
ABSTRACT
Organic  programming (OP)  is  our  proposed  and  already
emerging programming model  which overcomes some of
the limitations of current practice in software development
in general  and of  object-oriented  programming (OOP)  in
particular.  Ercatons provide  an  implementation  of  the
model. In some respects, OP is less than a (new) program-
ming language, in others, it is more. An “ercato machine”
implements the ideas discussed and has been used to vali-
date the concepts described here.

Organic programming is centered around the concept of a
true “Thing”. A thing in an executing software system is
bound to behave the way an autonomous object does in our
real  world,  or  like  a  cell  does  in  an  organism.  Software
objects do not. Therefore, traditional software systems must
be planned ahead like in a centrally planned economy while
with OP, software systems grow. This fact is traced back to
be the root why current software development often fails to
meet our expectations when it comes to large-scale projects.
OP should then be able to provide the means to make soft-
ware  development  achieve  what  other  engineering  disci-
plines have achieved a long time ago: that  project  effort
scales sub-linearly with size.

With OP we introduce a new term because we hope that the
approach we are pursuing is radical enough to justify this.

Keywords

1.   Motivation
We are going to present an alternative way to develop soft-
ware.  We  followed  this  idea  starting  from some  general
observations all the way down to a reference implementa-
tion which was then used in projects of sufficient size. This
makes us trust into the initial idea to the point that we may
now be obsessed by it. Let us start by sharing some of the
general observations.

We start with this trivial anecdote.

“One morning, we noticed some workers tile  our office's
backyard.  The  day before,  piles of  square  tiles  had been
delivered and the workers now seemed to make good prog-
ress covering the backyard's middle section. All of a sud-
den, loud noise stopped us working. What had happened?
The workers had finished to cover about 90% of the surface
with square tiles and had started to  cut tiles using a stone
saw. Due to corners and the irregular shape of the backyard,
the produced tiles had all shapes one could possibly think
of.  The  end  of  the  day,  the  entire  backyard  was  nicely
tiled.”

What if the tiles were software objects with object-oriented
programming (OOP)? We may see two options: First, the
textbook option with tile as a base class, square, rectangu-
lar and polygon-bounded tile as its derived classes (where
we already encounter and avoid the meaningless discussion
if rectangle should be inherited from square...). Or second,
the pragmatic option of a generic tile with appropriate con-
structors.  We  may  then  create  appropriate  objects  on
demand while tiling.  Still,  we probably would miss cases
where we need a hole in the tile etc. And still,  we would
define classes which model a factory which produces tiles,
not tiles themselves (this may even hold true with most pro-
totype-based languages, cf. below).

In the real world, we use square tiles and cut to fit. In the
software world, we use tile factories which must be able to

Ercatons and Organic Programming:
Say Good-Bye to Planned Economy

Oliver Imbusch, Falk Langhammer and Guido von Walter

Living Pages Research GmbH
Kolosseumstrasse 1a, 80469 Munich, Germany

{flabes|falk|guido}@livis.com

Dagstuhl Seminar Proceedings 06031
Organic Computing - Controlled Emergence
http://drops.dagstuhl.de/opus/volltexte/2006/574



produce tiles of all  shapes we analyzed beforehand to be
required. 

On first inspection, there seems to be no point in this anec-
dote or the problem seems to go away if we look how soft-
ware is really being built: We may always modify a generic
tile class and recompile and test until the software is fin-
ished. Source code modification then is what corresponds
to “cut-to-fit” in the real world. This is why software has
been called “soft” in the first place.

At a second look however, this is not true anymore for large
enough systems. For instance, there is one software system
which  obviously is too complex for this: the web (www).
Changes to it are only possible incrementally and while it is
running. Nobody would consider to redeploy the entire web
just to apply a change (e.g., in one page of one site). Some-
where in between a pocket calculator  application and the
web there is this phase-transition of “too complex to rede-
ploy” (cf. fig. 1). On one end of this transition software is
modified-redeployed-tested until it fits, on the other end, it
either is “cut-to-fit” while in production or it freezes when
it does not support sufficient “cutting”.

And this  is  the point  of  the anecdote:  a  software system
with a tile factory class would not support sufficient cutting
when redeployment is not an option anymore. This is bad
news: traditional OOP appears to be confined to the “low-
complexity-side”  of  the two regimes of  software systems

separated by before-mentioned phase-transition. And push-
ing against the transition point makes software very expen-
sive. This observation may be expressed in a more dramatic
way:

“Software is harder than hardware.”

This summarizes the fact  that,  in a  complex-enough soft-
ware system, an object representing a tile would be harder
to change than the physical tile itself.

Deep in our hearts we all know this: You may make a screw
purchased in a do-it-yourself market shorter if it is too long
for some hole. But you cannot (in some email clients) sort
by recipient in a renamed “Sent” folder.

In this paper, we will therefore propose an alternative way
to develop software which may better  been described  by
“building”  or  “growing”  software  rather  than  “program-
ming”.  The  ultimate  goal  is  to  merge  both  sides  of  the
before-mentioned phase-transition into a  single  paradigm.
Its basic assumptions may be summarized by the following
“manifesto”.

