
INTERVAL ARITHMETIC USING SSE-2 (DRAFT)

BRANIMIR LAMBOV

ABSTRACT. We present an implementation of double precision interval arithmetic us-
ing the single-instruction-multiple-data SSE-2 instruction and register set extensions. The
implementation is part of a package for exact real arithmetic, which defines the interval
arithmetic variation that must be used: incorrect operations such as division by zero cause
exceptions, loose evaluation of the operations is in effect, and performance is more impor-
tant than tightness of the produced bounds. The SSE2 extensions are suitable for the job,
because they can be used to operate on a pair of double precision numbers and include
separate rounding mode control and detection of the exceptional conditions. The paper de-
scribes the ideas we use to fit interval arithmetic to this set of instructions, shows a perfor-
mance comparison with other freely available interval arithmetic packages, and discusses
possible very simple hardware extensions that can significantly increase the performance
of interval arithmetic.

1. INTRODUCTION

Interval arithmetic is a very useful tool that can be used to partially solve the problem
of roundoff errors or as part of a complete solution in the form of exact real arithmetic.

RealLib relies on fast machine precision interval arithmetic for its first stage. The per-
formance of the library in the cases that most frequently appear in practice, where machine
precision suffices, depends only on the performance of the first stage. Thus it is crucial to
have a very fast implementation of interval arithmetic.

The IEEE-754 standard for floating point arithmetic [9] has useful features to aid fast
interval arithmetic, namely the directed rounding modes that should be present with every
IEEE-754 implementation. Unfortunately, in some processor architectures, notably Intel’s
x86, it is non-trivial to effectively use them, as switching the rounding mode for an oper-
ation requires significantly more time than the operation itself. Even when one takes into
account the fact that one of the directed rounding modes can be emulated by operations
on negated values rounded in the other direction, an interval arithmetic package has to be
aware that users may mix interval with standard floating point arithmetic and would still
require repeatedly switching the rounding modes.

Fortunately, the newer generations of the x86 architecture provide an additional set of
registers with its own rounding control, the SSE2 double-precision floating point registers
[10]. They can coexist with the old x87-style floating point, which is still the register and
instruction set used most widely. Thus, to serve all purposes, we can reserve the SSE2
register and operation set for interval arithmetic and leave x87-style floating point for any
standard floating point operations that the user may be performing.

The SSE2 instruction set can also work on packed data, as every SSE2 register can
contain and operate on a pair of double-precision floating point numbers. Since an interval
is in fact a pair of bounds, one SSE2 register can be used to hold an interval, which nullifies
the additional register pressure that interval arithmetic would normally exert.

Key words and phrases. interval arithmetic.
1

Dagstuhl Seminar Proceedings 06021
Reliable Implementation of Real Number Algorithms: Theory and Practice
http://drops.dagstuhl.de/opus/volltexte/2006/714

With this it is possible to develop a very fast machine precision interval arithmetic im-
plementation. RealLib uses such an implementation which will be detailed in this chapter
of the thesis.

As it is part of an exact real arithmetic package, the objective of this implementation is
more oriented towards performance rather than accuracy, i.e. it prefers overestimating an
interval rather than investing too much time in evaluating it tightly. We believe that this
time would be better spent at the next iteration at higher precision, which would happen
only if the computation actually requires it.

Additionally, the implementation ignores the portions of the argument of an operation
that are outside its domain, e.g. the negative parts of the argument in a square root, meaning
for example that

√
[−1, 4] = [0, 2]. This is the proper mode of operation to ensure that

√
0

is computable in exact real arithmetic.

2. KEY IDEAS

Normally, interval arithmetic based on floating point would use two rounding opera-
tions, ∆ (rounding towards +∞) and∇ (rounding towards−∞). By default IEEE-floating
point uses rounding to nearest, which is not useful for our purposes.

We already mentioned that switching the rounding mode has a detrimental effect on
the performance of floating point operations, thus we would want to avoid all rounding
mode switches. We will only do this once, at the beginning of a computation1, setting the
rounding mode to rounding towards −∞. To compute lower bounds of the results, we will
directly use the floating point operation. To compute upper bounds, we will make sure that
the result of the floating point operation is negated, thus making use of the identity

∆(x) = −∇(−x).

