 1
100.0 CYCLES [] 0.0 gomp master @runhyds F =] 00 Process 1
100.0 INSTRUCTION (] 0.0 t$omp barrier @runhyel3.F] 15Tread
[] o0 Dats_sccess [17.0kvdwy [16 mhread 1
=[] 00 DATS HIT LI [0.0 15ome karrier @runhyd3.F =[] 00 Process 2
[235 DATA_STORE_INTO_L1% [0.0 1$omp barrier @runhyd3.F [15 mread 0
735 DATA_LOAD_FROM_L1% :| [15 Tread 1
=[] 0.0 DATA_HIT_L2§] 0.0 130mp barrier @runhyds.F =] 0.0 Process3
[0.0 130mp barrier @runhyd3.F [t5Tread0
[155 hydzz [16 Thread 1
[] 0.0 FM_DATA FROM_L2S SHR [0.0 1$ome barrier @runhyd3.F [3.1 Process 4
[0.0 FM_DATA FROM_L2S MOD [0.0 15ome karrier @runhyd3.F [32 Frocesss
[0.0 PM_DATA_FROM_L27S_SHR] 168 hyeizy [3.1 Processe L
[0.0 PM_DATA_FROM_L275_MOD] 0.0 somp barrier @runhyd3.F [3.1 Process 7
=[] 0.0 DATA_HIT_L3%] 0.0 130mp barrier @runhyds.F] 2.1 Process 5
=[] 0.0 DATA_LOAD_FROM_L3%] 185 hyeyx [] 32 Process 3
[0.1 PM_DaTa FROM_LS [0.0 1$omp barrier @runhyd3.F [3.1 Process 10
[0.0 FM_DATA FROM_L3S [0.0 1gome karrier @runhyd3.F [3.1 Process 11
=[] 00 DATA HIT_MEM L 163 hydxs [3.1 Process 12
=] 0.0 DATA_LOAD_FROM_MEM] 0.0 1somp barrier @runhyd3.F [32 Process 13
0.1 PM_DATA_FROM_MEM :l 0.2 'gomp master @runhyd3.F I :l 3.1 Process 14
100.0 INST_ACCESS | [0.0 130mp barrier @runhyd3.F] 3.1 Process 15
100.0 ~TLE_ACCESS / [00 fini / [3.1 Process 16 /
| cuse: opteron_combo. i -
File View Help | w| zu‘ 30‘ 4U| 5EII &0 70 80 a0 100
T i32 EF4 ‘PM_DATA_FROM_LZ ->hydyz : 21,964,770,962 (0.4193615%) incl.
=[] 0.0 Time = = 0.0 main 3 [= [0.0 Cray %01 Linus E
=} 91.7 Execution [0.0 mPI_mit =[] 0.0 MPI_COMM_WORLD
[17 mpI =[] 0.0 omp parallel @main.F-417 =] 0.0 Process 0
O 33 omP [o.4init [16 Treado
[34 Idle Threads =[] 00 nrkyd [15 Teean 1
100.0 CYCLES j 0.0 $omp master @runkyd3.F.459 = D 0.0 Process 1
100.0 INSTRUCTION] 0.0 tgomp barrier @runhyd3 F538 [15 Treado
[00 pats_sccess] 164 hydzy [15 Trean 1
7.0 DATA_HIT_L1§] 0.0 1g0mp barrier @runhyd3 F543 =] 0.0 Process2
=[] 0.0 DATA_HIT_L2§ [0.0 1gomp barrier @runhyd3 F552 [15 Mread 00
=[] 00 DAT4 STORE_INTO_L2$ | [15 Thread 1
[21 pC_L2 REFILL M [0.0 igomp karrier @runhyd3 FESE =[] 00 Process 3
=[] 00 DATA LOAD_FROM_L2§ [0.0 tgomp karrier @rurhyd3. F561 [15 Treado
[nooc_te_REFILL_O O 17.2 hyozz [1.5 Thread 1
JIEEES] 0.0 1gomp barrier @runhyd3 F587] 2.1 Process 4
[nooc_t2_REFILL_S [0.0 130mp barrier @runhyd3 F570] 32 Processs
=[] 0.0 DATA_HIT_MEM] 182 hyezy [31 Process 8 |
=[] 00 DAT4 STORE_INTO_MEM [0.0 gomp barrier @runhyd3 F576 [3.1 Process 7
[o2DpC_svs REFILL M [0.0 1gomp karrier @runhyd3 F579 [3.1 Processa
=] 0.0 DATA_LOAD_FROM_MEM] 162 hydyx [32Processg
[] nooc_sys_REFILL_O] 0.0 Somp karrier @runhyd3 F585 [3.1 Process 10
[] 0.3 pC_sws_REFILL_E] 0.0 130mp barrier @runhyd3 F5as] 2.1 Process 11
[] 00DC_sws_REFILL_3] 173 hyelex [3.1 Process 12
100.0 INST_ACCESS [(L] 0.0 gomp barrier @runhye3 F534 [32 Process 13
100.0 TLE_ACCESS (] 0.0 gomp master @runhya3. FE01 [[3.1 Process 14
100.0 HT_MEM_TRANSFER [0.0 tgomp barrier @runkyd3 FE13 [3.1 Process 15
100.0 HT_IM0_TRANSFER 7 [oo fini / [J 3.1 Process 16
<] <1
File ¥iew Help I| w| 20‘ 30‘ 4u| 50
ST ——— |aex2 ‘DC_LZ_F\EFILL_E -> hydyz : 5,489,819,198 (0.0736265%) incl
=[] 0.0 Time 2 =[] 00main = |-=[] 0.0 Sun Fire 25000
= 1.1 Execution [o0 mP_mit =[] 0.0 MPILCOMM_WORLE
A =] 0.0 thomp parallel @main.Fd17 =[] 0.0 Process 0
O rz2omp O ot [45 Thread 0
[10.1 1ele Threauts =+-[] 0.0 runhyd [02 Threas 1
100.0 CYCLES [] 0.3 gomp master @runhyd.F458 =[] 0.0FProcess 1
100.0 INSTRUCTION [] 0.0 $omp barrier @runhyd3.F533 [07 Thread 0
=[] 0.0 DATA ACCESS [&5 hyny [02 Threan 1
=[] 00 DATS HIT LIG [0.0 1ome karvier @runhyd3.F548 =[] 0.0 Process 2
[162 DATA_STORE_INTO_L1$ [0.0 tsomp master @runhyd3.F217 [o6 hread o
B5.0 DATA_LOAD_FROM_L1% o [03 Threas 1
=[] 0.0 DATA_HIT_L2§] 0.0 130mp barrier @runhwd3.F558 =[] 0.0 Frocess 3
=[] 14.1 DATA_STORE_INTO_L2§ [] 0.0 $omp barrier @runhyd3.F561 [47 Thread 0
ri [235 hydzz [05 Thread 1
[4.1 DATA_LOAD_FROM_L2§ [0.0 1$omp barvier @runhyd3. FE67 [&5 Process &
=[] 00 DATS HIT_MEM [0.0 1ome karvier @runhyd3.F570 [14 Process s
[0.4 DATA_STORE_INTO_MEM L 211 hyeizy [07 Process &
[0.2 paTA_LOAD_FROM_MEM [0.0 gomp barrier @runhyd3.F576] 49 Process 7
100.0 INST_ACCESS =] 0.0 130mp barrier @runhyd3.F573 [43 Process &
100.0 ~TLE_ACCESS [&8 hydyx [1.0Processa
=[] 00 55M_LOCALITY [0.0 $omp barrier @runhyd3 F585 [1.4 Process 10
=[] o0 EC_MISSES [0.0 15ome karvier @runhyd3.FE38 [5.9 Pracess 1
=2 405 EC_miss_local L 115 hydxs [58 Pracess 12
[0.9 EC_miss_mtay_remate] 0.0 1gomp barrier @runhyd3.F594 [1.0Pracess 13
[0 330 EC_miss_remote [0.0 tgomp master @runbyda. FE01 [[05 Process 14
= 21.2Ec_wb [0.0 130mp barrier @runhyd3.F813 [5.9 Frocess 15
[4.4 EC_wh_remote / [00 fini / [] 5.3 Pracess 16
= =
| i El| 20 ‘ 30 ‘ 4U| 50 UEH
|32 %2 ‘EC_Write_h\t_RTO - hydyz : 17,965,436 (0.000260877%) incl

