
A Descartes Algorithm for Polynomials with
Bit-Stream Coefficients

Arno Eigenwillig1, Lutz Kettner1, Werner Krandick2,
Kurt Mehlhorn1, Susanne Schmitt1, and Nicola Wolpert1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{arno,kettner,mehlhorn,sschmitt,wolpert}@mpi-inf.mpg.de

2 Dept. of Computer Science, Drexel University, Philadelphia, PA, USA
krandick@cs.drexel.edu

Abstract. The Descartes method is an algorithm for isolating the real roots of
square-free polynomials with real coefficients. We assume that coefficients are
given as (potentially infinite) bit-streams. In other words, coefficients can be ap-
proximated to any desired accuracy, but are not known exactly. We show that a
variant of the Descartes algorithm can cope with bit-stream coefficients. To iso-
late the real roots of a square-free real polynomial q(x) = qnxn + . . . + q0 with
root separation ρ , coefficients |qn| ≥ 1 and |qi| ≤ 2τ , it needs coefficient approx-
imations to O(n(log(1/ρ) + τ)) bits after the binary point and has an expected
cost of O(n4(log(1/ρ)+ τ)2) bit operations.

1 Introduction

The isolation of the real roots of a real univariate polynomial q(x)∈ IR[x] is a fundamen-
tal task in computer algebra: given a polynomial q, compute for each of its real roots an
interval with rational endpoints containing it and being disjoint from the intervals com-
puted for the other roots. One of the best approaches to root isolation is the Descartes
method. It is a bisection method based on the Descartes Rule of Signs to test for roots.
Its modern form goes back to Collins and Akritas [1]. It can be formulated to operate
on polynomials given in the usual power basis or in the Bernstein basis. For integer co-
efficients, it typically outperforms other methods. We review it in Section 3. We assume
that the coefficients of our polynomials are given as potentially infinite bit-streams, i.e.,
coefficients are known to arbitrary precision, but, in general, never exactly.

We are the first to make a variant of the Descartes algorithm work in this setting.
Our main tools are a sharper analysis of the rule of signs (Lemmas 5 and 6) and ran-
domization (Sections 4.2 and 4.3). Our main result is as follows:

To isolate the real roots of a square-free (= no multiple roots) real polynomial
q(x) = qnxn + . . .+q0 with root separation (= minimal distance between any two roots)
ρ , coefficients |qn| ≥ 1 and |qi| ≤ 2τ , our algorithm needs coefficient approximations to
O(n(log(1/ρ)+τ)) bits after the binary point and O(n4(log(1/ρ)+τ)2) bit operations
in expectancy.

The cost statement ignores the cost of computing the approximations of the coeffi-
cients with the required quality. Observe that the quantities n, ρ and τ are determined

Dagstuhl Seminar Proceedings 06021
Reliable Implementation of Real Number Algorithms: Theory and Practice
http://drops.dagstuhl.de/opus/volltexte/2006/715

by the roots of our polynomial, i.e., the geometry of the problem, and hence the running
time of our method is a function of the geometry of the problem.

The restriction to square-free inputs is inherent in the bit-stream setting, since de-
tecting multiple roots is equivalent to testing for zero (cf. x2 −a) and hence impossible.

The paper is structured as follows. In Section 2 we put our work into context and
in Section 3 we review the Descartes method. Section 4 is the heart of the paper. We
describe and analyze a variant of the Descartes method for polynomials with bit-stream
coefficients. In Section 5 we report on some experimental observations.

2 Comparison to Related Work

The Descartes method can be formulated for polynomials in the usual power basis [2,
1, 3, 4] and for polynomials in the Bernstein basis [5–8]. The early work concentrated
on polynomials with integer coefficients. More recent work [9, 4, 8] points out that the
Descartes method can be combined with interval arithmetic for increased efficiency and
to also handle some, but not all, polynomials with bit-stream coefficients [9, p. 152].
We are the first to exhibit a variant of the Descartes method handling all square-free
polynomials with bit-stream coefficients.

Beyond the Descartes method, there is substantial work in numerical analysis on ap-
proximating the roots of a real polynomial [10]. Many algorithms were proposed for the
simultaneous approximation of all complex roots of a polynomial with bit-stream coef-
ficients. Most algorithms come without a guarantee of convergence. Weyl [11] exhibited
the first complete algorithm and Pan [12] surveys the development till about 1995. The
currently best algorithm is due to Pan [13]. It applies to polynomials with bit-stream
coefficients. Given a polynomial p(x) = ∑i pixi = pn ∏i(x− zi) of degree n and a pre-
cision parameter b, his method computes approximate roots z∗i such that after suitable
renumbering |z∗i − zi| < 22−b/n. Here b must be at least n logn and the computational
cost is O(n log2 n(log2 n + logb)) arithmetic operations (additions and multiplications)
on O(b)-bit numbers. It is assumed that all roots lie in the unit disk. The algorithm is, in
the author’s own words, quite involved, and would require non-trivial implementation
work, and we are not aware of any implementation. Pan’s algorithm can be used to iso-
late real roots. Thus it solves a more general problem (isolation of all roots and not only
real roots) and is asymptotically much faster than our algorithm (quadratic dependence
on n instead of quartic and linear dependence on log(1/sep(p)) instead of quadratic).
Does this make our contribution obsolete? We believe not: First, because our algorithm
is very simple and easily implemented. Second, we expect the algorithm to be superior
for small to medium degree polynomials.