Seeing operations in the form above, compilers are usually overzealous2 to fold the pair
of negations and destroy the effect we want to achieve. To avoid this, at the same time
keeping down the number of required operations, we make sure that we always keep the
high bound of the interval negated, i.e. our representation of the interval x = [x, x] is the
pair 〈x,−x〉. (in the rest of this chapter we will assume every interval is represented in this
fashion and will simply write x to mean [x, x] and 〈x,−x〉)

Three observations can be made directly from this:
• in this setting, the sum of x and y is evaluated by

〈
∇(x + y),−∇(−x− y)

〉
which

is achieved by a single instruction, mm add pd .
• changing the sign of an interval x is achieved by simply swapping the two bounds,

i.e. 〈−x, x〉, achieved by a single instruction, mm shuffle pd ,
• joining two intervals (i.e. finding an interval containing all numbers in both,

or finding the minimum of the lower bounds and the maximum of the higher
bounds) is performed as

〈
min(x, y),−min((−x), (−y))

〉
in a single instruction,

mm min pd .
The latter is used extensively in the computation of multiplication, division and other

operations.

1This is accomplished by the construction of a special object that also takes care of restoring the previous
rounding mode after the interval computation has completed.

2The two negations have no effect on the rounding-to-nearest mode which is normally in place in C/C++
code, and on which many standard functions rely, thus this optimization is perfectly legal. Only our specific
(non-standard) use of floating point makes it unwanted.

2

3. OPERATIONS

In this section we will give short remarks on our implementation of the basic operations
on intervals. The operations include the arithmetic operators, including the special cases
−x, 1

x , and x2, absolute value and square root.
All the operations give tight bounds (i.e. the best possible enclosures after rounding).

3.1. Addition. Definition:

x + y = [x + y, x + y] ⊆
〈
∇(x + y),−∇((−x) + (−y))

〉
Addition is implemented as a single mm add pd instruction. The negated sign of the

higher bound ensures the proper direction of the rounding.

3.2. Sign change. Definition:

−x = [−x,−x] = 〈−x, x〉

This is a single swap of the two values, implemented as a mm shuffle pd instruction.
No rounding is performed here.

3.3. Substraction. Definition:

x− y = [x− y, x− y] ⊆
〈
∇(x + (−y)),−∇((−x) + y)

〉
Substraction is implemented as x + (−y), which corresponds to two processor instruc-

tions. This is the best that can be achieved with packed SSE2 instructions, because the
formula requires a combination of the high bound of one of the arguments with the low
bound of the other.

3.4. Multiplication. Definition:

(3.1) xy = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)]

Unfortunately, the rounding steps are inseparable parts of the operations, this the equa-
tion above requires 8 multiplications. Using the fact that ∆(∇(r)+ ε) ≥ ∆(r) (for ε being
the smallest representable number), one can do with 4 multiplications at the expense of
some accuracy.

In our implementation we chose a different approach where we use four multiplications
without sacrificing accuracy, by selecting the multiples based on the signs of x and x. More
specifically, we use these observations:

(3.2) xy =


[min(xy, xy),max(xy, xy)], if 0 ≤ x ≤ x
[min(xy, xy),max(xy, xy)], if x < 0 ≤ x
[min(xy, xy),max(xy, xy)], if x ≤ x < 0

to conclude that the formula

xy ⊆ 〈min(∇(ax),∇(b(−x))),−min(∇(c(−x)),∇(dx))〉 ,

3

where

a =
{

y if 0 ≤ x
−(−y) otherwise

b =
{

−y if (−x) ≤ 0
(−y) otherwise

c =
{
−(−y) if (−x) ≤ 0

y otherwise

d =
{

(−y) if 0 ≤ x
−y otherwise

computes the rounded results of the multiplication formula in (3.1). It uses more instruc-
tions than the direct implementation with 8 multiplications, but achieves better perfor-
mance.