Figure 5. KOJAK analyses of hybrid OpenMP/MPI sPPM experiments’ L2 tdecache accesses,
with platform-specific details: IBM p690+ L2 loads from lot&MCM cache PM.DATA_ FROM.L2
(upper), Cray XD1 L2 load hits in exclusive coherency st&¥e L2 REFI LL E (middle), and Sun

Fire 25k L2 store hits with read-to-own bus transactid&C wr i t e_hi t _RTO(lower).

16

It is highly desirable to include metrics calculated asosf counter measurements, e.g., for
cache miss rates, instructions per cycle (or cycles peructsdn), and floating-point operations
per second (FLOPS). These cannot be calculated increryeasatach metric measurement is pro-
cessed, as currently, and would require instead to be edbolin a second phase after the base
measurements are complete (which would be natural if megrivation is done during integration).

Significantly more awkward is the fact that ratio calculaao not provide a containment prop-
erty that would allow them to be presented in the CUBE hidriaad display. Furthermore, calcula-
tions derived from short intervals and having small den@ttnvalues may be unboundedly large,
and these will be more likely to be located in the deepesi@ecbf the metric, call-tree and pro-
cessor/thread hierarchigsThis complicates the choice of colour scale used to guideeyieeand
navigate to the most significant metrics, as these becorddeni by lesser values nearer the root.

In addition to ratio metrics, it is worth investigating higghlevel performance properties based on
hardware counter measurements (perhaps in combinatibmeaft-counter measurements). For ex-
ample, a property for “poor cache utilisation” might be atameed from observations of particularly
low cache hit rates, and perhaps further categorised byagperding to the predominance of cold,
conflict or capacity misses.

This improved understanding of the performance impact ahter-based metrics, might lead to
a reliable and accurate determination of their time seyeiitich would allow their integration with
the primary hierarchy of time-measured metrics. Sevesgtginination would still need to respect
inter-relationships between metrics, such that timesaisgted by hardware counter metrics (such
as stalls on cache misses) which occur during communicati@ynchronisation are not multiply
accounted.

Finally, convenience would be provided by a utility whichi@uatically ran a subject application
on a target platform with each of the appropriate sets of oreasents, performed the preliminary
analysis on each measurement and ultimately integratecethdts into a comprehensive unified
analysis report.

5. Conclusion

Refinement of KOJAK’s hardware-counter-based analys@iretl much of the existing measure-
ment, recording and analysis infrastructure, with the ipocation of functionality for more conve-
nient counter-metric measurement specification, additioretrics derivable from measured metrics,
and customisable structured metric hierarchies. Furtbexnthe algebra for integrating multiple
experiments was extended to consolidate experimentsinorgdsub)sets of counter-based metrics
and produce unified experiments with all of the available snead and derivable metrics.

Unified experiments, containing communication and syngisaiion metrics combined with a
rich set of counter metrics, support comprehensive holatialysis of parallel programs: execu-
tion inefficiencies may be isolated to particular procesgor threads) and their various functional
units, or found to relate to the use of shared and distribatethes and memory within modern
computer systems. The portable CUBE format of analysesalsw fuller comparison between
platforms, where architectural differences may be sigaific These capabilities contrast those of
existing tools which can also offer detailed platform-gpe@nalysis when appropriately directed
by knowledgable users, but without a holistic overview aadtext, or multi-platform comparison.

47ero-valued measurements clearly require special trestasedenominators, however, arbitrarily small measurdésnen
can also appear at any level of the hierarchies.

17

Acknowledgements Use of the Sun Fire E25000 kindly provided by the Rheinigddstfalische
Technische Hochschule (RWTH) Aachen Rechen- und Kommtiaikszentrum (RZ).

References

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

Forschungszentrum Julich GmbH ZAM and University ohiiessee Innovative Computing Laboratory:
“*KOJAK: Kit for Objective Judgement and Knowledge-baseddation of Performance Bottlenecks,”
/1w, fz-juelich.del/ zam koj ak/

Felix Wolf and Bernd Mohr: “Automatic Performance Analg of Hybrid MP1/OpenMP Applications,”
J. Systems Architecture, 49(10-11):421-439, Elseviey, R@03.

Felix Wolf: “Automatic Performance Analysis on Parali@omputers with SMP Nodes,” PhD disserta-
tion (RWTH Aachen, Germany), NIC Series, Vol. 17, Forsctamgtrum Julich, 2003.

Felix Wolf and Bernd Mohr: “Hardware-Counter based Auttic Performance Analysis of Parallel
Programs,” Proc. Conf. on Parallel Computing (ParCo’03¢edden, Germany), Parallel Computing:
Software Technology, Algorithms, Architectures & Applias, pp. 753—760, Elsevier, 2004.
Fengguang Song, Felix Wolf, Nikhil Bhatia, Jack Dongarand Shirley Moore: “An Algebra for
Cross-Experiment Performance Analysis,” Proc. Int'l Canf Parallel Processing (ICPP’04, Montreal,
Canada), pp. 63—-72, Aug. 2004.

Bernd Mohr, Allen D. Malony, Hans-Christian Hoppe, FkaBchlimbach, Grant Haab, Jay Hoeflinger,
and Sanjiv Shah: “A Performance Monitoring Interface fore@pIP,” Proc. 4th European Workshop on
OpenMP (EWOMP 2002, Roma, Italy), Sept. 2002.

Shirley Browne, Jack Dongarra, Nathan Garner, Georgedadd Philip Mucci: “A Portable Program-
ming Interface for Performance Evaluation on Modern Preaes” Int’l J. High Performance Comput-
ing Applications, 14(3):189-204, 2000.

Luis A. DeRose: “The Hardware Performance Monitor TagilProc. 7th Int’l Euro-Par Conf. (Manch-
ester, UK), Lecture Notes in Computer Science, Vol. 21501@@-131, Springer-Verlag, Aug. 2001.
Advanced Micro Devices, Inc.: “BIOS and Kernel DevelopeGuide for AMD Athlon 64 and AMD
Opteron Processors,” Pub.#26094, Rev. 3.14, Apr. 2004.