System complexity [in man years to rebuild]O
th

er
 s

ys
te

m
 d

im
en

si
on

s 
[p

ro
je

ct
ed

]

Phase transition
for leading software organization principle

OOP objects Documents

Web servicesAgile Manifesto

AOPMDA

Java XML

Organic programming
OO programming Spontaneous evolution

Things (and Cells)

Ercatons

Figure 1. Beyond a given critical degree of complexity, a software system cannot be redeployed or rebuilt anymore. However, it can
still be grown and evolve. This is like a single building which can be rebuilt where the city (normally) can't.

Organic computing tries to merge the successful paradigms of the two regimes (objects and documents) into a new programming
model which is more appropriate for large-scale projects than traditional OOP methods.

2



We will not go into too much detail regarding the manifesto
here. While the first three points are widely accepted within
the OO community, the latter three points may be what con-
stitutes the essence of the emerging OP model.

2.   The emerging Organic Programming
paradigm
Recently, a number of organic computing initiatives have
taken off, especially in the domains of systems design and
computer vision. Notably, there is the autonomous comput-
ing initiative (AC) of IBM [7] which emphasizes on self-x
properties of a system such as self-configuring, self-adapt-
ing,  self-explaining,  self-healing  or  self-protecting.  The
more  biologically  inspired  initiatives  [18]  include  self-
organization and self-emergent complexity.

We  do  however,  not  specifically  adopt  the  notions  of
Organic Programming found in the agent community [8] or
some more general ideas not targeted at software engineer-
ing [19].

There is one common insight behind all of these activities:
complex properties of large systems (in nature or civiliza-
tion) always emerge from its constituents in a spontaneous
manner without being centralized or planned. Large com-
plex systems in nature (and after the failure of communism,
civilization as well) are all self-organizing.

At a medium level, the largest software systems such as the
web are, if not self-organized, at least evolving spontane-
ously which, for the time being, is all we ask them for.

The  problem now is  that  a  software  system which  was
crafted according to common (object-oriented) wisdom not
only is not self-organizing; it even cannot evolve without
asking programmers (or in the case of MDA, architects) to
go back and change the blueprints. Every bit of flexibility
must be built into the blueprints and often still, is available
to experts only.

Organic programming is to deliver software systems which
may still be object-oriented but which, at the same time are
able to evolve spontaneously by construction.

2.1   Approaching the complexity-transition
from the low-complexity end
The low-complexity end in the phase diagram of fig. 1 is
characterized by the traditional methods of software engi-
neering such as OOP, model-driven architectures, genera-
tive methods and component models. However, even within
the low-complexity end, we see a split-off of technologies
which are closer to the transition point than the mainstream.
In this paper, we summarize these split-off technologies as
the “Thing-oriented” trend.

Mainstream. The mainstream trend (in software engineer-
ing) is currently dominated by generative methods such as
model-driven  architecture  (MDA),  aspect-oriented  pro-
gramming  (AOP),  generators  built-in  into  IDEs  and  an
increasing level of (formal) abstraction. It is also character-
ized by pattern frameworks (such as Struts  for  the MVC
paradigm for the  web or  J2EE for  business  logic)  and a
strong emphasis on an architecture which is as complete as
possible upfront (incl. executable models).

The  evolution  of  programming  languages  has  long  been
characterized  by  an  attempt  to  conceptualize  real-world
entities  into  software  entities  –  object-oriented  languages
being the current  end point.  Modeling languages such as
UML2 are no exception as they emphasize visualization of
the model without escaping the limitations of an object-ori-
ented  language.  Component-based  software  as  well  as
Aspect-oriented programming are pushing those limitations
a bit. Altogether, we still find it disappointing how different
software objects are from real-world entities after a quarter
century of research. They are poor when it comes to repre-
sent them while  using or  growing a system, as opposed to
representing them while modeling (of course, this is  why
we classified OOP as the dominating low-complexity tech-
nology, contrary to common believe).

The mainstream seems to disagree, given the awareness for
model-driven architectures  (MDA) or  executable  models.
The promise is: Once you have the model, you are done.
And if  objects  are  fine  to  model  a  system,  where  is  the
problem? The problem simply is that it may be impossible
or too hard to ever create or change this model, as laid out
in the motivation part.

We believe that it may be possible and worthwhile to create
a model for a simpler, special case such as a given algo-
rithm, or some important processes, or a less accurate one
for better overview, or for a part of a problem; but not in
general for an entire problem, not within time and budget,
not without mistakes. We are convinced that being forced
to model every detail of a large system is against the gen-

The Manifesto of Organic Programming:

§0 The exception is the rule.
§1 Our world is rich and complex

rather than well-structured and simple.
§2 Software must cover irregular, changing patterns

rather than regular, static patterns.
§3 A software system is an organic being

rather than a set of mathematical algorithms.
§4 Software  components  are  an  integral  part of  our

rich world rather than entities at some meta level.
§5 Software engineering evolves from small to large

rather than from concrete to abstract.

3



eral  engineering principle of  keeping things as simple as
could possibly work. Say Good-Bye to Planned Economy.