3 The Descartes Method in the Bernstein Basis

Fix an integer n ≥ 0 and boundaries c < d of an interval [c,d]. The Bernstein basis
[14, 15] of the vector space IR[x]≤n of polynomials of degree at most n consists of the
Bernstein polynomials Bn

0, Bn
1, . . . , Bn

n, where:

Bn
i (x) = Bn

i [c,d](x) =

(

n
i

)

(x− c)i(d − x)n−i

(d − c)n , 0 ≤ i ≤ n . (1)

2

If p(x) = ∑n
i=0 biBn

i [c,d](x), we call b = (bn, . . . ,b0) the Bernstein representation of
p with respect to interval [c,d] and b0 the first and bn the last coefficient. We have
p(c) = b0 and p(d) = bn. The Bernstein polynomials form a non-negative partition
of unity, meaning that ∑n

i=0 Bn
i (x) = 1 and Bn

i (x) ≥ 0 for all x ∈ [c,d]. This is helpful
in bounding error propagation: If p(x) = ∑n

i=0 biBn
i (x) and p̃(x) = ∑n

i=0 b̃iBn
i (x) with

|b̃i −bi| ≤ ε for all i, then for all x ∈ [c,d] it holds that

|∑
i

b̃iBn
i (x)−∑

i
biBn

i (x)| ≤ ε ∑
i
|Bn

i (x)| = ε ∑
i

Bn
i (x) = ε . (2)

The most important property for our purposes is the Descartes Rule of Signs. Let
a = (a0, . . . ,an) be a finite sequence of real numbers. The number of sign variations
in a, denoted var(a), is the number of pairs (i, j) of integers with 0 ≤ i < j ≤ n and
aia j < 0 and ai+1 = . . . = a j−1 = 0.

Theorem 1 (The Descartes Rule of Signs). Let p(x) = ∑n
i=0 biBn

i [c,d](x) be a poly-
nomial. Then var(b) exceeds the number of zeroes of p in the open interval (c,d) by an
even non-negative integer.

This rule is traditionally stated for the power basis and the interval (0,∞); see [16]
for a proof with historical references. The Bernstein formulation appears in [5–8].

Theorem 1 is the basis for a bisection method for root isolation in exact arith-
metic. We start with an interval I guaranteed to contain all real zeroes of p and call
Descartes(p, I). The procedure Descartes(p, I) works as follows: Let I = (c,d), p(x) =

∑n
i=0 biBn

i [c,d](x) the Bernstein representation of p with respect to the interval (c,d),
and v = var(b). If v = 0, return. If v = 1, report I as an isolating interval and return. If
v ≥ 2, choose a point m = αc +(1−α)d with 1/4 ≤ α ≤ 3/4. (Any α ∈ (0,1) would
work, but a choice near the middle guarantees linear convergence.) If p(m) = 0, report
the exact root m. Call Descartes(p,(c,m)) and Descartes(p,(m,d)).

The Bernstein representations b′ and b′′ of p with respect to intervals I ′ = [c,m]
and I′′ = [m,d] are readily computed from b by de Casteljau’s algorithm depicted in
Figure 1. It operates on a triangular array of numbers. The top row (b0,0, . . . ,b0,n) is
initialized to b = (b0, . . . ,bn). For 1 ≤ j ≤ n, the j-th row (b j,0, . . . ,b j,n− j) is computed
according to

b j,i :=αb j−1,i +(1−α)b j−1,i+1 . (3)

The result sequences are given by the two sloped sides b′ = (b0,0,b1,0, . . . ,bn,0) and
b′′ = (bn,0,bn−1,1, . . . ,b0,n) of the triangle; see, e.g., [14, 3.2/3.3] and [15, Lemma 4.2].

The Descartes method terminates iff the polynomial p is square free. Termination
proofs rest on partial converses of Theorem 1 such as the following.

Theorem 2 (Ostrowksi). Consider a polynomial p and its roots in the complex plane
C. Let I be an interval with midpoint m and width |I| and let v = var(b) be the number
of sign variations in the Bernstein representation of p with respect to I.

If the disc bounded by the circle C centered at m passing through the endpoints of I
does not contain any root of p, then v = 0 (one-circle theorem).

If the union of the discs bounded by the circles C and C centered at m± i(
√

3/6)|I|
and passing through the endpoints of I contains precisely one simple root of p (which
is then necessarily a real root), then v = 1 (two-circle theorem).