Sun Microsystems, Inc.: “UltraSPARC Processofg,iwwv. sun. coni processor s/ manual s/

John M. May: “MPX: Software for Multiplexing Hardwareeformance Counters in Multithreaded
Programs,” Proc. 15th Int’l Parallel & Distributed ProdegsSymp. (IPDPS’01, San Francisco, USA),
IEEE Computer Society, Apr. 2001.

Frédéric Parienté: “Performance Analysis and Maring using Hardware Counters,”
/ / devel opers. sun. com sol ari s/ articl es/ hardware_counters. ht m , Dec. 2001.

Cray, Inc.: “Cray Performance Analysis Tool-set (PATAQprenticé),” / opt / xd-t ool s, Feb. 2005.
Rick Kufrin: “PerfSuite: An Accessible, Open Sourcerfeemance Analysis Environment for Linux,”
Proc. 6th Int’l Conf. on Linux Clusters (LCI-05, Chapel HWWSA), Apr. 2005.

John Mellor-Crummey, Robert Fowler, Gabriel Marindddathan Tallent: “HPCView: A Tool for Top-
down Analysis of Node Performance,” Journal of Supercomgu23(1):81-101, 2002

Jordi Caubet, Judit Gimenez, JesUs Labarta, Luiz BeRand Jeffrey Vetter: “A Dynanmic Tracing
Mechanism for Performance Analysis of OpenMP ApplicatjpRsoc. Workshop on OpenMP Applica-
tions and Tools (WOMPAT'01, Purdue, USA), July 2001.

Robert Bell, Allen D. Malony, and Sameer Shende: “Pap&PA Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis,” Proc. Stit'llEuro-Par Conf. (Klagenfurt, Austria),
Lecture Notes in Computer Science, Vol. 2790, pp. 17-26n§er-Verlag, Aug. 2003.

John Engle: “The ASC Purple sPPM Benchmark Code,” Laned_ivermore National Laboratory, USA
//www. | I nl.gov/asc/ purpl e/ benchmarks/linited/ sppn,Feb. 2002.

PAPI Group: “PAPI Standard Events by Architecture,”insity of Tennessee at Knoxville, Innovative
Computing Laboratory, USA,/i cl . cs. ut k. edu/ proj ect s/ papi / presets. ht m , Oct. 2004.

18

A. Definition of counter measurement sets and derived metritierarchies

KOJAK provides specifications of convenient measuremetstwwhich account for hardware re-
strictions and intended derivation of metrics and struoguhierarchies. Both can be readily modi-
fied and extended.

A.l. Hardware counter measurement sets

The following tables present sets of native counters (naacedrding to PAPI v3.0) grouped
together for convenient measurement on Opteron, UltraSRPARY and POWERA4-I1I platforms.
Sets are selected to maximise the ability to derive furthetries, with particular emphasis on being
able to complete compositions and especially computatibisalso naturally groups related coun-
ters, either as peers or hierarchically. A further aim is toimise the total number of sets required
to complete the core metric hierarchy and complement thatbeadditional optional metrics.

In the tables, derived metrics measured directly with aveatounter are shown bold (and related
with the ‘=" operator), and when a native counter contributes to a camgbonetric and provides
a platform-specific extension to the hierarchy it is alsovgihbold (related with the+’ operator).
Computed metrics (and the associated computation) withenebunters are shown below stanted
font (and distinguished with the=" operator). Each group of derived metrics is preceded bydbe
metric of the hierarchy to which they contribute to via comsigion, unless the root metric is mea-
sured directly. (For brevity, intermediates in these hehges are omitted.) Where derived metrics
cannot be fully completed by the native counters in the key aire distinguished by prepending
to their names: these metrics may be completed when seetsalfsneasurements are accumulated.

Table 2. Opteron counter sets (maximum of 4 in group, unrestrictedsagnment)
Set Name Derived Metrics op. Native CountefSdmputations
OPTERONTLB | TLB_ACCESS

DATA _TLB _MISS

DC_L1_.DTLB_MISS.AND_L2_DTLB_MISS

DATA _TLB _HIT DC_L1.DTLB_MISS AND_L2 DTLB_HIT
INST_TLB _MISS = | IC_L1ITLB _MISS.AND _L2ITLB _MISS
INST_TLB _HIT = | IC_L1ITLB_MISS AND_L2ITLB_HIT
OPTERONIC INST_ACCESS = | IC_FETCH
IC_MISS
INST_HIT _L2$ = | IC_L2_REFILL
INST_HIT MEM = | IC_SYSREFILL
INST_-HIT_L1$ = | IC_LFETCH—-ICMISS
OPTERONDC1 | DATA _ACCESS = | DC_ACCESS
DC_MISS
DC_L2_REFILL.I
DC_SYSREFILL.I
DATA _HIT_L1$ = | DC_ACCESS - DCMISS

OPTERONDC?2 | ~DATA_ACCESS

DATA _STORE_INTO _L2$
DATA _LOAD_FROM_L2%
DATA _LOAD_FROM_.L2%
DATA _LOAD_FROM_L2%

OPTERONDC3 | ~DATA_ACCESS

DATA _STORE_INTO _-MEM
DATA _LOAD_FROM-MEM
DATA _LOAD_FROM-MEM
DATA _LOAD_FROM-MEM

DC_L2_REFILL.M
DC_L2_REFILL _O
DC_L2_REFILL _E
DC_L2_REFILL _S

+

DC_SYSREFILLM
DC_SYSREFILL O
DC_SYSREFILL _E
DC_SYSREFILL _S

+

19

Set Name Derived Metrics op. Native Counteddmputations
OPTERONETC | INSTRUCTION = | FR.X86.INS
CYCLES = | CPUCLK_UNHALTED
FRHW_INTS
OPTERONBR | ~INSTRUCTION
BRANCH = | FRBR
BRANCH MISP = | FRBR.MIS
FRBR_TAKEN
BRANCH MISP_TAKEN = | FRBR_.TAKEN_MIS
BRANCH_-MISP.UNTAKEN = | FR BR_MIS — FRBR TAKEN_MIS
BRANCH_PRED = | FRBR-FRBRMIS
BRANCH.PREDTAKEN = | FRBR.TAKEN - FR BR_.TAKEN_MIS
BRANCH_PREDUNTAKEN = | FRBR — FRBR_MIS —
FR BR_TAKEN + FR.BR_.TAKEN_MIS
OPTERONFP | ~INSTRUCTION
~FLOATING_POINT + | FP_.ADD _PIPE
~FLOATING_POINT + | FP_.MULT _PIPE
~FLOATING_POINT + | FP_ST_PIPE
~FLOATING_POINT + | FP_FAST_FLAG
OPTERONST1 | ~CYCLES
~CYCLES + | FP_.NONE RET
~CYCLES + | IC_FETCH _STALL
~IC_FETCHSTALL + | FR_.DECODER EMPTY
~FRDISPATCHSTALLS + | FR_.DISPATCH_STALLS QUIET
OPTERONST?2 | ~CYCLES
~FR DISPATCHSTALLS + | FR.DISPATCH _STALLS FULL FPU
~FRDISPATCHSTALLS + | FR.DISPATCH _STALLS FULL _LS
~FRDISPATCHSTALLS + | FR.DISPATCH _STALLS _FULL REORDER
~FRDISPATCHSTALLS + | FR.DISPATCH _STALLS _FULL RESERVATION
OPTERONST3 | ~CYCLES
~FR.DISPATCHSTALLS + | FR_DISPATCH_STALLS BR
~FRDISPATCHSTALLS + | FR_.DISPATCH _STALLS _SER
~FRDISPATCHSTALLS + | FR_.DISPATCH_STALLS_SEG
~FRDISPATCHSTALLS + | FR_.DISPATCH _STALLS_FAR
OPTERONFPU FR_FPU.X87
SIMD + | FRFPUMMX _3D
SIMD + | FRFPUSSESSE2PACKED
SIMD + | FRFPUSSESSE2SCALAR
OPTERONMMX| HT_MEM_XFER + | HT_LL_ MEM_XFR
HT_MEM_XFER + | HT_.LR_.MEM XFR
HT_MEM_XFER + | HT_RL.MEM XFR
OPTERONIOX | HT_I/O_XFER + | HT_LL 10 XFR
HT_I/O_XFER + | HT_LR_IO_XFR
HT_I/O_XFER + | HT_.RL_IO_XFR