Thing-orientation. The trend towards Thing-oriented pro-
gramming  (as  we  name  it  in  this  work)  may  first  have
emerged in 1979 with “ThingLab” [4]. The publication of
the programming language “Self” [14] in 1987 and of pro-
totype-based  languages  in  general  were  important  mile-
stones. The language “NewtonScript” [12] was inspired by
Self and led itself to “JavaScript” [16]. Both are prototype-
based. More recently, XML-based language “Water” [10]
and Java-based system “NakedObjects” [9] emerged. Water
is another prototype-based language linking every XML-tag
with  an  object  and  calls  its  top-level  ancestor  “Thing”
rather  than “Object”.  NakedObjects  is  not  a  language (it
uses Java) but drops the MVC pattern in favor of the idea
that every object should expose an intrinsic user interface
(i.e.,  that  every  object  should  be  usable  by  itself).  We
notice growing interest in plug-in architectures as well, as
recently demonstrated by the popularity of Eclipse [3]. A
plug-in has some characteristics of a Thing (as we are going
to define it) which an object does not.

There also is strong theoretical evidence that the emergence
of object  oriented patterns (such as those of the gang-of-
four) is related to the assumptions made by the Manifesto of
Organic Programming. One may, for instance, read §0 of
the Manifesto as “symmetries are broken” and this, in turn
is a sign of the limitations inherent in traditional object-ori-
ented languages [5].

Orthogonally,  new  engineering  methods  emerged,  with
Extreme Programming  [1]  and  the  Agile  Manifesto  [15]
being examples. Those methods contradict the mainstream
trend towards even more abstract and complex models or
architectures as well as the waterfall method. All of these
developments  address  some  points  of  the  OP Manifesto.
Ercatons (as defined in this paper) are meant to address all
aspects of the OP manifesto and to be fully Thing-oriented.
First information about it was released in 2003 [6].

As we are not  aware of a  publication bringing all of the
above  developments  into  the  single  context  of  a  trend
towards  Thing-orientation  (as  opposed  to  model-driven),
we will present our definition of the notion of a Thing in the
next  section,  after  having described  the  other  end of  the
complexity-transition.

2.2   Approaching the complexity-transition
from the high-complexity end
Highly-complex software systems currently are not object-
oriented. Rather, they contain components which use OOP.

Examples  include  commercial  operating  systems  which
include components from various sources and vendors, or
the web which consists of millions of independently created
parts. Features emerge which were never planned ahead of

time.  Organic  Programming  includes  creating  software
which is  able to  evolve1 spontaneously,  i.e.,  in  unantici-
pated ways.

Technologically, the high-complexity end is dominated by a
few simple, yet powerful mechanisms such as  documents
(web  pages,  executable  files,  xml  exchange  messages),
authorization schemes to maintain system stability,  fault-
tolerance and distribution (clicking a broken link does not
crash the web ;-),  re-usability (ever  wondered  about  the
many similar web styles, or how wonderfully Unix-grep fits
into many tasks? – as opposed to 'class Person's which are
never re-used...), and simplicity. Today's web specification
is actually missing some complex parts such as a mecha-
nism to enforce referential link integrity for the sake of sim-
plicity. Many believe that this was key for the success of
this particular specification2.

Complexity  emerges  from simplicity,  as  paradox  as  this
may sound. Complexity does not emerge from abstractions
such as MDA.

More recently, there is a push down to the complexity tran-
sition point from the high end in order to achieve a higher
level of programmability and interconnection. XML schema
definitions,  web services,  semantic  web services  and dis-
covery registries such as UDDI [17] are the most prominent
examples.  Of course, this will impose a challenge to any
attempt to re-factor such a complex system in the future (a
link may be moved on a web page but a web service is sup-
posed to stay). We do not request Organic Programming to
support re-factorizations.

We are now going to propose a construction which invents
and combines concepts from both complexity regimes into
a single programming model. It is centered around the term
“Thing”.

3.   Definitions

3.1   Definition of Thing-oriented
Programming
The basic idea behind a “Thing” is the ability to represent a
real-world entity without an absolute requirement to model
it. If we do not model, we still describe, visualize, compare
etc. Document-like properties of a Thing acknowledge this.
During usage of a system, while we learn more about vari-
ous aspects, Things are designated to morph and formalize

1 For the sake of our notion of Organic Programming, it is
sufficient that software can be evolved by independent
humans (or their software) which have not been
instructed to do so; it is not mandatory that the software
evolves by itself.

2 HTTP and HTML by the way, have been created out of
pragmatic need rather than fundamental research.

4



aspects to reflect the increase in knowledge. Also, models
can still be expressed by projection of knowledge “to the
essentials” where what is essential and what is not may be a
function of time. A Thing is able to exist and evolve with-
out a model.

Definition: A “Thing” is a software entity within a produc-
tion software system with the following 7 properties:

1. Uniqueness – It is unique and no two Things can be 
exactly equal:
It has exactly one unique “name” and two Things are
always distinguishable.