3

b0,0 b0,1 b0,2 . . . b0,n−2 b0,n−1 b0,n
b1,0 b1,1 . . . b1,n−2 b1,n−1

b2,0 b2,1 . . . b2,n−3 b2,n−2
b3,0 . . . b3,n−3

.
bn,0

Fig. 1. The de Casteljau triangle in which b j,i = αb j−1,i +(1−α)b j−1,i+1.

For a proof see [16]. The circle theorems allow us to bound the depth of the Descartes
recursion tree, depending on the distance between the roots. Let p be a non-zero poly-
nomial with roots ξ1 to ξn. We define its root separation sep(p) = min{|ξi−ξ j|

∣

∣ i 6= j}
as the minimum distance between any two roots; sep(p) > 0 iff p is square-free.

Corollary 3. The Descartes method applied to any square-free polynomial p and start
interval I0 terminates. The interval at any internal node of the recursion tree has width
at least (

√
3/2)sep(p), the interval at a leaf has width at least (

√
3/8)sep(p). Given

σ ≤ sep(p), recursion depth is at most D(σ) := blog(|I0|/σ)/ log(4/3)+3/2c.

Proof. Consider any interval I for which the Bernstein representation has two or more
sign variations. The contrapositive of Theorem 2 tells us: If p has no root in I then there
must be a pair of conjugate roots ξ , ξ in the disc bounded by C. The diameter of C is
|I|, hence |I| ≥ |ξ − ξ | ≥ sep(p). If p has exactly one root ξ ′ in I, then p has a pair
of conjugate roots ξ , ξ in the discs bounded by C and C. The diameter of C and C is
(2/

√
3)|I| ≥ |ξ −ξ ′| ≥ sep(p). If p has two roots ξ , ξ ′ in I, then |I| ≥ |ξ −ξ ′| ≥ sep(p).

In all three cases, Descartes(p, I) generates recursive calls only if |I| ≥ (
√

3/2)sep(p).
The interval at a leaf is at least one fourth the length of the interval at its parent. Since
the interval length is multiplied by 3/4 or less in each step, the depth k of an internal
node satisfies |I0|(3/4)k ≥ (

√
3/2)sep(p) or k ≤ log(|I0|/sep(p))/ log(4/3)+1/2. ut

Proposition 4. A Descartes recursion tree for a polynomial of degree n has at most n
nodes at any depth.

In the Bernstein basis, this easily seen from the well-known variation diminishing prop-
erty of repeated linear interpolation. A proof appears in [7, Thm. 10.38].

4 The Descartes Method for Polynomials with Bit-Stream
Coefficients

We present an algorithm Descartesapprox to isolate the real roots of p(x) = ∑n
i=0 biBn

i (x)
in (0,1). We assume that the coefficients are given as bit-streams; in particular, for any
fixed ε > 0, we can compute an approximate coefficient vector b̃ = (b̃0, . . . , b̃n) with
|b̃i − bi| ≤ ε for all i. We call b̃ an ε-approximate Bernstein representation of p. The
pair (b̃,ε) specifies an interval polynomial p(x) = ∑n

i=0 biBn
i (x) such that p ⊇ {p}.

We start with a thought experiment. Consider executions of Descartes in exact arith-
metic both on the exact Bernstein representation b and on its approximation b̃. The only

4

computation Descartes ever does with the coefficients is repeated forming of averages
as in Eq. (3). The absolute error in the result of such a convex combination is no larger
than it is in the inputs. Hence the absolute errors in the de Casteljau triangles in all nodes
of the Descartes tree for b̃ are ε-approximations of their counterparts in the tree starting
from exact coefficients b. The shape of the exact Descartes tree depends on decisions
based on the signs of exact entries. Can we mimic these decisions with intervals?

We call an interval positive (+), if it contains only positive numbers; negative (−), if
it contains only negative numbers; and indeterminate (?), if it contains zero. A positive
or negative interval is also called determinate. For a sequence of coefficient intervals
a = (a0, . . . ,an), we define its set of potential numbers of sign variations as var(a) =
{

var((a0, . . . ,an))
∣

∣ ai ∈ ai for 0 ≤ i ≤ n
}

. For example, we have var(([2,3], [−1,1])) =
{0,1}, var(([2,3], [−1,1], [2,3])) = {0,2}, and var(([2,3], [−1,1], [−2,−1])) = {1}.
The fact that some ai is indeterminate does not imply that var(a) contains more than
one value, as the third example shows.

Consider any node in the approximate Descartes tree. We have an approximate co-
efficient sequence b̃. Each b̃i stands for an interval b̃i = [b̃i−ε, b̃i +ε]. Define varε(b̃) =
var(b̃0, . . . , b̃n). Observe that varε(b̃) contains var(b). If varε(b̃) is a singleton or disjoint
from {0,1}, we know what the exact algorithm would do and can do the same.