20

Table 3. UltraSPARC-I1II/IV counter sets (maximum of 2 in group, resicted assignment)
Set Name Derived Metrics op. Native CountefSdmputations

US3CPI CYCLES = | Cyclecnt
INSTRUCTION = | Instrcnt
US3SCD | CYCLES = | Cyclecnt
~RECIRCULATE + | Re_.DC_miss
US3SCO | ~CYCLES
~DISPATCH + | DispatchQbr target
~ReDC_miss 4 | Re_.DC_missovhd
US3SCE | ~CYCLES
~DISPATCH + | Dispatch02nd_br
~ReDC_miss + | Re_.EC_miss
US3SCP | ~CYCLES
~DISPATCH + | DispatchQIC _miss
~RECIRCULATE + | Re.PC_miss
US3SMP | ~CYCLES
~DISPATCH + | Dispatch.rs_mispred
~DISPATCH + | DispatchQ.mispred
US3SUS | ~CYCLES
~UNIT_USE + | Rstall_IU _use
~UNIT_USE + | Rstall_FP_use
US3SST | ~CYCLES
~UNIT_USE + | Rstall_storeQ
~RECIRCULATE + | Re.RAW _miss
US3SCX | ~CYCLES
Sl_cig_flow
~RECIRCULATE + | Re_lFPU_bypass
US3DCR | ~DATA_ACCESS
DC_rd
DC_rd_miss
DATA_LOAD_FROM_L1$ = | DC._rd — DC.rd_miss
US3DCW | ~DATA_ACCESS
DC_wr
DATA _STORE_INTO _L2$ = | DC_wr_miss
DATA _STOREINTO_L1%$ = | DC_wr — DC.wr_miss
US3ECM | ~DATA_ACCESS
DATA _LOAD .FROM_MEM = | EC_rd_miss
EC_misses
US3ECI ~DATA_ACCESS
~DATA_STOREINTO_L2% + | EC_write_hit_RTO
~INST_ACCESS
INST_HIT _.MEM EC.ic_miss
US3ICH INST_ACCESS IC_ref
IC_miss
INST_HIT_L1$ = | IC_ref—IC.miss
~INST_ACCESS
~INST_HIT_L2% = | IC_miss — ECic_miss
~DATA_ACCESS
~DATA_LOAD_FROM L2% = | DC_rd_miss — ECrd_miss
~DATA_STOREINTO_MEM = | EC_misses — EQd_miss — ECic_miss

21

Set Name Derived Metrics op. Native CountefSdmputations
US3FPU ~INSTRUCTION
FLOATING_POINT + | FA_pipe_completion
FLOATING_POINT + | FM _pipe_completion
US3BMS | ~INSTRUCTION
BRANCH _MISP_TAKEN = | lU_StatBr_misstaken
BRANCH _MISP_UNTAKEN = | lU_StatBr_missuntaken
US3BCS | ~INSTRUCTION
IU_StatBr_counttaken
IU_Stat Br_countuntaken
~BRANCH_PREDTAKEN = | IU_StatBr_counttaken — IUStat Br_misstaken
~BRANCH_PREDUNTAKEN = | IU_StatBr_countuntaken — IUStat Br_missuntaken
US3ITL INSTRUCTION = | Instr_cnt
~TLB_ACCESS
INST_TLB _MISS = | ITLB_miss
US3DTL | CYCLES Cyclecnt
~TLB_ACCESS
DATA _TLB _MISS = | DTLB_miss
US3ECW
EC_ref
~SSMLOCALITY + | EC_wb
US3ECL ~SSMLOCALITY
EC.MISSES + | EC_miss.local
ECMISSES + | EC_miss.remote
US3ECX | ~SSMLOCALITY
~EC.wb + | EC_wb_remote
~EC_misslocal + | EC_miss.mtag_remote
US3PCR | P$READS + | PCportQrd
+ | PCportlrd
US3ETC Sl_snoop
P$READS
~PCportQ.rd + | PC.MS_misses
US3ECS EC_snoopinv
EC_snoopcb
US3WCM Sl_owned
WC_miss
US3SM1 | ~MC_STALLS + | MC_stalls0
+ | MC_stalls1
US3SM2 | ~MC_STALLS + | MC_stalls2
+ | MC_stalls.3
US3MCO | ~MC_READS + | MC_reads0
~MC_WRITES + | MC_writes0
US3MC1 | ~MC_READS + | MC_readsl
~MC_WRITES + | MC_writes 1
US3MC2 | ~MC_READS + | MC_reads2
~MC_WRITES + | MC_writes 2
US3MC3 | ~MC_READS + | MC_reads3
~MC_WRITES + | MC_writes.3

22

Table 4. POWERA4-II counter sets (maximum of 8 in group, restrictedsagnment)

Set Name Derived Metrics op. Native CountefSdmputations
POWERA4LX ~TLB_ACCESS
INST_TLB _MISS = | PMLITLB_MISS
DATA _TLB _MISS = | PM.DTLB_MISS
PM_LD_REFL1
PM_LD_MISS L1
PM_ST_REFL1
PM_STMISS_L1
DATA_ACCESS = | PM.ST.REFL1+PMLD_REFL1
DATA _STOREINTO_L1$ = | PM.ST.REFL1-PMSTMISS L1
DATA _LOAD_FROM L1$ = | PMLD_REFL1—-PMLD MISSL1
POWERADC | ~DATA_ACCESS
DATA_HIT_L2$% + | PM_DATA _FROM _L2
DATA_HIT_L2% + | PM_DATA _FROM _L25_SHR
DATA _HIT_L2% + | PM_DATA _FROM _L25_MOD
DATA _HIT_L2% + | PM_DATA _FROM _L275_SHR
DATA _HIT_L2% + | PM_DATA _FROM _L275_-MOD
DATA_HIT_L3% + | PM_DATA _FROM _L3
DATA_HIT_L3% + | PM_DATA _FROM _L35
DATA _HIT _.MEM = | PM_DATA _FROM_MEM
POWERAIC INST_ACCESS
INST_PREFETCH = | PMLINST_.FROM_PREF
INST_HIT L1$ = | PMLINST_.FROM_L1
INST HIT_L2% + | PM_NST_FROM_L2
INST HIT_L2% + | PM_INST_FROM_L25_L275
INST_HIT_L3% + | PM_INST_FROM_L3
INST_HIT_L3% + | PM_INST_FROM _L35
INST_HIT _.MEM = | PM_INST_.FROM_MEM
POWER4BRT | INSTRUCTION = | PMLINST_.CMPL
BRANCH = | PM.BR_ISSUED
BRANCH_MISP + | PM_.BR_MPRED CR
BRANCH_MISP + | PM_BR_MPRED_TA
CYCLES = | PM_.CYC
~BUSY + | PM_BIQ_IDU_FULL _CYC
~BUSY + | PM_BRQ_FULL CYC
~BUSY + | PM_L1_ WRITE _CYC
POWERA4IFP | INSTRUCTION — [PMLINST_.CMPL
INTEGER = | PM_FXU_FIN
FLOATING _POINT = | PM_FPUFIN
FLOATING_POINT + | PM_FPU_FMA
FLOATING_POINT + | PM_FPU_FDIV
FLOATING_POINT + | PM_FPU_FSQRT
FLOATING_POINT + | PM_FPU_FMOQV _FEST
POWERAMFP | INSTRUCTION PM_INST_CMPL

