
Interval Subroutine Library Mission?

George F. Corliss1, R. Baker Kearfott2, Ned Nedialkov3, John D. Pryce4, and
Spencer Smith5

1 Marquette University
2 University of Louisiana at Lafayette

3 McMaster University and Lawrence Livermore National Laboratory
4 Cranfield University, RMCS Shrivenham

5 McMaster University

Abstract. We propose the collection, standardization, and distribution
of a full-featured, production quality library for reliable scientific comput-
ing with routines using interval techniques for use by the wide community
of applications developers.

1 Vision – Why are we doing this?

The interval/reliable computing research community has long worked to attract
practicing scientists and engineers to use its results. We use any of the terms
interval, reliable, verified computation in the sense of producing rigorous bounds
on true results, e.g., [1, 2]. The Interval Subroutine Library (ISL) is a project to
place interval tools into the hands of people we believe will benefit from their use
by gathering and refining existing tools from many interval authors. We acknowl-
edge that intervals carry a steep learning curve, and that they sometimes have
been over-promised. The winning strategy for widespread adoption of interval
technologies is the development of “killer applications” that are so much better
(in some sense) than current practice that practicing scientists and engineers
have no choice but to adopt the new technology.

The ISL team wants to see such killer applications appear, but producing
them is not our mission. The routine use of interval techniques by practicing sci-
entists and engineers is hampered by a lack of widely-used, comprehensive, qual-
ity interval software that is available on all major platforms (Linux, Mac, Unix,
Windows). Once such software is available, use of interval techniques is likely to
grow along at least three paths: small-scale applications by scientists/engineers in
the course of their daily work; professionally built applications in a specific area,
such as global optimization or curve graphing; and the almost invisible embed-
ding of verified computing as a tool in commodity software such as spreadsheets
or scientific data analysis and document preparation.

? This work was supported in part by EPSRC Grant D033373/1. Submitted to Reliable
Implementation of Real Number Algorithms: Theory and Practice, in the LNCS
series of Springer Verlag, P. Hertling, C. Hoffmann, W. Luther, and N. Revol, eds.

Dagstuhl Seminar Proceedings 06021
Reliable Implementation of Real Number Algorithms: Theory and Practice
http://drops.dagstuhl.de/opus/volltexte/2006/712

ISL can provide the infrastructure for such developments. ISL targets appli-
cation developers, those who are developing the significant applications. Interval-
based tools tailored for specific end-practitioner applications are developed by
applications developers with expertise in applications areas, but those developers
are not finding interval tools they perceive as attractive for their applications.
Currently, if we talk to a group of scientists or engineers about intervals and
convince them of the value of interval techniques, when they ask, “Great! What
software can I use?” there is a long, painful pause. We have many tools, pack-
ages, and research codes, but we have no CD that solves their problems with
rigorous bounds.

The ISL project itself does not author software; contributing authors do that.
The goal of the ISL project is to gather and disseminate a library of high quality
interval-based tools. The fundamental requirements is, “Thou shalt not lie.”
Routines are expected to return an enclosure of the correct mathematical result
or else provide a suitable indication of failure. The qualities of interest for the
ISL project include

• correctness, • comprehensiveness,
• reliability, • performance,
• robustness, • maintainability, and
• usability, • portability.

To achieve these qualities, the ISL project encourages its contributing authors to
use software engineering sound principles, including documentation, good archi-
tecture, thorough testing, and coding standards. The documentation produced
and the process of assembling the library also support the goal of achieving high
quality. Documentation should be complete, consistent, correct, usable, veri-
fiable, maintainable, and reusable. The development process should have the
qualities of productivity, timeliness, and transparency.

The authors are embarking upon a plan for the cooperative development of
such a library. This paper lays out the broad scope of the project.

1.1 Short-term goals

By the end of 2007, we expect to offer interval BLAS levels 1 and 2 and a
collection of problem-solving packages, mostly chosen from existing software,
including linear systems, optimization, and differential equations. The collection
may include utilities for automatic differentiation, Taylor models, and constraint
propagation. For our plan to achieve this, see § 3.1.

1.2 Long-term goals

In perhaps 6 to 8 years, we hope to offer a library of interval tools with coverage
comparable to early releases of the IMSL or NAG libraries, SLATEC [3], the
popular Numerical Recipes books [4, 5], the GSL - GNU Scientific Library [6], or
other comparable libraries. The library will be freely available, and we shall also

encourage its appearance in commercial products. The library should be used
by a significant number of applications widely used in their respective domains.
For our plan to achieve this, see § 3.2

2 Product – What will we deliver?

To meet the needs of a wide community of applications developers in a broad
cross-section of applications areas, we need a portable, comprehensive, produc-
tion-quality library of interval tools solving most of the standard problems of
scientific computation. The library should be available in a downloadable or
CD form. The library should also have a clear licensing structure that protects
authors, while still encouraging commercialization.