But what should we do if varε(b̃) is not a singleton and contains a number less
than two? The first solution that comes to mind is to switch to a smaller ε . This will
not always solve the problem: Assume we start with a degree-2-polynomial with Bern-
stein representation (1,−β ,β) with respect to (0,1) where β is any positive irrational
number less than one. We split the interval at 1/2 and obtain ((1−β)/4,0,β) for the
right subinterval. For any approximation of β , the 0 will turn into an interval straddling
zero and hence the potential sign variations are {0,2}. A second solution that comes to
mind is to perform recursive calls whenever the set of potential sign variations contains
a number larger than one. However, then the procedure might not terminate, namely,
when ε is so large that p contains a non-square-free polynomial. Furthermore: what if
the set of potential sign changes contain both zero and one? What if, after subdivision,
the last coefficient of b′ (first coefficient of b′′) is indeterminate, i.e., our polynomial
may be zero at the split point?

The last two problems disappear when first and last coefficients are determinate.
All problems disappear when first and last coefficients are large. We call b̃i large if
|b̃i| > Cε and small otherwise. We will fix the constant C > 1 later and prove that if b̃0
and b̃n are large and varε(b̃)∩{0,1} 6= /0 then varε(b̃′),varε(b̃′′) ∈ {{0},{1}}.

Lemma 5. Let C ≥ 4n+1 and consider subdivision at α ∈ [1/4, 3/4]. If b̃0 and b̃n are
large and positive and 0 ∈ varε(b̃) then all elements of b̃′ and b̃′′ are determinate and
positive, i.e., varε(b̃′) = varε(b̃′′) = {0}.

Proof. Replace the b̃i by modified inputs ci where ci = b̃i if b̃i is determinate and ci = 0
otherwise. This is a change by at most ε . As all entries of the modified de Casteljau
triangle c j,i are convex combinations of the inputs, they are all non-negative, and not
modified by more than ε . Due to the contribution of c0 or cn, resp., any element in the
modified output sequences c′ and c′′ is greater than 4−nCε ≥ 2ε . Thus any element of
b̃′ and b̃′′ is greater than ε and thus determinate and positive. ut

5

Lemma 6. Let C ≥ 16n and consider subdivision at α ∈ [1/4, 3/4]. If b̃0 is large and
positive, b̃n is large and negative, b̃′n = b̃′′0 at the tip of the de Casteljau triangle is large
and negative, and 1 ∈ varε(b̃) then varε(b̃′) = {1} and varε(b̃′′) = {0}.

Proof. As above, we replace all indeterminate elements of b̃ by 0 and denote the ele-
ments of the so modified de Casteljau triangle by c j,i. The modified input sequence c
consists of non-negative followed by non-positive numbers. It is easy to see inductively
that all rows of the modified de Casteljau triangle consist of zero or more non-negative
elements followed by one or more non-positive elements. Once some row consists en-
tirely of non-positive elements, the same holds for all further rows.

We first prove the claim about c′′. The lower tip of the modified triangle is less than
−(C−1)ε . A node cannot be less than the minimum of its parents, so there is a path P
of elements less than −(C−1)ε from row 0 to row n. The elements right of P are non-
positive. Now consider the rightmost element c′′n−i in row i of the triangle, for arbitrary
i. Go up 0 ≤ k ≤ i times to the left parent until you reach an element of P in row i− k
or end up in row 0 right of the path (with k = i). In either case, the last k + 1 elements
of row i− k are non-positive, one of them, say c∗, is less than −(C− 1)ε (namely the
path element or cn), and c′′n−i is a convex combination of them. Due to the contribution
of c∗, we have c′′n−i < −4−k(C−1)ε < −2ε and thus b̃′′i < −ε holds for all i.

We turn to c′. It begins with c′0 > Cε and ends with c′n < −(C−1)ε . Let

i = min
{

i ∈ {0, . . . ,n} ; c′i ≤ 0 or |c′i| ≤ |c′i−1|/16
}

. (4)

Since c′n is negative, i exists. By minimality of i, we have for all j < i that c′j > 0 and
c′j > c′j−1/16 > c′0/16 j > (C/16n−1)ε > 2ε . Thus c′0, c′1, . . . , c′i−1 > 2ε .

Next we will show c′i+1, . . . ,c
′
n < −2ε . For c′n, this is already known, so assume

i≤ n−2. By choice of i, we have c′i ≤ c′i−1/16. From c′i = αc′i−1 +(1−α)ci−1,1 follows
then ci−1,1 = (c′i −αc′i−1)/(1−α) ≤ (1− 16α)/(16− 16α)c′i−1. This is negative for
all α ∈ [1/4, 3/4], hence ci−1,2 ≤ 0 as well. Now consider

c′i+1 = α2c′i−1 +2α(1−α)ci−1,1 +(1−α)2ci−1,2

≤ α2c′i−1 +(α/8)(1−16α)c′i−1 = (−α2 +α/8)c′i−1 .