~FLOATING_POINT
~FLOATING_POINT
~FLOATING_POINT

PM_FPU_ALL
PM_FPU_DENORM
PM_FPU_FRSP.FCONV

o+

~MEMORY PM_FPU_STF

~MEMORY PM_LSU_LDF
CYCLES PM_CYC

~STALL PM_FPU_STALLS3

23

A.2. Counter metric hierarchy definition

A generic counter metric classification hierarchy, usingJK& or PAPI preset counter names,
is possible, but in practise it is of limited value. Countegaitability is platform-dependant, and
interpreting measured counter values even more so. WhiR BPovides a number of presets,
which attempt to provide general platform-independanti@&ins, this is only partially successful
and introduces additional abstraction which can be unalelsir

PAPI preset event definitions for each supported processhitacture are summarised in [19].
Note that the table is not entirely up-to-date, as event digiirs are occassionally added, changed or
deleted: this variability aspect also presents a challémggerpreting what a PAPI definition really
counts or will count on any given platform. What the tableadhg shows is the disparity of event
definition provision between platforms: orfAPI _TOT_CYCandPAPI _TOT_| NS are available on
every supported platform, and most events are availablewarfthan half. (Curiously, some PAPI
presets are not available on any platform, and indeed plplolin't make too much sense, e.g.,
PAPI _L[123] _I Cwdefined as “writes to instruction caches.”)

In addition to the fundamental limitation of the native etggprovided by each processor, it should
also be noted that PAPI presets are limited to events thdieanllected simultaneously, i.e., subject
to platform-specific numbers of counter registers and nrappastrictions.

The current set of PAPI preset specifications are a somewhaus mixture of general (widely
available) events and relatively obscure events only egble to one or a few platforms, while many
of the most valuable events on other platforms have no PA¢dgtrspecification. This is especially
evident when examining different types of processor stail$locality events.

Somewhat understandably, the set of native events profdedch processor (and impacting on
its development and validation costs) is highly customigeiis particular characteristics and key
performance indicators. Some consideration is also madmfapatibility with the events provided
by earlier processor generations. Provision of hardwapatess and associated infrastructure was
primarily (at least initially and perhaps even exclusiyehtended for internal (i.e., non-customer)
use by the processor developers, and only latterly mad&blato customers: it is typically neither
intended nor designed with customer needs foremost in mind.

Defining a generic hierarchy of the most important (avaéabietrics, and determining a spanning
set of the corresponding native metrics to capture, are apeas of research. KOJAK therefore pro-
vides a flexible mechanism for experimenting with differem@asurement set and metric hierarchy
definitions.

The approach taken for creating an initial generic hienareghKOJAK metrics was based on
consideration of the most widely available, unambiguousfamiliar PAPI metrics: i.e., those for
different types of instruction counts, TLB and cache/mgnamcesses (including hits and misses).

Although PAPI defines various total counts for differentdisvof cache, i.e., aggregating counts
for instruction and data accesses, it was found more apptepo consider the two types sepa-
rately: even though the caches themselves may be unified,analyses consider them separately
(and generally one will dominate the other). Similarly, et for each level of cache could have
been structured independantly, but it was prefered to coenthiem into a single hierarchy to em-
phasise the important relationship between levels: thpsoits the exclusive nature of each hit being
uniquely satisfied from one particular level of cache or mgm@ther than the otherwise more di-
rect measure of misses (which can miss in multiple cachddpvAn advantage of this scheme is
that the absence of a third level cache is naturally reptedeas having zero hits in that cache level,
while hits from memory are unaffected.

While PAPI v3.0 provides various hit counts, it is unforttetg missing definitions for load (read)

24

and store (write) hit counts for the various data cachesn ¢éveugh these are often available as
native counters or readily derivable. A further PAPI coroation is the lack of preset definitions for
counts of instructions and data accesses which are sex@dfiemory, having missed in all levels
of cache. Prese®API _L3_| CMandPAPI _L3_DCM(andPAPI _L3_LDMandPAPI _L3_STM have
the appropriate definitions on platforms with three levélsache, however, for platforms with only
two levels of cache they are undefined and the corresporiRg_L2 miss definitions need to be
used instead.

Although the resulting definitions of access hit hierarshigr data and instruction caches are
reasonably portable, in the absence of portable PAPI mstecifications, they require customised
platform-specific mixtures of direct measurements, sinspl@positions and computations. Even if
portable PAPI metric specifications were provided for theegie hierarchy, it would be desirable
to augment the hierarchies with platform-specific extemsiguch as distinction of cache coherency
states or accesses to local versus remote caches.

Definition of a generic hierarchy for different instructioaunts is even less satisfactory, largely
due to the more substantial variation in functional univysmn. A secondary complicating factor is
distinction between dispatched/issued and completé@fdeinstruction counts, with speculatively
issued instructions that don’t complete being overcounkefinitions of floating-point operations
(i.e., ‘flops’) performed by processors have always tendeldet ambiguous, and while counts of
floating-point instructions would appear unambiguous, racpse there is considerable disparity
in which are counted by hardware and which aren’t: overdograrises when processors count
all instructions executed by notional floating-point ur(gsg., including block copy instructions)
or include floating-point stores and/or loads. Fused miyHgald instructions can lead to further
discrepancies between the logical/expected and actuatsou

One of the most valuable hierarchies is also unfortunatedynost platform-specific: that which
classifies cycles into busy, stall or idle states. Some ggmrs provide rich hierarchical breakdowns
of stall costs, however, these are typically only applieatiol one particular platform (or family).
Since cycles can be readily converted into times, usinggasar (or memory) frequency, they are
easily interpreted and directly quantify the significanéetherwise hard to judge (and typically
highly variable) events.

25

The following listings provide examples of generic and faah-specific metric hierarchy speci-
fications. The PAPI-based specification primarily offerggnce in determining which native coun-
ters best fit in a platform-specific hierarchy, rather thandgeseful as is.

POWERA4 Specification has three-level cache hierarchies, thougle sitores write-through there
are only stores into L1, with platform-specific extensiorstidguishing locality and sharing of the
caches.FLOATI NG_PO NT has been determined by aggregation rather than direct megasat to
explicitly excludePM _FPU_STF, which is instead moved tBEMORY. No counters are available to
split predicted and mispredicted branch instructions tak@n and untaken counts, and the limited
number of cycles-based counters in that hierarchy mighiripgaved. Many of the available coun-
ters have not been considered, which could provide additiplatform-specific metric hierarchies.

