
On impossibility of sequential algorithmic
forecasting?

V.V. V’yugin

Institute for Information Transmission Problems, Russian Academy of Sciences,
Bol’shoi Karetnyi per. 19, Moscow GSP-4, 101447, Russia

e:mail vyugin@inbox.ru

Abstract. The problem of prediction future event given an individual
sequence of past events is considered. Predictions are given in form of
real numbers pn which are computed by some algorithm ϕ using initial
fragments ω1, . . . , ωn−1 of an individual binary sequence ω = ω1, ω2, . . .
and can be interpreted as probabilities of the event ωn = 1 given this
fragment. According to Dawid’s prequential framework we consider par-
tial forecasting algorithms ϕ which are defined on all initial fragments
of ω and can be undefined outside the given sequence of outcomes. We
show that even for this large class of forecasting algorithms combining
outcomes of coin-tossing and transducer algorithm it is possible to effi-
ciently generate with probability close to one sequences for which any
partial forecasting algorithm is failed by the method of verifying called
calibration.

1 Introduction

Let a sequence ω1, ω2, . . . , ωn−1 of outcomes is observed by a forecaster whose
task is to give a probability pn of the future event ωn = 1. A typical example
is that pn is interpreted as a probability that it will rain. Forecaster is said to
be well calibrated if it rains as often as he leads us to expect. It should rain
about 80% of the days for which pn = 0.8, and so on. So, for simplicity we
consider binary sequences, i.e. ωn ∈ {0, 1} for all n. We give a rigorous definition
of calibration later.

In the measure-theoretic framework we expect that forecaster has a method
for assigning probabilities pn of a future event ωn = 1 for all possible finite
sequences ω1, ω2, . . . , ωn−1. In other words, all conditional probabilities

pn = P (ωn = 1|ω1, ω2, . . . , ωn−1)

must be specified and the overall probability distribution on the space Ω will
be defined. But in reality, we should recognize that we have only individual se-
quence ω1, ω2, . . . , ωn−1 of events and that the corresponding forecasts pn whose
? The research described in this publication was made possible in part by grants RFBR

03-01-00475, CNRS 02-02-22001; A part of this work was done while the author was
in Poncelet Laboratoire LIF CNRS, Marseille, France.

Dagstuhl Seminar Proceedings 06051
Kolmogorov Complexity and Applications
http://drops.dagstuhl.de/opus/volltexte/2006/630



2 V.V. V’yugin

testing is considered may fall short of defining a full probability distribution
on the whole space Ω. This is the point of the prequential principle proposed
by Dawid [1]. This principle says that the evaluation of a probability forecaster
should depend only on his actual probability forecasts and the corresponding
outcomes. The additional information contained in a probability measure that
has these probability forecasts as conditional probabilities should not enter in
the evaluation. According to Dawid’s prequential framework we do not consider
numbers pn as conditional probabilities generating by some overall probability
distribution defined on the all possible events. We start with a forecasting system
which is a partial function f on the set of all finite sequences. We have to sup-
pose that the valid forecasting system f is defined on all finite initial fragments
ω1, . . . , ωn−1, . . . of an analyzed individual sequence of outcomes. A computable
forecasting system f is defined on some finite sequence of outcomes if and only if
the corresponding algorithm when fed to this sequence finish its work and print
out the result, otherwise it is undefined.

First examples of individual sequences for which well-calibrated forecasting is
impossible (noncalibrable sequences) were presented in statistical papers [7], [11].
Unfortunately, the methods used in these papers and in [1], [2] do not comply
with prequential principle; they depend on some mild assumptions about the
measure from which probability forecasts are derived as conditional probabil-
ities. The method of generation the noncalibrable sequences with probability
arbitrary close to one presented in [13] also based on the same assumptions. In
this paper we modify construction from [13] for the case of partial forecasting
systems (forecasting algorithms) do not corresponding to any overall probability
distribution. Our main result shows that even for this large class of forecast-
ing algorithms combining outcomes of coin-tossing and transducer algorithm it
is possible to generate with probability close to one sequences for which any
partial forecasting system is failed by the method of calibration.