2. Structure – It has inner structure which is both
state and behavior:
Its state is a data tree or structure of equivalent
complexity, not restricted to, e.g., slots.
Its behavior is defined by reaction to received
messages or events such as change.
Inner structure is separate from algorithm.

3. Object – Its inner structure is inherited,
polymorphic, delegated and encapsulated:
Inheritance: a Thing may inherit (or clone) inner
structure from another Thing.
Polymorphism: two Things may behave qualitatively
different for the same message.
Delegation: a Thing's inner structure may refer to
other Things.
Encapsulation: a Thing defines how much of its
inner structure is exposed to another Thing.

4. Document – It is self-contained and self-explaining,
e.g., human-readable:
There is an equivalent externalizable and human-
readable form accessible by name.
It has one owner controlling its visibility and
encapsulation.
It self-determines its life-cycle, incl. infinite life
(persistence).
It has a (non-perfect) memory of previous inner
structures it had over time (versioning).

5. Morph – Its behavior, state, owner, inheritance
relation etc. may change during lifetime.

6. Projection – It defines its interactions with
components of a production software system:
It has one or more representations when manipulated
by algorithms (programming interface).
It has one or more representations when manipulated
by humans (user interface).
Also, it may determine more formal properties such
as search index entries which it may contain.

7. Deterministic – It will only temporarily maintain
inconsistent inner structure (transaction safety).

Definition:  A “Cell” is a Thing with 1 additional property:

1. Activity – It shows activity or changes on its own.
This behavior is defined by reaction to events such
as elapse of time.

Note that a production software system will, in general
not be able to maintain a thread for each Cell as there
may be too many (millions).

Cells are not (necessarily) agents. They may not have a
goal etc. Agents are meant to be built from (a federation
of) Cells.

Definition:  A “production software system” is a real-world
system comprised  of  hardware,  software  and  humans
currently solving or able to solve the problem the soft-
ware is being crafted for. Such systems may be distrib-
uted or not. A program source editor or IDE is no such
system.

To  support  Things,  such  systems  will  most  likely  be
composed of a grid of virtual machines executing one or
several flavors of a Thing execution environment.

The semantics of a Thing may and should be independ-
ent of a production software system.

Definition: “Thing-oriented programming” is the art of cre-
ating software composed of Things.

Definition: “Organic Programming” is the art of growing,
evolving  and  enhancing  a  software  system  which  is
made of Things and while it is alive, i.e., in full produc-
tion.

Both activities actually resemble growing and building
rather  than modeling and programming.  We therefore
sometimes call  Organic Programming “to  build rather
than model”.

Note that some of the properties of a Thing are common
properties  for  object  instances,  other  for  documents.  The
following simplifying statement shall summarize the above
points for the rest of this paper:

“A Thing is unification and super-set of an object instance
and a document.”

A remark is in order: It is of course true that a document
could be created or an object could be instantiated that has
all  claimed properties,  e.g.,  a  generic  object  instantiated
from a Java class. However, a second such instance inherit-
ing from the first would not be inherited in the Java sense.
This means that Java as such lacks some of the required
properties and could be used to implement an environment

5



for Things (a production software system) only. To make
this more explicit:

“Objects are not Things. Documents are not Things.”

Untyped  object-oriented  languages  such  as  Smalltalk  are
closer to Things than strongly typed languages such as Eif-
fel or Java. Prototype-based languages such as Self are even
closer because they do not depend on classes and are able
to change their behavior during lifetime. Many properties
we  deem important  for  Thing-oriented  programming  are
missing from prototype-based languages and therefore, we
do not classify Thing-oriented programming as prototype-
based.

The discussion so far left open the question why we claim
that  a  “Thing-oriented”  approach  solves  the  problems  of
Organic Programming. The answer is that Things may be
the first concept unifying objects and documents into a sin-
gle ... thing. This not only bridges the chasm between the
two complexity regimes. Also, it immediately follows from
the initial question:

“What is the software entity which most closely represents
a given real-world entity?”

(given the fact that both, documents and objects, appear as
representing  software  entities  in  traditional  approaches
without a unifying concept).

In  Figure  2 we  conclude  this  section  with  an  overview
about how layering of a Thing-oriented software system dif-
fers from a traditional object-oriented one. This change in
software layering has been called NakedObjects” [9].

It is difficult to praise the value of OOP without actually
programming.  The  same  way,  we felt  it  be  necessary to
actually do Organic Programming3.

3.2   Definition of Ercatons
In order to do Organic Programming one needs three more
items: a precise specification of the exact software repre-
sentation of a Thing to work with, a virtual machine to exe-
cute it, and a large-enough problem to solve. As we succes-
sively increase focus as we go, we will have to leave out
detail.

Ercatons4 provide a precise specification of one possible
exact software representation of a Thing or Cell. 

As mandated, ercatons separate inner structure from algo-
rithm. Inner structure is expressed in one language (such as
XML) with algorithms being expressed in another (such as
Java or XSLT). This separation could easily be removed by
creation of yet another language. The most elegant way to
do so would be by treating code-closures [13] as ercatons.
However, this would not be in line with both clauses of §3
of the Manifesto. All typical OOP features (such as poly-
morphism,  inheritance,  encapsulation,  method  signatures
etc.) are features of an ercaton independent of algorithm.