Opteron Specification has only two-level cache hierarchies, witHittmhal breakdown of L2
and memory accesses by coherency sEReST_PI PEandFP_FAST_FLAGhave been included in
FLOATI NG_PQO NT but could alternatively be moved MEMORY or other locations. The hierarchy
of cycles-based metrics includes comprehensive breakddveispatch stalls. Platform-specific
hierarchies include HyperTransport memory and I/O trassfe

UltraSPARC-III/IV Specification also has only two-level cache hierarchiesygemented with
additional platform-specific SSM locality (on systems suping scalable shared memory), prefetch
cache and memory controller request hierarchies. Therblgraof cycles-based metrics includes
comprehensive breakdown of dispatch, unit use, and rdatron stalls. Several derived metrics re-
quire computations with counter measurements that carcolbected together due to limitations of
the processor hardware. Consequently, partially comglateputations from individual collection
experiments need to be aggregated to complete their dengaiAlternatively, some derivations may
be replaced with approximations that ignore measuremeat®nly provide minor contributions to
computations, e.gDATA STORE | NTO MEMand | NST_HI T_L2$ can be calculated without the
generally insignificant contribution &C _i c_ni ss.

|Generic Metric Hierarchy Specification)|

cycles (including stalls)
conpose CYCLES = BUSY + STALL + IDLE
conpose STALL = DI SPATCH + UNI T_USE + RECI RCULATE

instructions

conpose | NSTRUCTI ON = BRANCH + | NTEGER + FLOATI NG PO NT + MEMORY

conpose BRANCH = BRANCH PRED + BRANCH M SP

conpose FLOATING PO NT = FP_ADD + FP_MJL + FP_FVMA + FP. DIV + FP_INV + FP_SQRT +
FP_M SC

conmpose MEMORY = LOAD + STORE + SYNCH

data accesses (to cache hierarchy & nmenor

conpose DATA ACCESS = DATA HI T _L1$ + DATA H T_L2$ + DATA HI T_L3%$ + DATA H T_MEM
conmpose DATA HIT_L1$ = DATA STORE I NTO L1$ + DATA LOAD FROM L1$

conmpose DATA HI T_L2$ = DATA _STORE | NTO L2$ + DATA LQAD FROM L2$

conpose DATA HI T _L3$ = DATA STORE | NTO L3$ + DATA LOAD FROM L3$

conpose DATA HI T_MEM = DATA_STORE_| NTO MEM + DATA_LOAD_FROM MEM

instruction accesses (to cache hierarchy & nenory)
conpose | NST_ACCESS = | NST_HI T_PREF +
INST HT L1$ + INST HIT L2% + INST_H T _L3$%$ + I NST_H T_MEM

TLB accesses (instruction & data)

conpose TLB_ACCESS = DATA _TLB_ ACCESS + | NST_TLB_ACCESS
conpose DATA TLB ACCESS = DATA TLB HI T + DATA TLB M SS
conmpose | NST_TLB ACCESS = INST_TLB HI T + INST_TLB_M SS

26

‘Metric Hi erarchy Specification with PAPI Presets

cycles (including stalls)

conpose CYCLES = BUSY + STALL + |IDLE

measure CYCLES = PAPI _TOT_CYC

conpose |IDLE = PAPI_BRU IDL + PAPI _FPU IDL + PAPI _FXU IDL + PAPI _LSU | DL
conpose STALL = DI SPATCH + UNI T_USE + RECI RCULATE

measure STALL = PAPI _RES STL

neasur e DI SPATCH = PAPI _STL_I CY

nmeasure UNI T_USE = PAPI _FP_STAL

measur e RECI RCULATE = PAPI _MEM SCY

conpose PAPI _MEM SCY = PAPI _MEM RCY + PAPI _MEM WCY

instructions

conmpose | NSTRUCTI ON = BRANCH + | NTEGER + FLOATI NG PO NT + MEMORY

measur e | NSTRUCTI ON = PAPI _TOT | NS # or PAPI _TOT IIS

conpose BRANCH = BRANCH PRED + BRANCH M SP

measure BRANCH = PAPI _BR I NS

measur e BRANCH PRED = PAPI _BR PRC

measure BRANCH M SP = PAPI _BR_MSP

measure | NTEGER = PAPI I NT_I NS

conpose FLOATING PONT = FP_ADD + FP_MJL + FP_FMA + FP. DIV + FP_INV + FP_SQRT + FP_M SC

measure FLOATI NG PO NT = PAPI _FP_INS

measure FP_ADD = PAPI _FAD I NS
measure FP_MJL = PAPI _FM__I NS
measure FP_FMA = PAPI _FMA I NS
measure FP_DIV = PAPI _FDV_I NS

measure FP_I NV PAPI _FNV_I NS

measure FP_SQRT = PAPI _FSQ I NS
conmpose MEMORY = LOAD + STORE + SYNCH
measure LOAD = PAPI LD INS

PAPI SR | NS

PAPI _SYC I NS

measure STORE
measure SYNCH

data accesses (to cache hierarchy & nenory)

conpose DATA ACCESS = DATA H T L1$ + DATA H T L2%$ + DATA HT L3% + DATA H T_NMEM
conpose DATA HI T L1$ DATA STORE_I NTO L1$ + DATA LOAD FROM L1$

conpose DATA HI T_L2$ = DATA _STORE | NTO L2$ + DATA LOAD FROM L2$

conpose DATA HI T L3% DATA _STORE | NTO L3% + DATA LOAD FROM L3$

conpose DATA H T_MEM = DATA STORE | NTO MEM + DATA LOAD _FROM MEM

measur e DATA_ACCESS = PAPI _L1_DCA

measure DATA HIT L1$ = PAPI _L1 DCH

conput e DATA STCRE INTO L1$ = PAPI L1 DCW- PAPI L1 _STM

conput e DATA LOAD FROM L1$ = PAPI L1 _DCR - PAPI _L1_LDM

measure DATA H T_L2$ = PAPI _L2 DCH

conmput e DATA STORE_INTO L2$ = PAPI _L2_DCW- PAPI _L2_STM

conput e DATA LOAD FROM L2$ = PAPI L2_DCR - PAPI _L2_LDM

neasure DATA HI T_L3$ = PAPI _L3_DCH

conput e DATA STORE_I NTO L3$% = PAPI _L3_DCW- PAPI _L3_STM

conput e DATA LOAD FROM L3$ = PAPI L3_DCR - PAPI _L3_LDM

measure DATA HT_MEM = PAPI L3 DCM # or PAPI _L2 DCMif no 3rd-level D-cache
measure DATA STORE I NTO MEM = PAPI L3 _STM # or PAPI L2 STMif no L3 D-cache
nmeasure DATA LOAD FROM MEM = PAPI L3 LDM # or PAPI L2 LDMif no L3 D-cache

instruction accesses (to cache hierarchy & nmenory)
conpose I NST_ACCESS = INST H T L1$ + INST_HI T_L2% + INST_ H T_L3$% + INST_H T_MEM
measure | NST_ACCESS = PAPI L1 TCA