2.1 Contents

We envision a hierarchical library, with units organized into chapters roughly as
suggested by Figure 1:

Interval arithmetic and extended interval arithmetic based on csets (BIAS)

Interval standard functions (level 0 BLAS) Levels 1, 2, and 3 BLAS (vector, matrix-vector, and matrix-matrix operations)

Validated enclosure to systems of linear equations

low-level routines

applications

Global Optimization and
solution of nonlinear systems

Quadrature

ODE's PDE's

robust graphics chemical engineering

artificial intelligence mathematical proofs

stability analysis of dynamical systems
(particle accelerator beams, asteroid
 orbits, etc.)

etc.

Taylor arith.?

Many others
 (?)

Constraint Propagation Support

problem-solving routines

AD

Fig. 1. A tentative hierarchical structure.

Level 0 – Basic Interval Arithmetic: Interval arithmetic including
1. Constructors,
2. Arithmetic operations,
3. Comparison operators,
4. Input/output, and
5. Elementary functions.

Level 0 should be consistent with the C++ interval arithmetic standard [7]
proposed by Brönnimann, Melquiond, and Pion (BMP) and have a large
overlap with the functionality provided by many current interval arithmetic
packages, including PROFIL/BIAS [8], FILIB++ [9], Boost [10], Gaol [11],
C–XSC [12–16], and the Sun C++ compiler [17].

Level 1 – Utilities: Level 1 units are called by several units in Level 2 to
provide capabilities including
1. Error handler,
2. Additional (non-basic) interval arithmetic features,
3. Vectors and matrix classes,
4. Level 1 and level 2 BLAS,
5. Automatic differentiation,
6. Taylor model arithmetic, and
7. Constraint propagation.

Level 2 – Problem-solving routines: Chapter outline will grow with time,
initially, similar to the contents of many textbooks in numerical analysis:
1. Linear systems, eventually including sparse and eigensystems,
2. Nonlinear systems,
3. Optimization,
4. Quadrature,
5. Statistics,
6. Ordinary differential equations, and
7. Partial differential equations.

Level 3 – Applications: Not in the scope of ISL, but we strongly encourage
applications developers to build on ISL.

Capabilities not listed here are by no means left out. For example, Level 1
may include multiple precision interval arithmetic with an API close to the Level
0, so that Level 2 and Level 3 units can easily switch from double precision inter-
vals to intervals of higher precision, or vector and matrix classes using elliptical
representations for multi-dimensional intervals. Eventually, each chapter should
contain a variety of general- and special-purpose routines. Categorizing inter-
val software in a structure roughly paralleling widely-used approximate libraries
encourages interval researchers to consider gaps in interval coverage.

3 Plan – How will we accomplish that?

We have both short-term (two years) and long-term (3 – 10 years) plans.

3.1 Short-term plan: gather, organize, and disseminate

For perhaps two years, this is primarily a library project in the sense of identi-
fying, collecting, organizing, and making available work that already exists:

Step 1 – Language standardization. Brönnimann, et al. have proposed to
add intervals to the C++ language standard [7]. The ISL team is working
for the strengthening and the adoption of this proposal. The BMP proposal
can become the basis for our ISL Level 0 BIAS well before it is approved.
Several existing implementations of intervals in C++ are reasonably close to
the proposed standard, so multiple (almost) reference implementations are
available.

Step 2 – Pilot inclusion into ISL. Select about three existing packages for
initial inclusion into ISL. This gives us a chance to prototype policies, pro-
cedures, and practices for incorporating existing work. See the discussion of
some issues in §§ 3.3–3.9.

Step 3 – Invite participation. Once some of the issues of policies, proce-
dures, and practices for incorporating existing work have been refined, we
will invite 6–10 researchers to submit their work for inclusion in ISL. At this
stage, the number of packages we will invite remains modest, as we develop
experience, participation, and visibility.

We hope for a very preliminary release including parts of Steps 1 and 2 by
the end of 2006 and a release including about five ISL Level 2 problem-solving
routines by the end of 2007.