The first factor, seen as a function of α ∈ [1/4, 3/4], takes its maximum −1/32 at
α = 1/4. Hence c′i+1 ≤ −(1/32)c′i−1 < −(1/32)c′0/16i−1. All entries in rows i + 1
to n are negative and each c′j from row i + 2 on receives α j−(i+1) from c′i+1. Thus
c′j ≤ 4i− j+1c′i+1 < −4i− j+132−1161−iCε = −2(C/22i+2 j)ε ≤−2ε for all j ≥ i+1.

We modified b̃ by at most ε to get c. Hence b̃′0, . . . , b̃
′
i−1 > ε and b̃′i+1, . . . , b̃

′
n < −ε ,

and thus varε(b̃′) = {1}. ut

Let us now fix C :=16n, satisfying the premises of both lemmas for α ∈ [1/4, 3/4].
Based on these lemmas, we formulate the following exact but yet incomplete procedure
Descartesapprox(p̃, [c,d],ε): Let p̃(x) = ∑n

i=0 b̃iBn
i [c,d](x) be an ε-approximate Bern-

stein representation of p with respect to the interval I = [c,d]. If b̃0 or b̃n is small, abort
and signal failure. Otherwise compute V = varε(b̃), the set of potential values of var(b).
If V = {0}, return. If V = {1}, report I as an isolating interval and return. Otherwise,

6

choose a split point m ∈ (c+ d−c
4 , d− d−c

4) and invoke de Casteljau’s algorithm on b̃ to
compute approximate Bernstein representations b̃′ and b̃′′ for p with respect to intervals
[c,m] and [m,d]. Call Descartesapprox(p̃, [c,m],ε) and Descartesapprox(p̃, [m,d],ε).

Observe that Descartesapprox recurses whenever V contains a value larger than 1. We
have shown that whenever Descartesapprox cannot distinguish whether var(b) is less than
two or more than one, this branch of the computation ends in the next recursion step, be
it because the tip of the de Casteljau triangle is small or because both new coefficient
sequences b̃′ and b̃′′ have varε equal to {0} or {1}. We conclude that Descartesapprox ap-
plied to an ε-approximation of p always terminates (either successfully or by signalling
failure) and that the internal nodes of its recursion tree form a subtree of the (exact)
Descartes tree. Moreover, if the algorithm terminates successfully, it has determined
isolating intervals for the real roots of p.

How can we guarantee that first and last coefficients are large? Key are the obser-
vations that first and last coefficients are the values of our polynomial at the interval
endpoints, that a polynomial can be small only close to one of its complex roots (see
Section 4.1), and that randomization can keep interval endpoints away from the roots
(see Section 4.2). We describe two ways of randomization: a local one that selects each
split point at random (procedure DescartesrndL) and a global one that selects split points
deterministically but runs the entire procedure on a random translate of our input poly-
nomial (procedure DescartesrndG).

4.1 The Smith bound

We make the link between the complex roots of p and the magnitude of its values
through a corollary to the following theorem by Smith [17]. (We state a special case
of his result. For its direct proof, see, e.g., [18, Thm. 13].) For a polynomial f , lcf(f)
denotes the absolute value of the leading coefficient (= the coefficient of xn).

Theorem 7 (Smith bound). Let g be a polynomial of degree n and let ξ1, . . . , ξn be
pairwise distinct complex numbers. Then for any root z of g there is a ξi such that

|z−ξi| ≤
n |g(ξi)|

lcf(g) ·∏ j 6=i|ξ j −ξi|
. (5)

Corollary 8. Let f be a square-free polynomial of degree n with complex roots ξ1 to
ξn and σ ≤ sep(f). Let f̃ (x) = f (x)+ e(x) be an approximation of f with error term
e(x) = ∑n

i=0 εiBn
i [c,d](x) where |εi| ≤ ε for all i and some fixed ε ≥ 0. Let γ ≥ 0 and

z ∈ [c,d]. If | f̃ (z)| ≤ γ , then there is a root ξi of f such that

|z−ξi| ≤
n(γ + ε)

lcf(f) ·∏ j 6=i|ξ j −ξi|
≤ n(γ + ε)

lcf(f) σ n−1 . (6)

Proof. Let g(x) = f (x)− f (z) so that lcf(g) = lcf(f) and g(z) = 0. By Theorem 7, there
is a root ξi of f satisfying (5). From (2), we can deduce |g(ξi)|= | f (z)| ≤ | f̃ (z)|+ε . ut

7

4.2 Algorithm DescartesrndL

We obtain DescartesrndL from Descartesapprox by specifying the choice of split point.
In each recursive call, we select the split point m as m = αc+(1−α)d with α = u/K,
K = 2d5+logne, and u ∈ {K/4,K/4+1, . . . ,3K/4} chosen uniformly at random.