3.5. Multiplication by a positive number. When one of the numbers is known to be
positive (e.g. a known constant), one can use one of the cases in (3.2) directly:

xy
x≥0
= [min(xy, xy),max(xy, xy)]

This is significantly faster than the general case multiplication, involving only 5 instruc-
tions (4 for constants).

3.6. Multiplication of two positive numbers. If both multiples are known to be positive,
multiplication can be achieved by simply changing the sign of the higher bound of one
of the arguments followed by mm mul pd . If one of the numbers is a constant, one can
prepare it in a suitable way to avoid the sign change and implement the multiplication as a
single instruction.

3.7. Division. Definition:
x

y
=

[
min

(
x

y
,
x

y
,
x

y
,
x

y

)
,max

(
x

y
,
x

y
,
x

y
,
x

y

)]
,

undefined if 0 ∈ y.
Again, this computation would require 8 divisions. Unfortunately, division is a rather

slow operation, that is why we would prefer to use as few divisions as possible. One way
to do this is to use x

y = x 1
y , using the definition below, which uses only two divisions but

quite a few other operations.
A more efficient (as well as more accurate) approach turns out to be the use of case

distinction similar to (3.2). By examining the divisor, we end up with fewer possible cases
and easy recognition of the exceptional cases. More specifically, the operation becomes:

(3.3)
x

y
=


[
min

(
x
y , x

y

)
,max

(
x
y , x

y

)]
, if 0 < y ≤ y

exception, if y ≤ 0 ≤ y[
min

(
x
y , x

y

)
,max

(
x
y , x

y

)]
, if y ≤ y < 0

The final formula we use is

x

y
⊆

〈
min

(
∇

(
a

y

)
,∇

(
−a

(−y)

))
,−min

(
∇

(
−b

(−y)

)
,∇

(
b

y

))〉
,

4

where

a =
{

x if (−y) ≤ 0
−(−x) otherwise

b =
{

(−x) if 0 ≤ y
−x otherwise

with an additional check to throw an exception if y ≤ 0 ≤ y.

3.8. Reciprocal. Definition:

1
x

=
[

1
x

,
1
x

]
⊆

〈
∇

(
−1

(−x)

)
,∇

(
−1
x

)〉
,

undefined if 0 ∈ x.
This is implemented as a check if the argument contains zero, followed by division of

−1 by the argument and swapping the two components.

3.9. Absolute value. Definition:

|x| = [max(x,−x, 0),max(−x, x)] = 〈max(0, x, (−x))),−min(x, (−x))〉 .

3.10. Square. Implemented as x2 = |x||x|, using multiplication of positive numbers.

3.11. Square root. Definition:

√
x =

[√
x,
√

x
]

only defined if 0 ≤ x.
Since the rounding is an integral part of the square root operation, and in this case we

cannot achieve a negated result, we need to use another method to ensure rounding in the
correct direction. We use the fact already mentioned in the subsection on multiplication,
∆(r) ≤ −∇(−ε−∇(r)).

The formula we use is:

√
x ⊆


〈
∇

(√
x
)
,−∇

(√
−(−x)

)〉
, if ∇

(
∇

(√
−(−x)

))2

= −(−x)〈
∇

(√
x
)
,∇

(
∇

(
−ε−

√
−(−x)

))〉
, otherwise

(where ε is the smallest representable positive number).
The condition for making the first choice in this formula is only satisfied if the result

of
√
−(−x) is exactly representable, in which case ∇

(√
−(−x)

)
= ∆

(√
−(−x)

)
.

Otherwise the second choice adjusts the high bound to the next representable number.
Note that if we don’t require tight bounds, using only the second choice in the equation

above is sufficient to implement interval square root.
If the argument is entirely negative, the implementation will raise an exception. If it

contains a negative part, the implementation will crop it to only its non-negative part, to
allow that computations such as

√
0 can be carried on in exact real arithmetic.

5

4. TRANSCENDENTAL FUNCTIONS

If the implementations of transcendental functions in the standard C/C++ libraries sat-
isfied the requirements of IEEE-754 rounding, interval versions of them could be imple-
mented in a manner similar to above. Unfortunately, the accuracy of these libraries (or
hardware implementations) is notoriously unreliable. Moreover, it is almost never possible
to find information about the error bounds of these functions, which vary from architecture
to architecture and even with different compilers and different compiler versions on the
same machine.