2 Well calibrated forecasting

Let Ω be the set of all infinite binary sequences, and Ξ be the set of all finite
binary sequences. Let λ be the empty sequence. For any finite or infinite ω =
ω1 . . . ωn . . . we denote ωn = ω1 . . . ωn, l(ωn) = n denotes the length of the
sequence ωn. If x is a finite sequence and ω is a finite or infinite sequence then
xω denotes the concatenation of these sequences, x ⊆ ω means that x = ωn for
some n.

The evaluation of probability forecasts is based on a method called calibra-
tion. Let us give the correct definitions. A selection rule is a partial function on
the set of all finite binary sequences taking values 0 and 1. A selection rule δ
is said to select the subsequence s = n1n2 . . . under an infinite binary sequence
ω = ω1ω2 . . . ωn . . . if

1) δ(ω1ω2 . . . ωn−1) is defined for all n, and
2) n ∈ s just when δ(ω1ω2 . . . ωn−1) = 1.
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We say that a partial forecasting system f is well calibrated for ω1ω2 . . . ωn . . .
with respect to selection rule δ

1) f(ω1ω2 . . . ωn) is defined for all n, and
2) ether the subsequence n1n2 . . . selected by δ under ω1ω2 . . . ωn . . . is finite

or for r →∞

1
r

r∑
i=1

ωni
− 1

r

r∑
i=1

f(ω1ω2 . . . ωni−1) −→ 0. (1)

A forecasting system f is well calibrated for ω if it is well calibrated for it with
respect to any partial recursive selection rule δ. We call also such selection rules
- computable.

We consider cylinders in the set Ω of all infinite binary sequences of type
Γα = {ω ∈ Ω : x ⊆ ω}, where α ∈ Ξ. Any measure P on Ω is unequally defined
by its values P (α) = P (Γα) for all α ∈ Ξ.

Any everywhere defined forecasting system f generates the overall probability
distribution on Ω

P (ω1 . . . ωn) = f∗(ω1)f∗(ω1ω2) · . . . · f∗(ω1 . . . ωn),

where

f∗(ω1 . . . ωn) =
{

f(ω1ω2 . . . ωn−1) if ωn = 1
(1− f(ω1ω2 . . . ωn−1)) otherwise

On the other hand, any probability distribution P on Ω such that P (ω1 . . . ωn) >
0 for all n generates the forecasting system

f(ω1 . . . ωn−1) = P (ωn = 1|ω1 . . . ωn−1),

where
P (ωn = 1|ω1 . . . ωn−1) = P (ω1 . . . ωn−11)/P (ω1 . . . ωn−1)

is the conditional probability of the event ωn = 1 given ω1 . . . ωn−1.
A variant of the law of large numbers holds for everywhere defined forecasting

systems (Dawid‘s general calibration theorem [1]).

Proposition 1. Let f be a forecasting system and P be the corresponding over-
all probability distribution. Then f is well calibrated for P -almost all infinite
sequences ω1ω2 . . ..

Oakes [7] proposed arguments (see Dawid [3] for different proof) that no
deterministic forecasting system can be well calibrated for all possible sequences.
For any everywhere forecasting system f we can define a sequence ω = ω1ω2 . . .
such that

ωi =
{

1 if pi < 0.5
0 otherwise

where pi = f(ω1 . . . ωi−1), i = 1, 2, . . .. The corresponding selections rules are

δj(ωi−1) =
{

j if pi < 0.5
1− j otherwise
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for j = 0, 1. It is easy to see that for some j = 0 or j = 1 the selection rule
δj selects under ω an infinite sequence n1, n2, . . . such that condition (1) of
calibration fails. The lack of this example is in that the selection rule δj can
be noncomputable with respect to pi even when the forecasting system f is
computable. It is well known that no algorithm exists deciding whether r < 0.5
for an arbitrary real number r. A possible objection is that we can truncate
values of forecasting system f and consider some its approximation taking only
rational values. We will use this idea to construct counter-example in Section 3.