We will show that for at least seven eighth of the possible values of u, m has dis-
tance at least L := L(ε) := n(C +1)ε/(lcf(p)sep(p)n−1) from every root of p. By the
contrapositive of Corollary 8 applied with γ = Cε , this guarantees that the approximate
value of p at m is greater than Cε in absolute value. Consider a fixed root ξ of p. Any
two adjacent potential split points have distance (d − c)/K and hence there are at most
d2L/((d− c)/K)e values of u for which the distance of m and ξ is less than L. Thus all
n roots of p exclude at most n + 2LKn/(d − c) values of u. Since d − c > sep(p)/8 by
Corollary 3, this is less than K/16 and hence at most one eighth of the possible values
for u if n + 16LKn/sep(p) ≤ K/16 or 16L/sep(p) ≤ 1/(16n)− 1/K. Since K ≥ 32n,
this is fulfilled if 16L/sep(p) ≤ 1/(32n) or

ε ≤ lcf(p) · sep(p)n

512n2(C +1)
. (7)

However, sep(p) is unknown. Hence we maintain an estimate s for sep(p). We ini-
tialize s a negative power of two, to be specified later, and double log(1/s), i.e., replace
s by s2, whenever we have indication that s is still too big. For fixed s, we choose ε sat-
isfying (7) by setting log(1/ε) = dn log(1/s)+4n+2logn+10e = O(n log(1/s)); this
assumes lcf(p) ≥ 1. We use two indicators for s being too big: First, we stop when the
recursion depth exceeds the bound D(s) from Corollary 3 by more than 1. Second, we
call a choice of u and hence m a failure if the last coefficient of the resulting b̃′ (= first
coefficient of b̃′′) is small. Whenever a choice of u fails, we repeat it. We keep global
counters of all choices and failed choices. Whenever the fraction of failed choices is
more than half and we have tried at least twelve times, we stop, double log(1/s) and
start over. Once s ≤ sep(p), the bound on the recursion depth is no longer a constraint,
and the probability of a restart is less than 1/8. To see this, notice that more than half of
r random choices failing has probability at most

(r
dr/2e

)

(1/8)dr/2e ≤ 2−r/2, and as we

try at least twelve times, the probability of restart is at most ∑r≥12(21/2)−r ≤ 1/8.

Initialization. Let q(x) = ∑n
i=0 qixi be a square-free polynomial in power representation

normalized to qn ∈ [1,4). (The obvious normalization would be qn ∈ [1,2), but with
inexact data we need to avoid boundary cases.) We view the coefficients as infinite bit-
strings. Let τ be the maximum number of bits before the binary point in any coefficient.
All roots of q are bounded by 1+maxi|qi| in absolute value (Cauchy bound, [19, Lemma
6.7]) and hence are contained in the open disc of radius M :=2τ+1 about the origin of the
complex plane. In particular, the real roots of q are contained in the interval (−M,+M).
Let p(x) = q(4Mx−2M)/(4M)n. Then p has its real roots in (1/4,3/4) and hence the
first and last coefficient of its Bernstein representation with respect to [0,1] are large,
sep(p) = sep(q)/2τ+3, and lcf(p) = lcf(q).

We want to compute an ε/2-approximate Bernstein representation of p with respect
to [0,1]. (Halving ε is motivated later on.) We compute in fixed-point notation with

8

log(1/δ) bits after the binary point; δ to be determined later. Addition of two such
numbers and multiplication with an integer can be done exactly. We start from approx-
imations of the qi’s with error at most δ , compute p in power basis and then convert to
Bernstein representation. We have

p(x) = ∑
j

p jx j = q(4Mx−2M)/(4M)n = (4M)−n ∑
0≤ j≤n

x j ∑
j≤i≤n

(

i
j

)

(−2)i+ jMiqi .

The factor
(i

j

)

is an integer less than 2n and (4M)−n2i+ jMi = 2i+ j+i(τ+1)−n(τ+3) is a
non-positive power of two (since i ≤ n and j ≤ n). Hence the p j’s have O(τ + n) bits
before the binary point and error at most (n+1)2nδ . (To see this, note that the error in
each

(i
j

)

qi is at most 2nδ ; the shifts do not increase the error; each p j is the sum of at
most n+1 terms; and the additions do not introduce errors.) We have pn = qn ∈ [1,4).
The Bernstein representation of p with respect to [0,1] is given (see [14, 2.8]) by:

n

∑
l=0

blBn
l [0,1](x) =

n

∑
l=0

Bn
l (x)

l

∑
k=0

(l
k

)

(n
k

) pk =
n

∑
l=0

Bn
l (x)

l

∑
k=0

l(l −1) · · ·(l − k +1)(n− k)!
n!

pk .