Thus we decided to implement transcendental functions on intervals that produce certi-
fied bounds enclosing the result. They do not try to give tight (correctly rounded) bounds,
instead prefer to overestimate but compute quickly. The elaborate theory and complicated
implementation required to give tight bounds are beyond the scope of the intended appli-
cation of our interval arithmetic implementation.

All the implementations rely on polynomial approximations generated using an imple-
mentation of the Remez algorithm (see e.g. [1]) with exact computation and certified error
bounds. However, instead of finding the best Chebyshev approximation and using interval
coefficients containing the real ones, we use multi-step approximation (suggested by [3])
where we approximate, round the highest-order coefficient to a double-precision number
and then approximate again with a lower-degree polynomial using this rounded value as a
fixed coefficient. The final coefficient is taken as an interval, expanded to accommodate
the approximation error and rounded outwards.

With this the approximation of the function in its primary interval only requires the
computation of this polynomial with interval arithmetic (in fact we do a little bit better, dis-
cussed below). The fact that all coefficients except the final additive are double-precision
numbers helps to reduce the growth of the intervals. We choose our primary intervals to
contain only non-negative numbers, so that multiplication of intervals can be performed
as the special case that requires only two multiplications in a single instruction. For an
additional speed-up, the polynomial evaluation is done using Estrin’s algorithm (see [7])
to maximize parallelism.

For a monotone function, we know that if P (x) = cnxn + ... + c1x + c0 chosen so that
P (x)− e ≤ f(x) ≤ P (x) + e for all x in some non-negative interval [a, b],

P (x)− e ≤ f(x) ≤ P (x) + e

P (x)− e ≤ f(x) ≤ P (x) + e

but for any x ∈ [x, x], f(x) ≤ f(x) ≤ f(x), thus

P (x) ≤ P (x)− e ≤ f(x) ≤ P (x) + e ≤ P (x),

i.e. f [x] ⊆
[
P (x), P (x)

]
, where P (and P) is P computed in such a way that it gives

a lower bound for P (x) − e (resp. a higher bound for P (x) + e). If all the coefficients
are positive, this can be accomplished by simply rounding all coefficients down (resp. up),
with the exception of c0, which would also have to accommodate e, i.e. c0 = ∇(c0 − e)
(resp. c0 = ∆(c0 + e)). In our special case where all coefficients except c0 are exactly
represented in double precision, the coefficients of P and P coincide with the coefficients
of P except for the very last one, c0.

Unfortunately, in the presence of inexact operations, the evaluation of the polynomial
is not so easy to do if the coefficients are not all positive. A negative coefficient requires
an upper bound for xi, which would be a nuisance to compute and would add up to the
uncertainty of the result. However, in the cases we actually use we have patterns that can

6

be exploited, e.g. alternation between positive and negative coefficient. In the latter case,
in the computation of P we can assume x is given exactly, thus we can compute pairs
ci+1x + ci rounded in the correct direction (these pairs are actually required by Estrin’s
algorithm). If we, additionally, know that all these pairs are positive (e.g. if 0 < x ≤ 1
and −ci+1 ≤ ci), the computation can proceed from there using only lower bounds for the
even powers of x.

The transcendental functions in the current implementation of the interval arithmetic
package of RealLib are not very precise, i.e. they overestimate the output intervals. The
main reason for this is the use of Estrin’s algorithm, which was chosen for its superior
performance. At the moment we are considering improving the accuracy of these functions
whenever such improvements would not drastically influence their performance.

On the other hand, since the functions do provide correct enclosures in very little time,
and overestimation is one of the principles on which the exact real number library RealLib
is based, the current transcendental functions completely serve their purpose as part of the
library.

4.1. Sine and cosine. Sine and cosine are non-monotonic functions, which means that
one cannot simply use sinx = [sinx, sinx]. Instead, we use the fact that both functions
are non-expansive and thus

sinx =
[
sin

[
x + x

2

]
+

x− x

2
, sin

[
x + x

2

]
+

x− x

2

]
,

where by sin[x] we mean evaluation of sin on the interval [x, x], returning an interval
containing the result.