3.2 Long-term plan

After we gain experience and visibility from the short-term “gather, organize,
and make available” activities, we expect to expand the scope of the library by
inviting contributions from the interval community. Work will be managed along
the model of many successful open source projects. We anticipate releases each
1–2 years. We will continue development of a free version of ISL, while seeking
a commercial partner such as NAG, Sun, IBM, Intel, or Microsoft.

Next, we turn our attention in subsections 3.3–3.9 to some of the issues that
must be settled to ensure the success of ISL.

3.3 Language and environment

We do not wish to ignite religious warfare, but we must choose an appropriate
computer language for ISL. In the short-term “gather, organize, and make avail-
able” activities, we can include packages in any language. Most existing interval
software is in Matlab or some dialect of Fortran or C++. ISL is in C++ be-
cause there appears to be more existing interval software in C++ than in other
candidates.

In the future, we may employ generative programming techniques, similar
to the NAG engine. The code could be written in one language and automati-
cally “compiled” into whatever source code languages are supported. The NAG
specification language is very similar to Fortran.

3.4 Organizational structure

Quality, comprehensive libraries are not compiled by a single person or small
group of people over a short time. There are many models we can follow of soft-
ware development by large, loosely-coupled teams over several years, including
the LAPACK project [18], PETSc [19–21], and many open source projects such
as the GSL - GNU Scientific Library [6].

The ISL project is coordinated by a steering committee, currently, the au-
thors of this paper. We meet occasionally as a group, and subsets meet as possible
at conferences. The steering committee sets directions and policies, such as those
outlined in this paper. In the long-term steady state, the role of the steering com-
mittee is somewhat like that of the editorial board of a major journal, overseeing
the work of authors, referees, and the publication process.

3.5 Adding value

There are several good packages for interval arithmetic corresponding to our
proposed Level 0 BIAS, there are many interval-based problem-solving routines
corresponding to our Levels 1 and 2, and there are a few comprehensive projects
such as Karlsruhe XSC Toolbox books [12] and Neumaier’s COCONUT (http:
//www.mat.univie.ac.at/~neum/glopt/coconut/). Vladik Kreinovich does an
admirable job of capturing and maintaining pointers to many interval projects
at [22]. What value does ISL add?

We return to our initial premise. Although there many interval tools are
available, there is no single source, a web site or a CD offering a standardized,
portable, peer-reviewed suite of tools that install and work together. In the long
term, we envision a comprehensive, universally used library. This is in contrast
to offering general languages, such as in the COCONUT project or GAMS, or
offering graphical user interfaces, such as in commercial packages such as Maple.
We view the effort as promoting standardization, portability, and re-use. In the
short term, ISL works with contributing authors to gather existing interval tools,
standardize their installation and interfaces, perform peer review acceptance and
comparative testing, provide examples, and make these tools available from a
single source.

3.6 Quality Assurance

All interval code has to have the quality of correctness. The code must obey the
rule “Thou shalt not lie.”

Contributions are peer refereed. To be considered for inclusion in ISL, nor-
mally we expect the algorithm to have been the subject of at least one peer
refereed journal paper. Codes, testing, and documentation are also refereed,
similar to the standards for an ACM Algorithm. We intend that publications
and programs associated with ISL be held to the highest academic and software
engineering standards.

We strongly recommend that contributing authors follow modern software
engineering practices, recognizing that “modern software engineering practices”
encompass methods proposed by Parnas [23], Literate Programming [24, 25],
agile methods such as Extreme Programming [26] and Test-Driven Develop-
ment [27], and others. Generally, we favor the more formal methods because
specifications for, say, a linear equation solver, are not expected to change sig-
nificantly while development is being done.

The ideal contribution to ISL consists of the following:

1. A specification of the software requirements, including the mathematical
statement of the problem and information on the required inputs and pos-
sible output values. With respect to the inputs, the specification indicates
clearly any constraints that exist on the data. Where necessary, a flag shall
be specified whose values indicate the reason for failure when a solution can-
not be determined. All contributions to ISL share the goal of achieving the
qualities listed in the introduction, especially the requirement, “Thou shalt
not lie.” However, it is difficult to write validatable specifications of non-
functional requirements. For instance, validating correctness is challenging
for scientific computing problems, because formal proofs of correctness are
difficult and often overly conservative, although non-formal proofs with rigor
comparable to proofs in the mathematical literature are often appropriate.
Therefore, rather than specify the requirements, the approach is taken of
describing the final software product, typically including statements of the
form, “It finds an enclosure of correct solution if the input lies in set Y .”
This description is given in the software validation report, discussed below.