Much efforts were devoted for develop computable methods and algorithms
for “universal forecasting”. The problem with Oakes’s example was overcome
by Foster and Vohra [4] and others (see also [9] who constructed a randomized
forecasting system that is well calibrated for any sequence in the mean. Kakade
and Foster [5] constructed deterministic universal forecasting algorithms that
are well calibrated for any sequence, where the notion of calibration is weakened
- only “smooth” selection rules are used. Vovk [12] developed ideas of “smooth”
selection rules in general setting based on game-theoretic approach to probability
theory [10]. Let us explain these ideas in more details and their relation for our
Theorem 1 below. Let us consider the corresponding Game of forecasting.
Players: Realty, Forecaster, Sceptic
Let K0 = 0.
Protocol:
FOR n = 1, 2, . . . :
Sceptic announces continuous real function Sn(p).
Forecaster announces a real number pn.
Realty announces xn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(xn − pn)
END FOR.

Sceptic wins if Kn ≥ 0 for all n and Kn is unbounded, otherwise Forecaster
wins. It was proved in [10] that in this case the law of large numbers of type (1)
and condition of calibration hold. Vovk [12] proved that in case of continuous
Sn(p) there exists a winning strategy for the Forecaster, i.e. a sequence of real
numbers pn such that Kn ≥ 0 for all n and Kn is bounded. Moreover, this strat-
egy satisfies Kn ≤ Kn−1 for all n = 1, 2, . . .. Also, in most cases this forecasting
strategy pn = f(ω1, . . . , ωn−1) is computable. The idea of corresponding strat-
egy is very simple: define pn as the root of S(p) = 0, if there are no roots define
pn = (1 + sign(Sn))/2.

A typical example of selection rule used in whether forecasting is the follow-
ing. Let f be some forecasting system and p∗ be any real number between zero
and one. Define

δp∗(ω1ω2 . . . ωn−1) =
{

1 if f(ω1ω2 . . . ωn−1) ∈ Ip∗

0 otherwise

Here f(ω1ω2 . . . ωn−1) ∈ Ip∗ means that the forecast f(ω1ω2 . . . ωn−1) belongs
to some “neighborhood” Ip∗ of the real number p∗. A forecasting system f is
well calibrated for ω1ω2 . . . in the small if it is well calibrated for ω1ω2 . . . with
respect to any selection rule of type δp∗ .
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In the definition of selection rule δp∗ it is convenient to consider “smooth”
intervals Ip∗(p) = K(p∗, p), where K(p∗, p) is a continuous function - Mercer
kernel, such that K(p∗, p∗) = 1 and K(p∗, p) = 0 outside some finite interval
containing p∗. Then the condition f(ω1ω2 . . . ωn−1) ∈ Ip∗ in the definition of δ
must be replaced on Ip∗(f(ω1ω2 . . . ωn−1)) = 1

The K29 algorithm (with parameter K) defined in [12] uses the following
Sceptic’s strategy

Sn(p) =
n−1∑
i=1

K(p, pi)(ωi − pi).

It was proved in [12] (Appendix, Corollary 1) that Forecaster has a computable
winning strategy pi = f(ω1 . . . ωi−1) (like that defined above) such that calibra-
tion in the small

n∑
i=1

Ip∗(pi)(ωi − pi)

n∑
i=1

Ip∗(pi)
→ 0

holds for ω1ω2 . . . for any point p∗ such that the denominator tends to infinity.
In Section 3 we generalize Oakes’s example in other direction. We overcome