The latter we compute by a polynomial approximation of the function sin x
3 on the

interval [−π, π] by an 8-coefficient polynomial, such that sin x
3 ≈ xP (x2). Before we can

apply this, we use range reduction (which can be safely performed as x is a real number
and not an interval) to make sure x ∈ [−π, π]. To get the final value of sinx, we use the
identity sin(3x) = (3 sin2 x− 4) sinx.

The computation of cosine is done in a very similar manner, the only significant differ-
ence is that the approximation used is cos x

3 ≈ P (x2), i.e. the computation requires one
multiplication less.

4.2. Arctangent. Two versions of this function are used in practice, one is the simple arc-
tangent and the other one takes two arguments and gives a result that depends on the signs
of both of them so that it can be directly used to compute polar coordinates or arguments
of complex numbers.

Both are implemented using case distinctions and a common function that computes
the arctangent for the primary interval [0, 1]. For the cases that contain numbers on the
boundaries (e.g. [−0.9, 1.1]), we use the fact that arctangent is lipschitz continuous with
constant one, this we simply return a constant interval expanded to accommodate the width
of the input interval.

The computation on the primary interval is done simply by a polynomial approximation
with 20 coefficients of alternating sign.

4.3. Exponent. Since the floating point representation of numbers uses a base-2 exponent,
the easiest way to perform exponentiation is to transform the argument to base 2 (i.e.
simply multiply by log2 e), separate the integer and fractional part, use some bit operations
to construct a number with the integer part as the exponent, approximate the exponent of
the fractional part and combine the two components using multiplication.

7

We do this separately for the lower and upper bounds of the interval. The extraction
of integer and fractional part is an exact operation, but any other step in the computation
requires that we round in the appropriate direction. The 12-coefficient polynomial approx-
imation of 2x for x ∈ [0, 1) we use contains only positive coefficients, thus it presents no
problem. The initial and final multiplication are done according to the rules of interval
multiplication with one (resp. two) positive multiples.

4.4. Logarithm. The range reduction in the logarithm case is the inverse of the work done
for exponentiation, with a few additional steps.

The mantissa and exponent are separated using a few bit operations, to produce a man-
tissa in the range [0.5, 1). Unfortunately the direct approximation of the function lnx on
this interval does not give us a polynomial which can be safely evaluated separately for the
lower and upper bounds of an interval.

Instead, we approximate ln(1 − x) where x ∈ (0, 1 − 2−
1
4], using two steps of range

reduction to limit the number of coefficients to 14 (all positive). The range reduction is
accomplished by choosing x or x22−i

(for i = 1, 2) depending on whether the latter is
smaller than one, adjusting the exponent by adding 2−i if that is the case.

The result of the polynomial approximation is finally added to the (adjusted) exponent,
multiplied by ln 2.

5. PERFORMANCE

We compare the performance of this implementation to the performance of two other
packages for interval arithmetic freely available on the internet: the interval part of the
Boost project (version 1.33.0, [8]) and the library filib++ (version 2.0, [5]). For the latter, we
tried the macro version as well as two of the available rounding policies, multiplicative and
native onesided global , the latter corresponding most closely to our method of rounding.

The results of the benchmark are summarized in the following table, showing the ratio
between the performance of the respective library and double precision floating point:
operation filib++, filib++, filib++, Boost RealLib3

macro onesided multiplicative
+ 6.52 2.64 6.84 10.72 1.11
* 7.86 3.40 7.93 113.47 5.50
/ 12.42 3.98 10.06 9.60 3.80√
· 25.43 63.97 63.17 16.54 2.00

| · | 27.11 20.23 20.21 1.61 2.62
sin 2.91 2.63 2.73 - 0.63
cos 2.92 2.75 2.74 - 0.58
arctan 2.26 6.20 6.42 - 1.27
e· 3.45 22.25 40.30 - 0.86
ln 3.86 5.91 6.13 - 0.94∑1000000

i=1
1
i 3.19 1.51 2.74 4.80 1.53

(Pentium-M 1.8GHz, Windows XP + Cygwin, GCC 3.4.4)
Several cells are blank, because Boost does not provide transcendental operations.
RealLib is faster almost everywhere, with the notable exception of multiplication in

filib++’s native onesided global mode. In this case filib++ uses a case distinction, which
in our test only reaches the shortest of the 9 possible paths. We prefer not to explore the
performance of filib++’s multiplication in cases where the signs of the arguments change
in an unpredictable manner. Our implementation does not have such a problem as it only

8

uses one execution path for all multiplications, thus the ratio given in the table is both best
and worst case performance.