2. A design specification. The ideal specifications includes an API or function
signature plus semantics, often modeled on specifications for corresponding
packages for approximate solutions.

3. A software validation report. The software validation report is about a com-
bination of observed scope, tightness and speed (plus maybe memory load),
and the observed interplay among them. It characterizes the problems that
are successfully solved.
The contributing authors are asked to provide the evidence that the soft-
ware meets the stated requirements and to describe the level to which the
software meets the software quality goals. The software validation can con-
sist of informal and formal analysis, testing and a summary of important
software metrics. Techniques for informal and formal analysis include code
walkthroughs, code reviews, and inspection. Techniques such as literate pro-
gramming can be employed so that confidence can be built on the correctness
of the code, in a similar sense to how confidence is built by mathematicians
inspecting a mathematical proof. The summary of testing also builds con-
fidence by showing the test cases that were passed and that any user can
download and run for themselves. The descriptions set expectations for the
behavior of the program in similar situations. The descriptions can be tested
for lies; for instance, the validation report might assert, “the software was
run over a given range of inputs on machines x and y and the program ter-

minated in 5 seconds or less with an enclosure of the correct answer in 87%
of cases, terminated in 5 seconds or less with a failure indicator in 10% of
cases, and had not terminated in 5 seconds in the remaining 3% of cases.”

3.7 Licensing

Especially in view of Sun being granted several interval-related patent appli-
cations, the interval community is increasingly aware of the importance of the
protection of intellectual property. ISL needs a carefully considered license which

– protects rights and reputations of authors,
– provides for free distribution, and
– encourages commercialization.

To help us in that, we are gathering and evaluating examples including

– LGPL, Modified Berkeley, MIT, and other Open Source licenses;
– licenses of various interval packages; and
– intellectual property policies of some (possibly) participating universities.

3.8 Publications

Since many potential participants in the ISL project are academics, the project
will not succeed without clear publication opportunities:

– Continuing publication of incremental and innovative development of interval
software;

– Identification of omissions in coverage (holes) as development targets;
– Comparative testing of similar packages in the spirit of Enright and Hull [28]

or Mazzia, Iavernaro, and Magherini [29] for approximate ODE solvers or
Pryce [30, 31] for Sturm-Liouville solvers; and

– Suites of test problems for interval problem-solving routines, e.g., Corliss
and Yu for interval arithmetic operations and elementary functions [32].
Interval test suites should include many problems from existing test suites
for approximate solvers and also problems intended to test existence and
containment properties.

– Software engineering publications related to the development of scientific
software with respect to appropriate process models, methodologies and doc-
umentation. Software engineering has mostly ignored scientific software and
placed most of the emphasis on research on safety critical systems and in-
formation systems. There is room to make contributions by looking at the
issues that are specific to scientific software.

For academic researchers, release of software to ISL in addition to journal pub-
lications offers an external, peer-reviewed process for recognizing research con-
tributions and wider dissemination than links from the authors’ web site.

While valuing the role of Reliable Computing as the core journal in this
research field, we encourage contributing authors to publish in a wide variety

of journals, especially journals in applications areas, to help bring the message
of intervals to as wide an audience as possible. Intervals are much closer to the
main stream of scientific computing than many of us realize, as new applications
and researchers using interval techniques are published regularly. We help more
people learn about intervals by publishing in the outlets they read.

In the long-term steady state, having code accepted for inclusion in ISL may
be viewed as equivalent to a journal paper, probably contributing more to the
overall advance of the infrastructure of science than many journal papers.

3.9 Funding

While it would be welcome if someone wanted to provide large funding, that
is unlikely. If we look at the models of LAPACK or most open source projects,
there may be modest funding somewhere for overall leadership and organization,
but the developers are on their own to secure their own funding. One would hope
that contributing to a large, well-organized, well-publicized international effort
might help many interval researchers get our own work funded.

Similarly, it would be welcome if a large software company provided the
leadership and modest funding for the champion to lead an open source project.
In other fields of study, with more obvious customers, several firms have made
significant contributions to various open source projects.

4 Partners – How can you help?

Clearly, the long-term goal is ambitious, requiring the work of many people
over many years. This section outlines our vision of an ideal partnership of
contributing authors, chapter architects, referees, and ISL steering committee.

4.1 Contributing author

A contributing author contributes any of

– Code unit for the library to solve some well-defined problem of scientific
computing, e.g., constraint propagation, linear systems, optimization;

– Functionality or performance improvements, corrections, or extensions to an
existing unit of the library;

– Test suites;
– Documentation; and
– API architecture for a chapter of the library.