To avoid divisions other than by powers of two, we compute n!bl instead bl and later
scale as to bring the leading coefficient back to [1,4). We have l(l−1) · · ·(l−k+1)(n−
k)! ≤ n! ≤ 2n logn. The leading coefficient of ∑l n!blBl(x) is in [1,4)n!. It is brought
back into [1,4) by shifting all coefficients to the right by r ∈ log(n!qn)±1 = O(n logn)
bits. The results are the coefficients b̃l for use in DescartesrndL. The error in each b̃l
is bounded by the sum of the errors of the p j’s multiplied by a small power of two
accounting for the discrepancy between 1/n! and 2−r. Hence the error is at most (n +
1)22n+3δ . We want this to be at most ε/2 and therefore choose δ as largest power of
two such that (n+1)22n+3δ ≤ ε/2. Thus log(1/δ) = log(1/ε)+O(n) = O(n log(1/s)).

The conversion requires O(n2) additions and multiplications. The coefficients have
at most O(τ +n+ log(1/δ)) = O(τ +n log(1/s)) bits. Multiplications are with numbers
of at most n logn bits and hence the bit complexity of conversion (using high-school
multiplication) is O(n2n logn(τ +n log(1/s)). This is O(n4 logn log(1/s)), since we will
choose s0 = 2−max(1,τ/n).

Complexity Analysis. The estimate log(1/s) runs through the values 2i log(1/s0),
i ≥ 0. For each s, we set ε such that log(1/ε) = O(n log(1/s)) = O(n2i log(1/s0)).
We compute an ε/2-approximate Bernstein representation of p with respect to (0,1)
and call DescartesrndL(p,(0,1),ε). Its recursion tree has depth at most D :=D(s)+1 =
O(log(1/s)) (Corollary 3), and there are at most n nodes on each level (Prop. 4). We
perform the arithmetic with log(1/δ2) bits after the binary point; δ2 fixed as follows.
In each node, there are n(n + 1)/2 = O(n2) operations, namely averages, that each
introduce an additional error δ2 but do not add bits before the binary point. The ac-
cumulated error in any value is at most ε/2 + n(n+1)

2 Dδ2. With n(n+1)
2 Dδ2 ≤ ε/2 or

log(1/δ2) = log(1/ε)+ log(n(n+1))+ log(D) = O(n log(1/s)), any error is at most ε .
Each averaging operation has bit complexity dominated by the multiplication cost

O(logn(τ +n+n log(1/s)))= O(n logn log(1/s)) and hence for any fixed s, the O(n3D)
operations in total have bit complexity O(n4D logn log(1/s)) = O(n4 logn log2(1/s)).

9

The i-th estimate of log(1/s) is 2i log(1/s0), and running DescartesrndL for this
value of s costs O(4i) ·h(n,s0) where h(n,s) = O(n4 logn log2(1/s)). Let i1 ≥ 0 be min-
imal such that s1 :=2i1 log(1/s0)≥ log(1/sep(p)). The probability that the i-th estimate
of s is used is at most (1/8)i−i1 since a call of DescartesrndL fails with probability less
than 1/8 whenever s ≤ sep(p). Hence the expected overall bit complexity is

(

∑
i≤i1

4i + ∑
i>i1

(1/8)i−i14i) ·h(n,s0) = O(4i1) ·h(n,s0) = h(n,s1) .

This means that, asymptotically, the last iteration alone determines the expected cost.
Since log(1/s1) = O(τ/n+ log(1/sep(p))) and log(1/sep(p)) = O(τ + log(1/sep(q)),
we have thus shown

Theorem 9. Let q = ∑n
i=0 qixi with |qn| ≥ 1 and |qi| ≤ 2τ for all i. The expected bit cost

of DescartesrndL to isolate the real roots of q is is O(n4 logn(τ + log(1/sep(q)))2).

4.3 Algorithm DescartesrndG

Let us now consider another variant of Descartes in which we fix α := 1/2 globally,
meaning that always the interval midpoint is chosen as split point. To keep them away
from the roots of p, we replace p = p0 by a random translate pβ (x) = p(x+β).

We can tighten the recursion depth bound of Corollary 3 to D(σ) :=blog(1/σ)+2c;
and Lemma 6 already holds for C :=8n. (For a proof, replace 8 by 16 in Eq. (4).)

As before, we maintain an estimate s of sep(p), starting from s0 := 2−max(1,τ/n).
The interval (0,1) decomposes into 2D = 4/s intervals of width s/4 which we call ele-
mentary intervals. Any interval I considered by DescartesrndG is a union of elementary
intervals (modulo the left endpoint). We call the endpoints of all elementary intervals
the elementary endpoints. Our goal is to choose β such that any root of pβ has distance
greater than L (as defined in Section 4.2) from both endpoints of the elementary interval
containing it, so that the approximate value of pβ at all elementary endpoints is greater
than γ = Cε in absolute value, so that DescartesrndG is successful. We choose β from

{

u
K
· s

4

∣

∣

∣

∣

u ∈ {0,1, . . . ,K −1}
}

(8)

uniformly at random, where the integer K is still to be determined. Consider a fixed root
ξi of p0. It excludes at most 1+(2L/(s/4))K values of u. Thus all n roots of p0 exclude
at most n+(8L/s)nK values of u. We want that at least 7/8 of the values are good and
hence require n +(8L/s)nK ≤ K/8 or 8L/s ≤ 1/(8n)− 1/K. With K := 2d4+logne we
obtain the condition 8L(ε)/s ≤ 1/(16n), or equivalently,

ε ≤ lcf(p0) · sn

128n2(C +1)
. (9)

We set log(1/ε) = dn log(1/s)+3n+2logn+8e = O(n log(1/s)) and limit the recur-
sion depth to D := D(s)+ 1. Whenever Descartesapprox aborts with failure, we double
log(1/s) and start again, making a fresh choice for β . Once s ≤ sep(p), every further
call to Descartesapprox has success probability at least 7/8.