measure INST HI T L1$ = PAPI L1 _ICH
measure INST_H T_L2$% = PAPI _L2 | CH
measure INST_H T_L3$ = PAPI _L3 | CH

measure INST HT MEM = PAPI L3 ICM# or PAPI L2 ICMif no 3rd-level I-cache
TLB accesses (instruction & data)

conpose TLB ACCESS = DATA TLB ACCESS + | NST_TLB_ACCESS

conpose DATA TLB ACCESS = DATA TLB HI T + DATA TLB M SS

conpose I NST_TLB ACCESS = INST_TLB H T + INST_TLB_M SS

measure DATA TLB M SS = PAPI _TLB DM

measure |INST_TLB M SS = PAPI _TLB_IM

27

‘PO/\ERAL-speci fic Metric Hierarchy Specificati on‘

cycles (including stalls)

conpose CYCLES = BUSY + PM FPU FULL_CYC + PM FPU_STALL3 + PM Bl Q | DU FULL_CYC
+ PM BRQ FULL_CYC + PM L1_WRI TE_CYC

measure CYCLES = PM CYC

i nstructions
conmpose | NSTRUCTI ON
measur e | NSTRUCTI ON

BRANCH + | NTEGER + FLOATI NG POl NT + MEMORY
PM_| NST_CMPL

conmpose BRANCH BRANCH_PRED + BRANCH M SP

measur e BRANCH PM BR | SSUED

conput e BRANCH PRED = PM BR | SSUED - PM BR_MPRED CR - PM BR_MPRED TA
conpose BRANCH M SP = PM BR_MPRED CR + PM BR_MPRED TA

conpose | NTEGER = PM FXU_FI N

conpose FLOATING PO NT = PM FPU ALL + PM FPU DENORM + PM FPU FDI V + PM FPU_FNA
+ PM_FPU_FMOV_FEST + PM FPU FRSP_FCO\V + PM FPU FSQRT
#measure FLOATI NG PO NT = PM FPU FIN # incl udes PM FPU_STF!

conpose MEMORY = PM FPU STF + PM LSU LDF + SYNCH

data accesses (to cache hierarchy & nmenory)
conpose DATA ACCESS = DATA H T_L1$ + DATA HI T_L2$ + DATA H T_L3$ + DATA H T_MEM

|l evel 1 data cache
conmpose DATA HIT L1$ = DATA LOAD FROM L1$ + DATA STORE I NTO L1$

conmput e DATA STORE |INTO L1$ = PM ST_REF L1 - PM ST _MSS L1
conput e DATA LOAD FROM L1$ = PM LD REF_L1 - PM LD M SS L1

|l evel 2 data cache
conpose DATA HI T_L2$ = DATA LOAD FROM L2%

conpose DATA LOAD FROM L2$ = PM DATA FROM L2 + PM DATA FROM L25_MOD
+ PM DATA FROM L25 SHR + PM DATA FROM L275 MOD + PM DATA FROM L275_SHR

|l evel 3 data cache
conpose DATA HI T_L3$ = DATA LOAD FROM L3$%

conpose DATA LOAD FROM L3$ = PM DATA FROM L3 + PM DATA FROM L35

menory/ system data
conpose DATA H T_MEM = DATA LOAD_FROM MEM

conpose DATA LOAD FROM MEM = PM _DATA_FROM MEM

instruction accesses (to cache hierarchy & nmenory)
conpose | NST_ACCESS = | NST_PREFETCH +
INST HIT L1$ + INST HHT L2% + INST HIT L3% + INST H T_MEM
conmpose | NST_PREFETCH = PM_| NST_FROM PREF
conpose INST HI T _L1$ PM I NST_FROM L1
conpose INST_HI T_L2$ = PM_INST_FROM L2 + PM | NST_FROM L25_L275
conmpose INST_HI T _L3$ = PM I NST_FROM L3 + PM_ | NST_FROM L35
conmpose | NST_HI T_MEM = PM_| NST_FROM MEM

TLB accesses (instructions & data)

conpose TLB_ACCESS = DATA TLB_ACCESS + | NST_TLB_ACCESS
conpose DATA TLB ACCESS = DATA TLB HI T + DATA TLB M SS
measure DATA TLB M SS = PM DTLB_M SS

conmpose | NST_TLB_ACCESS = INST_TLB HI T + INST_TLB_M SS
measure |NST_TLB M SS = PMITLB_ M SS

28

‘Qoteron-specific Metric Hierarchy Specification

cycles (including stalls)

conmpose CYCLES = BUSY + | C_FETCH _STALL + FP_NONE_RET

neasure CYCLES = CPU_CLK_UNHALTED

conpose | C_FETCH STALL = FR_DECODER EMPTY + FR_DI SPATCH STALLS

conpose FR_DI SPATCH STALLS = FR_DI SPATCH STALLS_BR + FR_DI SPATCH STALLS_FAR +
FR_DI SPATCH STALLS FULL_ FPU + FR_DI SPATCH STALLS FULL LS +
FR DI SPATCH STALLS FULL REORDER + FR_DI SPATCH STALLS FULL RESERVATI ON +
FR DI SPATCH STALLS SER + FR_DI SPATCH STALLS SEG + FR DI SPATCH STALLS QUI ET

instructions
conpose | NSTRUCTI ON
measure | NSTRUCTI ON

BRANCH + | NTEGER + FLOATI NG POl NT + MEMORY
FR X86_| NS

conpose BRANCH = BRANCH PRED + BRANCH M SP

measur e BRANCH FR_BR

conpose BRANCH_ PRED = BRANCH PRED TAKEN + BRANCH PRED UNTAKEN

conput e BRANCH PRED TAKEN = FR BR TAKEN - FR BR_ TAKEN MS

conput e BRANCH PRED UNTAKEN = FR BR - FR BR_ MS - FR_ BR TAKEN + FR BR TAKEN M S
conpose BRANCH M SP = BRANCH M SP TAKEN + BRANCH M SP UNTAKEN

#measur e BRANCH MSP = FR_ BR M S

conput e BRANCH M SP_ TAKEN = FR BR_TAKEN M S

conput e BRANCH M SP_UNTAKEN = FR BR M'S - FR BR TAKEN M S

conpose FLOATI NG PO NT = FP_ADD PIPE + FP_MJULT_PI PE + FP_ST_PI PE + FP_FAST_FLAG
conpose MEMORY = LOAD + STORE + SYNCH

data accesses (to cache hierarchy & nenory)
conpose DATA _ACCESS = DATA HI T_L1$ + DATA HI T_L2$ + DATA HI T_L3$ + DATA H T_MEM
nmeasur e DATA ACCESS = DC_ACCESS

| evel 1 data cache
conpute DATA HI T_L1$ = DC_ACCESS - DC M SS

no L1$ load/store alias definitions possible for opteron
#conpose DATA _STORE I NTO L1$ = NA_OPTERON
#conpose DATA LOAD FROM L1$ = NA OPTERON

| evel 2 data cache

conpose DATA HI T_L2$ = DATA STORE | NTO L2$ + DATA LOAD FROM L2%

conpose DATA STORE | NTO L2$ = DC L2_ REFI LL_M

conpose DATA LOAD FROM L2$ = DC_ L2 REFILL O+ DC L2 REFILL E + DC L2 REFILL_S

no L3%$ data cache alias definitions appropriate for opteron
#conpose DATA HI T_L3$ = DATA STORE | NTO L3$ + DATA LOAD FROM L3$
#conpose DATA STORE | NTO L3$ = NA OPTERON