The specification of an ercaton is such that the difference
between itself and the real-world entity described by it are
reduced to an absolute minimum. As a consequence, any
ercaton describing a  virtual real-world entity  (such as  a
bank  account)  is the  entity.  Algorithms  are  ercatons in
turn, because code implementing an algorithm is a virtual
real-world entity. Some examples follow the definition.

Definition: An “ercaton” is a Cell (as previously defined)
with following specifications (note that we have to spec-
ify technical properties of a Thing in order to actually
build software – no new concepts get involved):

1. Name – an ercaton has a structured local name:
The local name is a string of the form
“~owner/path[,version]” and follows Unix shell
conventions.

3 This research work has not been funded. We just felt
that it had to be done.

4 “Ercaton” is derived from (M)ercato + (I)on and
literally means “elementary market particle”.

user interface

controller

model

persistence
layer

Things

: object instances or Things

: classes or algorithmic Things, made by programmers

: user interface instances, such as web page, panel...

: database table or similiar

object-oriented Thing-oriented

: provided by production software system

search
schema etc.

Figure 2. A Thing defines all relevant aspects within a
software system, i.e., every single instance does. There is no
intrinsic difference between a user's and a programmer's view.

6



2. Syntax – its equivalent externalizable and human-
readable form is XML:
Every XML document (if it includes a valid name) is
a valid ercaton.
It uses ercato markup (XML elements and attributes
in given separate namespaces) to alter its semantics.
This markup is not bound to an XML schema and
will coexist with most XML applications. The
ercato markup may be considered the syntax of an
ercaton.
Do not compare Thing syntax with program code for
a class – the syntax of an ercaton manifests its
current internal structure and applies to a single
instance. You won't find stuff like loops etc.
Syntax exists to express all of the semantic
properties of a Thing.

3. Flavors – ercatons come in six flavors:
plain an ordinary ercaton.
role a user, owner, group, or rôle; user is a

sub-flavor. Users must be authenticated.
prototypehas reduced semantic power, e.g., serving

as a template to be cloned.
resource contains binary data such as a movie or a

code archive (the XML form of a resource
ercaton is, as an exception not equivalent to it).

index a formal data schema or other formal
information; ercatons are able to index part of
their state in relational databases;
persistence of ercatons must not depend on
formal information.

version a history of prior structure of an ercaton.
Ercatons may change flavor (morph), but cannot be
of more than one flavor at a time.

4. Commutativity – federations of ercatons form
unordered sets:
The state of an ercato machine is fully defined by all
ercatons, independent of the order they have been
manipulated in.
This implies that an ercaton cannot store data
outside of ercatons, i.e., in a database.

5. Algebra – ercatons may be added (+) and
subtracted (-):
Inheritance is supported where syntax is as general
as XML (the infoset tree). The algebra is defined
such that inheritance corresponds to addition. Let a
and b be ercatons, then it holds true:

a = a + b        ⇔        a inherits from b 
Subtraction is defined to be the inverse operation,
(a – b) + b = a, and a – a = 0.

6. Behavior – ercatons contain actions, triggers,
targets and objects:

action specifies behavior upon receipt of a
message; consumes and produces ercatons;
actions are protected by sets of rôle-based
permissions; an ercato machine is able to
discover and export actions as WebServices.

trigger specifies behavior upon an event; events
include elapse of time, change of state,
asynchronous events such as receipt of email.

target pipeline specifying projection onto a
named user interface; an ercato machine must
support at least a web-based interface.

object specifies projection onto named API for
an algorithm; an ercato machine must support
at least a Java-based object model.

Behavior may be specified by a closure (in some
XML language such as XSLT), delegated to an
action of another ercaton, or implemented by an
algorithm. An algorithm may be a resource ercaton
containing a Java jar-file and is then identified as
ercaton/class/method().

7. Permission – ercatons encapsulate their inner
structure:
State and actions are guarded by the following rôle-
based permissions
r readable state.
w writable – ercaton can be morphed or deleted as

well.
b browsable; state which isn't browsable for a rôle

cannot be retrieved indirectly, i.e., by a database
query performed by that rôle.

x action is executable.
s substitute rôle by owner of action before

executing it (aka s-bit);
permissions are carried along action delegations
forming a capability chain.

t action is executable and may modify this
ercaton (secondary s-bit).

Permissions provide both the rôle-based business
logic and the package/module-based OO
encapsulation (private, package-private, public,
friend, etc.) – using package names as rôles.

8. Distribution – ercatons may be distributed:
Access or invocation of actions is not bound to one
address space and ercatons may freely migrate
(using a global name). The transmission protocol is
HTTP or SOAP [21] using the externalized form.
The transmission of authentication depends on the
trust between two ercato machines.
The ercato machine employs an optimistic locking
strategy for concurrent operations. It may optionally
use the XOperator (cf. below) to avoid detection of
false collisions.

7



Definition: An “ercato   machine  ” is a production software
system supporting ercatons as Things. It is a language-
independent virtual machine hiding technical implemen-
tation details.