10

Initialization. This is very similar to the initialization of DescartesrndL. One can com-
pute pβ from p using only addition, multiplication by integers, and bit shifts, without
introducing errors. The complexity stays at O(n4 logn log(1/s)).

Complexity analysis. Also very similar to DescartesrndL. However, the bit complexity
of Descartesapprox is O(n4 log2(1/s)) and hence better by a factor of logn, since α =
u/K with numerator length O(logn) is replaced by α = 1/2. This shows

Theorem 10. Let q = ∑n
i=0 qixi with |qn| ≥ 1 and |qi| ≤ 2τ for all i. The expected bit

cost of DescartesrndG to isolate the real roots of q is is O(n4(τ + log(1/sep(q)))2).

5 Some Experiments

We are in the process of conducting experiments3 on various classes of polynomi-
als with our algorithms DescartesrndL and DescartesrndG, implemented in fixed-point
arithemtic as detailed in their respective complexity analyses. Some preliminary find-
ings are as follows.

The random choice of the bisection parameter α in DescartesrndL is quite costly
in practice when compared to bisection at α = 1/2, because the latter does not require
multiplication with weights in the averaging step of the de Casteljau algorithm (addition
and shift suffice). Hence we suggest to try small denominators of α first, starting with
α = 1/2, and increasing them in each try up to the original value K. The resulting
variant of DescartesrndL, called Descartesbias

rndL, can be one order of magnitude faster in
practice.

Compared to the Bernstein Descartes method implemented with exact integer coef-
ficients and subdivision at α = 1/2, Descartesbias

rndL and DescartesrndG tend to be faster
for long coefficients.

As expected, experiments also indicate that the running time of our methods, unlike
approaches with exact arithmetic, is mostly unaffected by the irrationality of coeffi-
cients.

References

1. Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descartes’ rule of signs.
In Jenks, R.D., ed.: Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, ACM Press (1976) 272–275

2. Uspensky, J.: Theory of Equations. McGraw-Hill (1948)
3. Krandick, W.: Isolierung reeller Nullstellen von Polynomen. In Herzberger, J., ed.: Wis-

senschaftliches Rechnen. Akademie-Verlag (1995) 105–154
4. Rouillier, F., Zimmermann, P.: Efficient isolation of a polynomial’s real roots. J. Computa-

tional and Applied Mathematics 162 (2004) 33–50
5. Lane, J.M., Riesenfeld, R.F.: Bounds on a polynomial. BIT 21 (1981) 112–117
6. Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating real roots

and computing with certainty the topological degree. J. Complexity 18 (2002) 612–640
7. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer (2003)

3 See http://www.mpi-inf.mpg.de/˜sschmitt/Descartes.

11

8. Mourrain, B., Rouillier, F., Roy, M.F.: Bernstein’s basis and real root isolation. Rap-
port de recherche 5149, INRIA-Rocquencourt (2004) http://www.inria.fr/rrrt/
rr-5149.html.

9. Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic de-
composition. J. Symbolic Computation 34 (2002) 143–155

10. Henrici, P.: Applied and Computational Complex Analysis. Volume 1. Wiley (1974)
11. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik II: Fundamentalsatz der

Algebra und Grundlagen der Mathematik. Math. Z. 20 (1924) 131–152
12. Pan, V.: Solving a polynomial equation: Some history and recent progress. SIAM Review

39 (1997) 187–220
13. Pan, V.: Univariate polynomials: Nearly optimal algorithms for numerical factorization and

root finding. J. Symbolic Computation 33 (2002) 701–733
14. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer (2002)
15. Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. A K Peters

(1996) Translation of: Grundlagen der geometrischen Datenverarbeitung, Teubner, 1989.
16. Krandick, W., Mehlhorn, K.: New bounds for the Descartes method. Technical report, Drexel

University, Dept. of Computer Science (2004) to appear in J. Symbolic Computation, http:
//www.mcs.drexel.edu/page.php?name=reports/DU-CS-04-04.html.

17. Smith, B.T.: Error bounds for zeros of a polynomial based upon Gerschgorin’s theorems. J.
ACM 17 (1970) 661–674

18. Bini, D.A., Fiorentino:, G.: Design, analysis, and implementation of a multiprecision poly-
nomial rootfinder. Numerical Algorithms 23 (2000) 127–173

19. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press (2000)

12