6. INTEL’S SSE3

The latest multimedia extension set introduced by Intel, the SSE3 [12], aimed at im-
proving complex number computations, does not provide any benefit for interval compu-
tations. Intel chose to improve complex multiplications and divisions by introducing the
instruction mm addsub pd , which combines two packed registers by adding one of the
two components and subtracting the other [11]. Unfortunately, the use of this instruction
leads to incorrect results if a directed rounding mode is in effect, because the multiplication
that precedes the substraction is rounded in the wrong direction.

A better handling of complex multiplications would have been the introduction of a
multiplication instruction “mulpn” (for multiply positive negative) that changes the sign of
one of the components of one of the arguments. This would require the same effort that
the instruction mm addsub pd required, but would have the correct behavior in directed
rounding modes, i.e. complex multiplication code using mulpn would yield upper bounds
for the result of the multiplication if rounding towards +∞ is in effect, and lower bounds
in the case of rounding towards −∞.

Unlike mm addsub pd , a mulpn instruction would have been useful and advantageous
for interval arithmetic. Multiplication of two positive numbers could be implemented as
a single mulpn, which would also speed up the implementations of transcendental interval
functions.

7. SUGGESTIONS FOR A HARDWARE IMPLEMENTATION

We hope that the presentation until this point has convinced the reader that the use of the
storage 〈x,−x〉 for intervals in SSE2 registers is clearly superior to the traditional method
of storing intervals as simply the pair of the two bounds. This mode of storage avoids
the need for special rounding modes in a hardware implementation, and even turns some
existing instructions into meaningful interval operations.

We propose this storage to be adopted as the preferred storage format for intervals in
hardware implementations.

To further speed up computations on intervals, we propose the introduction of a special
selection instruction we call ivchoice (for interval choice) that can be used to prepare the
arguments for multiplication and division. The action of this instruction should correspond
to the following function:
__m128d ivchoice(__m128d a, __m128d b) {

a = _mm_xor_pd(a, _mm_set_pd(0.0, -0.0));
a = _mm_shuffle_pd(a, a, _mm_movemask_pd(b));
return a;

}

This is pseudocode, because mm shuffle pd cannot be performed based on a non-const
integer. A software implementation of the above requires a switch statement, which can
slow the execution considerably, especially in cases where the signs of the multiples cannot
be predicted.

If such an instruction is available, the multiplication algorithm becomes:
__m128d IntervalMul(__m128d x,

__m128d y) {
__m128d a = _mm_shuffle_pd(x, x, 1);

9

__m128d b = _mm_shuffle_pd(y, y, 1);
__m128d c = ivchoice(b, x);
__m128d d = ivchoice(y, a);
__m128d e = _mm_mul_pd(c, x);
__m128d f = _mm_mul_pd(d, a);
__m128d g = _mm_min_pd(e, f);
return g;

}

If the latency of the proposed instruction can be the same as the latency of mm shuffle pd ,
this sequence of instructions will run about 30% faster than the current implementation.

Moreover, since the multiplications above only use the results of ivchoice with the same
second argument, it is even possible to fuse ivchoice with the multiplication that is applied
to the result. The extent to which such fusion can be beneficial depends on the actual hard-
ware implementation. If the latency of ivchoice can be folded completely (which seems
possible) or partially, interval multiplication using the fused “ivmul” could reach a latency
close to the latency of two dependant double precision multiplications.