Definition: The “ercatoJ   engine  ” is the ercato machine we
have implemented on top of J2EE [11]. Note however,
that  ercatons are  language-independent.  The  ercatoJ
engine exists and is in mission-critical production use,
e.g., at German chemical corporation Henkel KGaA [2].

All of the above 8 points are to be discussed in more detail
elsewhere. This paper, however, aims at providing an over-
view  and  discussing  the  general  idea  with  respect  to
Organic Programming. We will therefore only give some
short examples to provide a better feeling.

3.3   Examples
Our first example introduces the syntax, the ercato markup.

<counter xmlns:erc="...">

  <erc:id> ~sample/count </erc:id>

  <count>  0 </count>             <!-- state -->

  <erc:action>

    /bin/increment (xpath="//count") 

  </erc:action>

</counter>

Example 1.  Simple counter ercaton able to update its state.

This ercaton contains the entire logic required to maintain
a counter to be incremented, stored, viewed and used (in a
transaction-safe way). It is identified as ~sample/count. To
increment it, the expression ~sample/count() is evaluated.
The  example  uses  another  ercaton,  /bin/increment,  to
delegate the implementation.

<counter xmlns:erc="..." xmlns:xsl="...">

  <erc:id> ~sample/count </erc:id>

  <count> 0 </count>

  <erc:action name="main">

    <erc:arg name="amount"> 1 </erc:arg>

    <erc:native lang="Xslt">              

      <xsl:template match="count">

        <count>

          <xsl:value-of select=". + $amount"/>

        </count>

      </xsl:template>

    </erc:native >

  </erc:action>

</counter>

Example 2. The counter ercaton rewritten to be stand-alone.

The rewritten  ercaton uses a closure in order  to be self-
contained (not referring to any other ercaton). Its owner (or
another ercaton action) may do this rewrite during produc-

tion. Both forms behave equivalently, the amount argument
is implicitly passed down the delegation chain in the first
example. Java is supported as a language as well.

Due to the properties of an ercato machine, ercatons may
be displayed in a browser window with one URL per erca-
ton-id.  In the  ercatoJ engine, the counter  ~sample/count
may look as follows:

Figure 3. The counter ercaton of Example 1/2  in its default
web browser look&feel (after three clicks onto 'main').

A click onto the “main”-button would increment the count
to 4.  Every ercaton has, by definition, a “look&feel” as is
seen here.  In a different context, an  ercaton may be dis-
played by a panel window within a GUI, or in a console
window. An ercaton may specify its own render pipeline.

4.   The programming model
Rather  than featuring a programming language,  ercatons
are programming-language independent. It is therefore nec-
essary to show how ercato programs can be written. It is
obvious  that  the  ercato programming  model  is  centered
around the idea of creation, modification and use of  erca-
tons. An ercaton may be used by inspecting its state, exe-
cuting its actions, sending it to the user as part of the user
interface, or sending it to another system.

Ercatons feature OO inheritance and mapping to relational
data  w/o  relying  on  a  programming  language.  They  are
Cells too because they may contain triggers which fire upon
elapse of time. They show autonomous behavior (or life),
useful to implement self-x properties or agent patterns.

Ercatons are  meant to  directly implement  entities  of  the
real world also known as the problem domain or business
logic.  Most  ercatons do  so.  Their  names  are  like
~flight/booking/lh6361/ma34.  Other  ercatons provide
utility services. Their names are like /bin/cp. We call the
former business ercatons and the latter service ercatons.

8



When it comes to implementation of actions, we distinguish
between three typical cases:

• Structural, administrative tasks such as editing state etc.:
Delegated to service ercatons.

Note  that  delegation  to  an  ercaton such  as
/bin/increment does only look like a shell script call.
Invocation  is  cheap as  it  takes  place  within the local
address space (e.g., the same Java virtual machine).

Typical  programming  language  primitives  (instance
creation, copy, a full edit cycle, print, change of part of
its state, queries, etc.) are all provided by service erca-
tons. They act like a user-space extension of the kernel.

• Preparation  of  state  for  a  user  interface  or  exchange:
Implemented  by  service  ercatons which  are  XSLT
stylesheets used in render pipelines.

• Algorithmically  non-trivial  tasks:  Implemented  in  an
OO language (e.g.,  Java)  after  projecting the  state  of
involved ercatons onto appropriate object instances.

Within  the  ercatoJ engine,  invocation  of  an  action
implemented in Java incurs the same overhead as invo-
cation of an EJBean business method.

Example 3 shows an ercaton containing an action which is
implemented in Java, together with complete and working
Java code. It inherits from another, its so-called clonebase.
It is kept synchronized with changes of its clonebase.

<counter>

  <erc:clone> ~sample/count </erc:clone>

  <erc:id> ~sample/count2 </erc:id>

  <erc:object lang="Java">

    <erc:archive> ~sample/lib.jar </erc:archive>

    <erc:class> sample.Counter </erc:class>

  </erc:object>

  <erc:action name="main">

    <erc:native lang="Java">

      <erc:method> increment </erc:method>

      <erc:parameter name="amount" type="int"/>

    </erc:native>

  </erc:action>

</counter>

Example 3. A derived counter ercaton, overriding the Xslt
with a Java implementation. ~sample/count is its clonebase.