For a new unit for the library, a contributing author should submit

– User Guide: installation, requirements, examples;
– Maintenance documentation: system architecture, detailed design, test plan

and report;
– Source code; and

– Journal article (with quality of TOMS article and algorithm).

A typical interaction might be

1. Contributing author contacts (or is contacted by) the ISL steering commit-
tee.

2. They discuss a suitable problem of scientific computing, specifications, li-
censing, etc.

3. Contributing author submits a suitable research publication to a journal.
4. Contributing author submits to ISL source; installation instructions; docu-

mentation of the problem, description of algorithms, examples of use, refer-
ences, etc.; acceptance and other tests; copies of journal papers, etc.

5. ISL or chapter editor sends submitted materials to referees.
6. Usual iterations with editors, referees, and authors.
7. ISL accepts or declines the submission.
8. After acceptance, ISL maintains discussions with the contributing author to

ensure that updates to the original work are reflected in the library.

ISL should be more than a listing of web links to contributing authors’ pages.
That requires some process, at least semi-formal. The short-term “gather, orga-
nize, and make available” phase of the project will be used to find an appropriate
balance of a formal process to ensure quality and a light-weight process all can
use effectively. For example, there is no need to duplicate refereeing work already
performed for journal publication.

4.2 Chapter architect/editor

In the short term, the ISL steering committee are the architects of the library
and the editors for contributed units. As the scope grows, each chapter of the
library (see § 2.1) has an architect/editor responsible for

– External architecture of the chapter, problem coverage, consistent API;
– Internal architecture, shared utilities; and
– Collaboration with contributing authors for this chapter.

4.3 Referee

The referee contributes to the overall quality of the library by providing an
external assessment. The referee reviews materials submitted by contributing
authors including source, installation instructions, documentation of the prob-
lem, description of algorithms, examples of use, references, acceptance and other
tests. The referee is assessing the library materials as they affect application
developers who use the library, rather than the more academic concerns of a
traditional journal referee. We anticipate that some referees are anonymous, and
some are collegial.

The ISL refereeing process may be modeled on the process for refereeing
ACM Algorithms. We encourage ISL contributing authors to submit their work
as ACM Algorithms, in which case, the ISL refereeing is sharply truncated.

We anticipate that some refereeing work leads to publishable careful com-
parative testing of similar packages and compilation of sets of standard test
problems for interval problem-solving routines.

4.4 Applications development

The goal of the ISL project is to get quality, portable, uniform, comprehensive
interval tools into use by developers of applications used by practicing scientists
and engineers. Our target audience includes

– Developers in the interval community, our contributing authors. For example,
authors of interval DE or optimization solvers benefit from AD, constraint
propagation, and linear solvers in ISL.

– Scientists from applications areas developing more reliable software than
that currently available, e.g., Martin Berz and Kyoko Makino (theoreti-
cal physics), Mark Stadtherr and Paul Barton (chemical engineering), Rafi
Muhanna and Robert Mullins (structural engineering), and William Edmun-
son (signal processing).

– Small commercial companies seeking the competitive advantage of high re-
liability software in their market niche.

– Major commercial players who develop and market-leading software packages
in industry segments, such as chemical engineering, structural engineering,
financial modeling, chip and circuit design, supply chain planning, industrial
process engineering, and anything else one can name.

ISL targets the developers of software for use in these areas.

5 Conclusions

Initially, ISL intends to be a single source for as large a body of existing interval
routines as resources allow. In the longer term, ISL offers a quality, portable,
uniform, comprehensive, problem-solving library. Eventually, we aspire to be
seamlessly integrated with tools and libraries for approximate computation.

Acknowledgement

An initial draft of this paper was prepared during a visit of the first author to
Tibor Csendes at the Department of Applied Informatics, University of Szeged,
Hungary, January 16 - 20, 2006. We thank Tibor for his kind hospitality.

References

1. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia,
PA (1979)

2. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

3. Fong, K., Jefferson, T., Suyehiro, T., Walton, L.: Guide to the SLATEC com-
mon mathematical library. Technical report, netlib.org (1990) See http://www.

netlib.org/slatec/.
4. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes

in Fortran: The Art of Scientific Computing, Second ed. Cambridge University
Press, Cambridge (1992) Also available for Fortran 90, C, and C++.

5. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C++: The Art of Scientific Computing, Second ed. Cambridge University Press,
Cambridge (2002)

6. GSL: GNU Scientific Library (1996 - June 2004) http://www.gnu.org/software/
gsl/.

7. Brönnimann, H., Melquiond, G., Pion, S.: A proposal to add interval arithmetic
to the C++ standard library. Technical Report N1843-05-0103 (2005)

8. Knüppel, O.: PROFIL/BIAS web page (2006) http://www.ti3.tu-harburg.de/

Software/PROFILEnglisch.html.
9. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.:

The interval library filib++ 2.0 - design, features and sample programs. Preprint
2001/4, Universität Wuppertal, Wuppertal, Germany (2001)

10. Melquiond, G., Pion, S., Brönnimann, H.: Boost Interval Arithmetic Library web
page (2004) http://www.boost.org/libs/numeric/interval/doc/interval.htm.

11. Goualard, F.: Gaol: NOT Just Another Interval Library web page (2006) http:

//sourceforge.net/projects/gaol.
12. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified

Computing I — Basic Numerical Problems. Springer–Verlag, Heidelberg (1993)
13. Hofschuster, W.: C–XSC – A C++ Class Library web page (2004) http://www.

math.uni-wuppertal.de/wrswt/xsc/cxsc.html.
14. Hofschuster, W., Krämer, W.: C–XSC 2.0: A C++ library for extended scientific

computing. In: Numerical Software with Result Verification. Number 2991 in Lec-
ture Notes in Computer Science. Springer–Verlag, Heidelberg (2004) 15–35 Also
appeared as Preprint BUW-WRSWT 2003/5, Universität Wuppertal, 2003.

15. Hofschuster, W., Krämer, W., Wedner, S., Wiethoff, A.: C–XSC 2.0: A C++
library for extended scientific computing. Preprint BUGHW–WRSWT 2001/1,
Universität Wuppertal (2001)

16. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., Rauch, M.: C–XSC – A C++
Library for Extended Scientific Computing. Springer–Verlag, Heidelberg (1993)

17. Sun Microsystems: Sun Studio C/C++/Fortran Compilers web page (2006) http:
//developers.sun.com/prodtech/cc/compilers_index.html.

18. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
User’s Guide, 3rd edn. SIAM, Philadelphia, PA (1999) Certain derivative work
portions have been copyrighted by the Numerical Algorithms Group Ltd. See http:
//www.netlib.org/lapack/, http://www.nacse.org/demos/lapack/.

19. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report
ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004)

20. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes,
L.C., Smith, B.F., Zhang, H.: PETSc Web page (2001) http://www.mcs.anl.gov/
petsc.

21. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of
parallelism in object oriented numerical software libraries. In Arge, E., Bruaset,
A.M., Langtangen, H.P., eds.: Modern Software Tools in Scientific Computing,
Birkhäuser Press (1997) 163–202

22. Kreinovich, V.: Interval Web page (2006) http://www.cs.utep.edu/

interval-comp/main.html.
23. Parnas, D.L.: Software Fundamentals: Collected Papers by David L. Parnas.

Addison-Wesley (2001)
24. Knuth, D.E.: Literate programming. The Computer Journal 27(2) (1984) 97–111
25. LiterateProgramming: Literate Programming Web page (2000–2005) http://www.

literateprogramming.com/.
26. Burke, E.M., Coyner, B.M.: Java Extreme Programming Cookbook. O’Reilly,

Sebastopol, CA (2003)
27. Beck, K.: Test-Driven Development: By Example. Addison Wesley (2003)
28. Hull, T., Enright, W., Fellen, B., Sedgwick, A.: Comparing numerical methods for

ordinary differential equations. SIAM J. Numer. Anal. 9 (1972) 603–637
29. Mazzia, F., Iavernaro, F., Magherini, C.: Test set for IVP solvers, release 2.2 (2003)

http://pitagora.dm.uniba.it/~testset/.
30. Pryce, J.D.: A test package for Sturm-Liouville solvers. ACM Trans. Math. Soft-

ware 25(1) (1999) 21–57
31. Pryce, J.D.: Algorithm 789: SLTSTPAK, a test package for Sturm-Liouville solvers.

ACM Trans. Math. Software 25(1) (1999) 58–69
32. Corliss, G.F., Yu, J.: Testing COSY’s interval and Taylor model arithmetic. In

Alt, R., Frommer, A., Kearfott, R.B., Luther, W., eds.: Numerical Software with
Result Verification: Platforms, Algorithms, Applications in Engineering, Physics,
and Economics. Number 2992 in Lectures Notes in Computer Science. Springer–
Verlag, Heidelburg (2004) 91–105