Apart from an additional test if the divisor contains zero and the use of mm div pd
instead of mm mul pd , the division code is identical to the multiplication one:

__m128d IntervalDiv(__m128d y, __m128d x) {
if (_mm_movemask_pd(x)==3)

throw exception;
__m128d a = _mm_shuffle_pd(x, x, 1);
__m128d b = _mm_shuffle_pd(y, y, 1);
__m128d c = ivchoice(b, x);
__m128d d = ivchoice(y, a);
__m128d e = _mm_div_pd(c, x);
__m128d f = _mm_div_pd(d, a);
__m128d g = _mm_min_pd(e, f);
return g;

}

Fused ivchoice and division (“ivdiv”) is also possible.
Of course, one would prefer to have a complete hardware implementation of interval

arithmetic that provides instructions for the four basic operations on intervals. In our mode
of operation addition already has a hardware implementation as a single instruction. Sub-
straction would require a fusion of swapping and addition (“ivsub”) which should be easy
to accomplish in hardware without extra latency compared to addition.

On the other hand, multiplication and division seem too complex to be directly imple-
mented. A pure hardware implementation of multiplication may be able to choose execu-
tion paths without the delays associated with incorrect branch predictions, thus probably
the preferable hardware design would examine the signs of the four components to choose
one of 9 possible combinations and perform a single pair of multiplications in 8 of the
possible cases. In the 9’th case, however, the operation would require the same amount of
work as the function IntervalMul above.

Since the worst-case latency would be the same as the algorithm above, the latter should
not be ignored as a possible basis for a pure hardware implementation of interval multipli-
cation.

To conclude, we suggest that hardware assistance for interval computations should be
provided as the adoption of the 〈c,−c〉 storage format and the introduction of the instruc-
tions of one of the following three levels:

10

basic mulpn, ivsub, ivchoice
advanced mulpn, ivsub, ivmul , ivdiv

full ivsub, IntervalMul , IntervalDiv
The advanced level seems to be the best combination of feasibility and performance.

8. RELATED WORK

In [4], von Gudenberg discusses the efficiency of implementations of interval arithmetic
using the multimedia extensions Intel’s SSE, AMD’s 3DNow! and Motorola’s AltiVec.
The paper concludes that the use of multimedia extensions only leads to a very modest
improvement in multiplication with Intel’s SSE in comparison to standard floating point,
and only due to the fact that four single-precision operations can be executed in parallel.

Unlike SSE, the double precision second version of the extensions, SSE2, is a natural
candidate for interval arithmetic because the packed registers hold two double precision
values.

Von Gudenberg used a variety of rounding policies, the fastest of which is global
onesided rounding, the method we use, but did not store one of the components negated in
memory. Consequently, handling the negations required to perform rounding in the proper
direction increases the number of instructions needed for every operation. If we were to
use SSE2 in a similar mode of operation, the required number of instructions for addition
would be four instead of one, for sign change – two instead of one, for substraction – five
instead of two, and for multiplication of positive intervals – three instead of two.

Additionally, instead of 9-case branching on the signs of the 4 components, we pre-
fer to use 4 multiplications with selected arguments (the selection is branch-free), which
gives us stable performance that is not affected by branch mispredictions or longer latency
execution paths, although with a slightly worse best-case performance.

In [6], Kolla, Vodopivec and von Gudenberg discuss the possibility of hardware ex-
tensions supporting interval arithmetic similar to the multimedia extensions 3DNow!, via
packed storage of single precision numbers in a double precision register. For addition and
substraction they require special instructions that round each component of the pair in the
appropriate direction, and for multiplication they describe a case selection method that can
easily be implemented and be very efficient for 8 of the 9 possible cases and requires a
sequence of operations and longer latency for the (rare) 9’th case.

We are quite skeptical about the chances of such a complicated multiplication instruc-
tion ever being implemented in hardware. Instead, we give a much more modest proposal
that can also lead to very good performance at the cost of little extra hardware. It also has
the benefit that one of the operations, addition, already has a hardware implementation.

In [2], Ershov and Kashevarova report on implementations of transcendental functions,
based on the Chebyshev and Taylor approximations of these functions. They note that three
sources of error have to be accounted for in the computation of approximating polynomials:

• the error caused by finitely approximating an infinite sequence,
• the error in the approximation of the coefficients of the polynomial,
• the error caused by inexact operations.