Both  ercatons are  in  a  relation  like  ~sample/count2
extends ~sample/count and  ~sample/count2 adds  the
object tag and redefines the  native tag. The  count and
amount default values are inherited. 

Inheritance may be the most exciting single aspect of erca-
tons.  It  is supported  where syntax is  as general  as XML
(the infoset tree) by inventing an algebra for XML [23].

package sample;

import  com.ercato.core.*;
import  org.w3c.dom.Text;

public class Counter extends ErcatonObject

                     implements Action {

   public void increment (int amount) {

      count += amount;

      if (amount != 0) touch ();

   }

   protected void evaluateElement (

   EvaluationContext ec, String tag, String ns) {

      if ("count".equals (tag)) {

         counter = ec.getTextNode (false);

         count   = Integer.parseInt (

                   counter.getData ());

      }

   }

   protected void approve () {

      counter.setData (String.valueOf (count));

   }

   private Text counter;

   private int  count;

}

Example 3 cont'd. The counter's Java implementation w/o
relying on any of the many Java/XML binding frameworks.

The  implementation  language  of  actions  is  hidden  and
actions may invoke each other even when implemented in
different languages.

It  is  important  to  observe  that  the  Counter Java-class  is
reusable  within  any ercaton which  contains  a  count-tag
with numeric content. This is a general observation and the
following relationship is deduced:

Construct: Thing-oriented
language:

OO language:

Signature to define
usage of algorithms

OO-class OO-interface

Signature to define
usage of state

Permissions or
XML-schema

OO-class

Ironically, this shift of usage of OO-classes in a Thing-ori-
ented system eventually makes them small and reusable.

A long-lasting problem of object-oriented programming has
been the tedious mapping of objects to relational databases
and  the  insufficiency of  object  databases.  Thing-oriented
programming  should  have  the  same  problem.  However,
Thing-oriented programming allows every Thing to be per-
sistent.  Therefore,  the  problem is  reduced  to  the  use  of
databases for structured queries across relations.

“Persistence and Structured Queries are orthogonal
and shall be implemented independently.”

9



The internet is a good example where complex real-world
software systems already obey this rule (a network of web-
sites for persistence,  “Google” for queries). However,  we
are not aware of a publication about this as a deeper insight.
In order to serve both ends, the ercato programming model
includes a powerful mechanism to fully get rid of the “per-
sistence problem”. It is composed of three cornerstones:

1. Index ercatons which isolate from differences of
schemata between arbitrary ercatons.

2. Index attributes in arbitrary ercatons.
3. Query ercatons for structured queries across

relations plus API for supported OO-languages.

5.   Lessons learned for Organic Programming
A growing number  of  early adopters  including ourselves
have now been working with ercatons for several years and
we are amazed how much our thinking about software engi-
neering has  changed since.  In  particular,  the  J2EE-based
ercatoJ engine is and has been used in a number of proj-
ects. Unfortunately, it it beyond the scope of this paper to

describe the new patterns which have emerged while build-
ing and growing ercato-based systems.

Therefore,  we may only quote  one project  where  it  now
implements a large software system at the chemical corpo-
ration Henkel KGaA, Düsseldorf, Germany. The system is
used for the development and partly also production of new
chemical recipes5. It interacts with a farm of SAP/R3 sys-
tems  and  replaces  a  host  system which  was  coded  with
about a million lines of code. The system went productive
with great success [2]. shows a screen shot for a part of the
application, released for publication.

The system went productive 2 years ago. It was successfully
and significantly grown by others as well as by us which

5The  users  of  this  application  run demanding  operations
involving  recursive  retrieval  of  ingredient  information  or
doing  complex  searches.  The  system,  on  average,  serves
about thousand transactions per minute & processor and has
good reserve for peak loads. Our analysis shows that certain
optimizations in current DOM tree implementations could
yield  about  one  order  of  magnitude  overall  performance
improvement. Performance on complex retrieval operations
already is on equal with a native SQL implementation.

Figure 4. An ercaton-based application in mission-critical production at German chemical corporation Henkel. Five ercatons are
seen (i.e., their user interfaces as specified by their declared target pipelines).

The left hand frame contains a catalog ercaton. The lower right frame shows a recipe ercaton with some action buttons. The upper
right frame shows a query ercaton with result for its current query. The screen shot has been  partially obscured upon request.

10



turned out to be more or less as easily as an enterprise is
grown. The same way of thinking applies. After a while of
operation, the system has evolved to a degree of complexity
nobody would pay an architect to create a complete MDA
model for. Nevertheless, it is rock-solid and is self-explana-
tory for everybody interested into it.

To  summarize,  while  we  advise  to  use  traditional  OOP
methods to create algorithmic parts of a larger system, we
encourage to drop those methods for entire systems in favor
of more evolution-aware methods such as  ercatons – but
without giving up on OO principles.