the problem of non-computability of the selection rules δj using some its com-
putable with respect to ωi−1 approximation, but for all that we lose the property
of its continuity and computability with respect to pi. Recall, that according to
Dawid’s prequential principle we consider partial forecasting systems and there
is no efficient procedure for extending partial recursive functions to total recur-
sive functions. Also, there is no algorithm deciding whether algorithm computing
an arbitrary f(ω1 . . . ωi−1) finishes its work. The main result of this paper pos-
sesses an advantage of computer effectiveness and universality over Oakes - type
examples: we can effectively generate noncalibrable sequences with probability
close to one. More correctly, the probabilistic machine constructed in Theorem 1
below outputs with probability 1− ε (where ε is arbitrary small) an infinite se-
quence ω1ω2 . . . such that any partial recursive forecasting system ϕ does not
calibrated for ω1ω2 . . . since for some partial recursive selection rule δ defined in
the proof of Theorem 1

1
sn

n∑
i=1

δ(ωi−1)(ωi − ϕ(ωi−1)) > c > 0

holds for some c for all n, where sn =
n∑

i=1

δ(ωi−1) →∞ as n →∞. In particular,

Theorem 1 shows that the condition of continuity of Ips(p) can not be omitted
in computable forecasting. The plot of δ(ωi−1) against pi = ϕ(ωi−1) can not be
presented as a continuous curve.
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3 Non-calibrable sequences

We consider very broad class of computable forecasting systems - predictions can
be computed by algorithms ϕ using only initial fragments ω1, . . . , ωn−1 of the
analyzed individual sequence ω = ω1, ω2, . . .. According to Dawid’s prequential
framework we consider partial forecasting systems ϕ which are obliged to be
defined only on all initial fragments of ω and can be undefined outside this
sequence. The system of this type may not correspond to any overall probability
distribution in the set of all binary sequences. The following theorem shows that
even for this large class of forecasting algorithms combining outcomes of coin-
tossing and transducer algorithms it is possible to generate with probability close
to one sequences for which any partial forecasting system is failed by the method
of calibration with respect to selection rules which are represented by rational
approximations of selection rules proposed by Oakes.

We need a concept of computable operation on Ξ
⋃

Ω [14, 15]. Let F̂ be a
recursively enumerable set of ordered pairs of finite sequences satisfying the
following properties:

– (x, λ) ∈ F̂ for any x, where λ is the empty sequence;
– if (x, y) ∈ F̂ , (x′, y′) ∈ F̂ and x ⊆ x′ then y ⊆ y′ or y′ ⊆ y.

A computable operation F is defined as follows

F (ω) = sup{y | x ⊆ ω and (x, y) ∈ F̂ for some x},

where ω ∈ Ω
⋃

Ξ and sup is in the sense of the partial order ⊆ on Ξ.
Informally, the computable operation F is defined by some algorithm which

when fed with an infinite or a finite sequence ω takes it sequentially bit by bit,
processes it and produces an output sequence also sequentially bit by bit.

By probabilistic algorithm we mean any pair (P, F ), where P is a computable
measure in the set of all binary sequences and F is a computable operation. In
the following P = L, where L(x) = L(Γx) = 2−l(x) is the uniform measure in Ω.

A sequence ω1ω2 . . . ωn . . . is calibrable if some partial computable f is well
calibrated for it; otherwise, ω1ω2 . . . ωn . . . is noncalibrable. The following theo-
rem is the main result of this paper.

Theorem 1. For any ε > 0 a probabilistic algorithm (L,F ) can be constructed
which with probability ≥ 1−ε outputs an infinite binary sequence ω such that the
following property holds: for each partial recursive forecasting system ϕ defined
on all initial fragments of the sequence ω there exists a computable selection rule
which selects under ω an infinite subsequence ωn1 , ωn2 , . . . such that

1
r

r∑
i=1

ωni
− 1

r

r∑
i=1

ϕ(ω1ω2 . . . ωni−1) 6−→ 0

as r →∞.
In other words, the probabilistic machine (L,F ) generates with probability

close to one an infinite noncalibrable sequence.
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