The use of rounded coefficients influencing the choice of approximating polynomials in
our approach nearly invalidates the need to consider the second source of error above. Our
approximating polynomials only contain coefficients that are correctly representable as
double precision floating point numbers, with the exception of the first coefficient, whose
interval representation could be modified so that it also covers the first source of error in
the list above.

11

REFERENCES

[1] Cheney, E. W. Introduction to Approximation Theory, 2nd ed. Providence, RI: Amer. Math. Soc. (1999).
[2] Ershov, A.G., Kashevarova, T.P., Interval Mathematical Library Based on Chebyshev and Taylor Series

Expansion. Reliable Computing Vol. 11, No. 5 (2005).
[3] Green, R., Faster Math Functions. Game Developers Conference (2002).

available at http://www.research.scea.com/research/pdfs/RGREENfastermath_
GDC02.pdf

[4] von Gudenberg, J.W., Interval Arithmetic on Multimedia Architectures. Reliable Computing Vol. 8 No. 4
(2002).

[5] Hofschuster, W., Krämer, W., Lerch, M., Tischler G., von Gudenberg, J.W., The Interval Library fi lib++
2.0 Design, Features and Sample Programs. Preprint 2001/4,Universität Wuppertal, (2001).
available at http://www.math.uni-wuppertal.de/wrswt/preprints/prep_01_4.pdf

[6] Kolla, R., Vodopivec, A., von Gudenberg, J.W., The IAX Architecture – Interval Arithmetic Extension.
Universität Würzburg, Institut für Informatik, Techn. Report TR225, April 1999.
available at http://www2.informatik.uni-wuerzburg.de/mitarbeiter/wvg/Public/
iax.ps.gz

[7] Knuth, D., The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Third Edition. Read-
ing, Massachusetts: Addison-Wesley, xiv+762pp. (1997).

[8] Boost Interval Arithmetic Library.
available at http://www.boost.org/libs/numeric/interval/doc/interval.htm

[9] IEEE Standards Committee 754, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Stan-
dard 754-1985. Institute of Electrical and Electronics Engineers, New York (1985). Reprinted in SIGPLAN
Notices, 22(2):9–25 (1987).

[10] Intel Corp., IA-32 Intel Architecture Software Developer’s Manual, Volumes 1-3.
available at http://developer.intel.com/design/pentium4/manuals/index_new.
htm

[11] Intel Corp., Using SSE3 Technology in Algorithms with Complex Arithmetic.
available at http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/
optimization/66717.htm

[12] Intel Corp., Next Generation Intel Processor: Software Developers Guide.
available at http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/
optimization/66756.htm

BRICS, UNIVERSITY OF AARHUS, IT PARKEN, 8200 AARHUS N, DENMARK

E-mail address: barnie@brics.dk

12

http://www.research.scea.com/research/pdfs/RGREENfastermath_GDC02.pdf
http://www.research.scea.com/research/pdfs/RGREENfastermath_GDC02.pdf
http://www.math.uni-wuppertal.de/wrswt/preprints/prep_01_4.pdf
http://www2.informatik.uni-wuerzburg.de/mitarbeiter/wvg/Public/iax.ps.gz
http://www2.informatik.uni-wuerzburg.de/mitarbeiter/wvg/Public/iax.ps.gz
http://www.boost.org/libs/numeric/interval/doc/interval.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/optimization/66717.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/optimization/66717.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/optimization/66756.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/optimization/66756.htm

	1. Introduction
	2. Key ideas
	3. Operations
	3.1. Addition
	3.2. Sign change
	3.3. Substraction
	3.4. Multiplication
	3.5. Multiplication by a positive number
	3.6. Multiplication of two positive numbers
	3.7. Division
	3.8. Reciprocal
	3.9. Absolute value
	3.10. Square
	3.11. Square root

	4. Transcendental functions
	4.1. Sine and cosine
	4.2. Arctangent
	4.3. Exponent
	4.4. Logarithm

	5. Performance
	6. Intel's SSE3
	7. Suggestions for a hardware implementation
	8. Related work
	References