6.   Conclusion
Things and Cells in general or  ercatons in particular pro-
vide a concrete way to bridge the chasm between our real
world and programs. Transforming a real-world entity into
a  software  entity  can  be  a  non-mathematical  task  and
“authoring”, “building” or “growing” rather than “program-
ming”  or  “modeling”  would  be  the  right  wording.  Still,
ercatons provide  enough  expressive  power  to  express
knowledge  about  similarities  or  inheritance  relations,
behavior, structural constraints etc. Of course, the formula-
tion of algorithms remains a mathematical task. 

We found that this copies traditional engineering methods
and is able to dramatically reduce the size of software proj-
ects.

The  current  implementation  certainly  falls  short  with
respect to language elegance, performance and tool (IDE)
support  when compared with an object-oriented language
like Java,  Smalltalk or  Self.  The concept does not, espe-
cially,  when  comparing  the  approach  to  current  EJB-,  .
NET- or XML-based persistence approaches [20].

7.   References
[1] Kent Beck: “Extreme Programming Explained: Embrace

Change”. (1999) Addison-Wesley ISBN: 0201616416.
[2] Joachim Buth and Falk Langhammer: “Ercatons – XML-

based J2EE project at Henkel”. iX-Konferenz 2003,
Heidelberg, Germany. Proceedings
http://www.heise.de/newsticker/meldung/43691 

[3] Azad Bolour: “Notes on the Eclipse Plug-in Architecture”.
http://www.eclipse.org/articles/Article-Plug-in-
architecture/plugin_architecture.html 

[4] Alan Borning: “ThingLab – A Constraint-Oriented
Simulation Laborator”. XEROX PARC report SSL-79-3,
July 1979.

[5] James O. Coplien and Liping Zhao: “Symmetry Breaking in
Software Patterns”. (2001) Springer Lecture Notes in
Computer Science LNCS 2177.
http://users.rcn.com/jcoplien/Patterns/Symmetry/Springer/Sp
ringerSymmetry.html and private communication.

[6] Jürgen Diercks and Falk Langhammer: “Bauen statt
modellieren”. iX-Magazin 2/ 2004, p. 100-103. Heise
Verlag. http://www.heise.de/kiosk/archiv/ix/2004/2/100 

[7] Jeffrey O. Kephart and David M. Chess: “The Vision of
Autonomic Computing”. Computer pp.41-50. IEEE
publication. January 2003.
http://www.research.ibm.com/autonomic/research/papers/AC
_Vision_Computer_Jan_2003.pdf and
http://www.research.ibm.com/autonomic/manifesto/ 

[8] Hideyuki Nakashima: “GAEA, an organic programming
language”. (2000). http://www.carc.aist.go.jp/gaea/ 

[9] Richard Pawson and Robert Matthews: “Naked Objects”.
(2002) John Wiley & Sons, Ltd. ISBN: 0470844205.
http://www.nakedobjects.org/book.html 

[10] Mike Plusch: “Water: Simplified Web Services and XML
Programming“. (2002) John Wiley & Sons.
ISBN: 0764525360. http://www.waterlang.org/ 

[11] Bill Shannon: “Java 2 Platform Enterprise Edition
Specification, v1.4”. (2003) Sun microsystems.
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf 

[12] Walter Smith: “SELF and the Origins of NewtonScript”. PIE
Developers magazine, July 1994.
http://wsmith.best.vwh.net/Self-intro.html 

[13] Gerald J. Sussman and Guy L. Steele, Jr. “Scheme: An
Interpreter for Extended Lambda Calculus”. MIT AI Lab. AI
Lab Memo AIM-349. December 1975.
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-349.pdf

[14] David Ungar and Randall B. Smith: “Self: The Power of
Simplicity”. OOPSLA '87 Conference Proceedings, pp. 227-
241, Orlando, FL, October, 1987.
http://research.sun.com/research/self/ 

[15] “The Agile Manifesto”. http://agilemanifesto.org/ 
[16] Netscape: “Core JavaScript Reference”.

http://devedge.netscape.com/library/manuals/2000/javascript/
1.5/reference/ 

[17] OASIS: “UDDI Spec Technical Committee Draft 3.0.2”.
OASIS Committee Draft. October 2004.
http://uddi.org/pubs/uddi_v3.htm 

[18] The Organic Computing Page of selected German Computer
Society  members.
http://www.organic-computing.org/software/index.html
(2004);  and (German)
http://www.gi-ev.de/download/VDE-ITG-GI-
Positionspapier%20Organic%20Computing.pdf (2003).

[19] Organic Programming Tribe: “Organic Programming” (used
as synonym to Organic Computing).
http://organicprogramming.tribe.net/ 

[20] Tamino XML server home page.
http://www.softwareag.com/tamino/ 

[21] W3C: “Simple Object Access Protocol (SOAP) 1.1”. W3C
Note 08 May 2000.
http://www.w3.org/TR/SOAP/ 

[22] W3C: “XML Path Language (Xpath) Version 1.0”.
Recommendation 16 November 1999.
http://www.w3.org/TR/xpath 

[23] XOperator evaluation kit. http://www.living-
pages.de/de/projects/xop/ 

11