#conpose DATA LOAD FROM L3%$ = NA OPTERON

menory/ system data

conpose DATA H T_MEM = DATA STORE_| NTO MEM + DATA LOAD_FROM MEM

conpose DATA STORE | NTO MEM = DC_SYS_REFILL_M

conpose DATA LOAD FROM MEM = DC SYS REFILL_O + DC_SYS REFILL_E + DC_SYS REFILL_S

instruction accesses (to cache hierarchy & nmenory)
conmpose | NST_ACCESS = INST_H T_L1$ + INST_H T_L2$ + I NST_H T_MEM
#measure | NST_ACCESS = | C_FETCH

conpute INST_ HIT L1$ = IC_FETCH - 1 C L2 REFILL - | C SYS REFILL

conpose INST_H T _L2$ I C L2_REFILL
#conpose INST_H T L3$ = NA OPTERON
conpose |NST_HI T_MEM = | C_SYS REFI LL

29

TLB accesses (instructions & data)

conpose TLB_ACCESS = DATA TLB_ACCESS + | NST_TLB_ACCESS
conpose DATA TLB ACCESS = DATA TLB HI T + DATA TLB_M SS
conmpute DATA TLB HIT = DC L1 _DTLB M SS AND L2 DTLB HI T
comput e DATA TLB M SS = DC L1_DTLB M SS AND L2_DTLB M SS
conpose | NST_TLB_ACCESS = INST TLB_HI T + INST_TLB M SS
conpute INST_ TLB HIT = IC L1ITLB MSS AND L2ITLB HI T
conmpute INST TLB MSS = IC L1I TLB_.M SS _AND L2I TLB_M SS

Hyper Transport nmenory & |/ O transfers

conpose HT_TRANSFER = HT_MEM XFER + HT_I|/ O XFER

conpose HT_MEM XFER = HT_LL_MEM XFR + HT_LR MEM XFR + HT_RL_MEM XFR
conpose HT I/ O XFER = HT_LL_|O XFR + HT_LR 1O XFR + HT_RL_| O XFR

doesn’'t fit in Instruction hierarchy
conpose SIMD = FR FPU MW 3D + FR FPU SSE SSE2 PACKED + FR FPU SSE SSE2 SCALAR

|U traSPARC-I11/1V-specific Metric Hierarchy Specification

**** hierarchy requires aggregation of partial/inconplete conputations ****

cycles (including stalls)

conpose CYCLES = BUSY + IDLE + STALL

nmeasure CYCLES = Cycl e_cnt

conpose STALL = DI SPATCH + UNI T_USE + RECI RCULATE

conpose DI SPATCH = Di spatchO | C niss + DispatchO_mispred + Dispatch rs_mi spred
+ Di spatchO_br_target + DispatchO_2nd_br

conpose UNIT_USE = Rstall _IU use + Rstall _FP_use + Rstall _storeQ

conpose RECI RCULATE = Re_RAW i ss + Re_PC miss + Re_DC miss + Re_FPU bypass

conpose Re_DC miss = Re_DC missovhd + Re_EC miss + RECCRC EC HT

instructions
conpose | NSTRUCTI ON = BRANCH + | NTEGER + FLOATI NG PO NT + MEMORY
measure | NSTRUCTION = Instr_cnt

requires computations with neasurements that can’t be coll ected together!
conpose BRANCH = BRANCH PRED + BRANCH M SP

conpose BRANCH PRED = BRANCH PRED TAKEN + BRANCH PRED UNTAKEN

conput e BRANCH PRED TAKEN = 1U Stat_Br_count _taken - 1U Stat_Br_m ss_taken
conput e BRANCH PRED UNTAKEN = TU Stat_Br_count _untaken - U Stat_Br_mi ss_unt aken
conpose BRANCH M SP = BRANCH M SP_TAKEN + BRANCH_M SP_UNTAKEN

conput e BRANCH M SP_TAKEN = TU Stat_Br_niss_taken

conput e BRANCH M SP_UNTAKEN = TU Stat_Br_ni ss_unt aken

conpose FLOATI NG PO NT = FA pi pe_conpl etion + FM pi pe_conpl etion
conpose MEMORY = LOAD + STORE + SYNCH

data accesses (to cache hierarchy & nenory, no L3$)
conpose DATA ACCESS = DATA HI T_L1$ + DATA H T_L2$ + DATA H T_MEM

| evel 1 data cache (D$)

conpose DATA HIT_L1$ = DATA STORE_l L1$ + DATA LOAD FROM L1$
conput e DATA STORE_INTO L1$ = DC wr - DC_vvr_m' Ss

conput e DATA LOAD FROM L1$ = DC rd - DC rd_miss

| evel 2 data cache (E9)

conpose DATA HI T L2$ = DATA STORE | NTO L2$ + DATA LOAD FROM L2$
conpose DATA STO?E I NTO_ L2$ = EC wite_ “hit _RTO + EC VRl TE_ H T _ETC
measur e DATA _STORE I NTO L2$ = DC wr_ni ss

conmput e DATA LOAD FROM L2$ = DC rd_miss - EC rd_miss

menory/ system dat a

conpose DATA H T_MEM = DATA STORE_| NTO MEM + DATA LOAD _FROM MEM

conput e DATA STORE_INTO MEM = EC misses - ECrd mss - ECic _niss # 3 PlCs!
conput e DATA LOAD FROM MEM = EC rd_mi ss

30

instruction accesses (to cache hierarchy & menory, no L39%)
conpose | NST_ACCESS = INST_H T_L1$ + INST_H T_L2$ + INST_H T_MEM
measure | NST_ACCESS = | C ref

conpute INST_H T L1$
conpute INST_HI T_L2$
conpute INST_H T_MEM

ICref - IC niss
ICnmiss - ECic_mss # both require PIClL!
EC ic_niss

TLB accesses (instructions & data)

conpose TLB_ACCESS = DATA TLB_ACCESS + | NST_TLB_ACCESS
conpose DATA TLB ACCESS = DATA TLB HI T + DATA TLB_M SS
comput e DATA TLB M SS = DTLB niss

conpose | NST_TLB _ACCESS = INST_TLB HI T + INST_TLB_M SS
conmpute INST_TLB M SS = I TLB niss

SSM |l ocality (only for scal abl e shared nmenory systens)
compose SSM LOCALITY = EC_M SSES + EC wb

conpose EC M SSES = EC mss_|local + EC nmiss_renote

conpose EC niss_|ocal = EC MSS MIAG LOCAL + EC miss_ntag_renote

conpose EC wb = EC WB_LOCAL + EC wb_renote

Prefetch-cache (P$)

conpose P$_READS = PC port0O_rd + PC portl_rd
compose PC port0O_rd = PC_ M5 mi sses + PC _PORTO_ETC

menory controll er requests

conpose MC_READS = MC reads_0 + MC_reads_1 + MC_reads_2 + MC_reads
conpose MC WRITES = MC wites 0 + MC wites_ 1 + MCwites_2 + MC w
conpose MC STALLS = MC stalls 0 + MC stalls_1 + MC stalls_2 + MC st

