
Combinatorial proof of Mu
hnik's theoremAlexander ShenAbstra
tA 
ombinatorial proof of Mu
hnik's theorem about 
onditional des
riptions(
odes, see [2℄) is given. It uses the notion of \online mat
hing" in a bipartitegraph that 
ould be interesing in its own right.1 Mu
hnik's theoremAn. Mu
hnik [2℄ has proved the following theorem:Theorem. Let a and b be two binary strings, K(a) < n and K(a|b) < k. Then thereexists a string p su
h that
• K(a|p; b) ≤ O(logn);
• K(p) ≤ k +O(logn);
• K(p|a) ≤ O(logn).Here K(u) stands for the Kolmogorov 
omplexity of string u; 
onditional 
omplexityof u when v is known is denoted by K(u|v). The 
onstants hidden in O(logn) do notdepend on n; k; a; b.Informally, theorem says that there exists a program p that transforms b to a, has theminimal possible 
omplexity K(a|b) (up to a logarithmi
 term) and, moreover, is easilyobtained from a. (The last requirement is 
ru
ial, otherwise the statement be
omes trivialand the shortest program that transforms b to a 
an be used.) We used a more abstra
tformulation to avoid referen
es to programs.In many 
ases statements about Kolmogorov 
omplexity have 
ombinatorial 
ounter-parts (and sometimes it is easy to show the equivalen
e between 
omplexity and 
ombi-natorial statements). So it would be interesting to �nd a 
ombinatorial 
ounterpart ofthis theorem. Indeed, some equivalent statement (that involves some game on graphs)exists. (The general approa
h to translate statements in general re
ursion theory into theexisten
e of a winning strategy in some game is explained in [1℄.) However, this game israther 
ompli
ated. But there exist a stronger and more natural statement about onlinemat
hingA whi
h easily implies Mu
hnik's theorem and 
an be proved using the sameideas (slightly modi�ed) that were used by Mu
hnik in his original proof.2 On-line mat
hingsConsider a bipartite graph with left part L, right part R and set of edges E ⊂ L × R.Let s be some integer. We are interested in the following property of the graph:1Dagstuhl Seminar Proceedings 06051
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for any subset L′ of L of size at most s there exists a subset E ′ ⊂ E thatperforms a bije
tion between L′ and some R′ ⊂ R.A ne
essary and suÆ
ient 
ondition for this is provided by well known Hall theorem:for ea
h set L′ ⊂ L of size t ≤ s the set of all neighbors of elements of L′ 
ontains at leastt elements.
x

However, this 
ondition is not suÆ
ient for the online version. In thisversion the adversary gives us elements of left part L (up to s elements)one by one. We should provide a 
ounterpart for ea
h given element x,i.e., to 
hoose some its neighbor y ∈ R not used before. This 
hoi
e is�nal and 
annot be 
hanged later.This is more diÆ
ult. For example, for the graph shown one 
an �nda mat
hing for ea
h subset of size at most 2, but this 
annot be done online (the diÆ
ultyarises if adversary starts with x).Now we formulate 
ombinatorial statement that implies Mu
hnik's theorem:Combinatorial statement. There exists a 
onstant 
 with the following property:for any integers n and k ≤ n there exists a bipartite graph E ⊂ L× R whose left part Lhas size 2n, right part R has size 2kn
, ea
h vertex in L has at most n
 neighbors in R,and online mat
hing is possible up to size 2k.(So the size of the online mat
hing is 
lose to the size of R up to a polynomial fa
tor,and the degree of all L-elements is polynomially bounded.)3 Proof of Mu
hnik's theoremLet us show how the 
ombinatorial statement implies Mu
hnik's theorem. Note �rstthat we may assume without loss of generality that length of string a (instead of its
omplexity) is less than n. Indeed, if we repla
e a by a shortest program that generatesa, all 
omplexities involving a 
hange only by O(logn) term.Then 
onsider the graph E provided by the 
ombinatorial statement. Its left part Lis interpreted as the set of all strings of length less than n; therefore, string a is elementof L. Let us enumerate strings x of length less than n su
h that K(x|b) < k. There areat most 2k su
h strings, and a is one of them. So it is possible to �nd an online mat
hingfor them (in the order they appear during the enumeration). Let p be an element of Rthat 
orrespongs to a in the mat
hing.Let us 
he
k that p satis�es all the 
onditions of Mu
hnik's theorem. First of all,note that the graph E 
an be 
hosen in su
h a way that its 
omplexity is O(logn).The 
ombinatorial statemenent guarantees that a graph with required properties exist.Knowing n and k, we 
an perform an exhaustive sear
h until the �rst graph with theseproperties is found. This graph is a 
omputable fun
tion of n and k, so its 
omplexitydoes not ex
eed K(n; k) = O(logn).If a is known (as well as n and k), then p 
an be spe
i�ed by an ordinal number of pin the list of a-neighbors. This list 
ontains at most n
 elements, so the ordinal numberrequires O(logn) bits. (And K(n; k) = O(logn) as we have already noted.)To spe
ify p without knowing a, we give its ordinal number in R, whi
h is k+O(logn)bits long. (Again n and k are used, but this is another O(logn) bits.)2



Finally, to re
onstru
t a from b and p, we start the pro
ess of enumerating all stringson lengths less than n that have 
onditional 
omplexity (relative to b, whi
h is known)less than k, and �nd R-
ounterparts for them using the online mat
hing property, untilp appears. Then a is p's L-
ounterpart.(Formally speaking, for given n and k we should sear
h for the graph G together withthe online mat
hing pro
edure, and then use the same pro
edure both for 
onstru
ting pand for re
onstru
ting a from b and p.)4 On-line mat
hings existIt remains to provide a proof for the 
ombinatorial statement. This proof follows theoriginal Mu
hnik's argument adapted for the 
ombinatorial setting and 
onsists of severalsteps.O�ine versionFirst, let us prove a weaker statement that deals only with o�ine mat
hings (or, better,with ne
essary and suÆ
ient 
onditions for them provided by Hall theorem).O�ine version. There exists a 
onstant 
 with the following property: for anyintegers n and k ≤ n there exists a bipartite graph E ⊂ L×R whose left part L has size2n, right part R has size 2kn
, ea
h vertex in L has at most n
 neighbors in R and or anysubset X ⊂ L of size t ≤ 2k the set N(X) of all neighbors of all elements of X 
ontainsat least t elements.Let us prove this statement using the probabilisti
 argument. Probability distribution:n
 for ea
h vertex l ∈ L are 
hosen uniformly in R and are independent (for di�erent land for di�erent neighbors of aa given l). In this way we obtain a (random) graph whereall verti
es in L have degree at most n
 (it 
ould be less if two independent 
hoi
es for agiven vertex 
oin
ide).We 
laim that this random graph has the required property with positive probability.If it does not, there exists some set X ⊂ L of some size t ≤ n and some set Y of sizeless than t su
h that all neighbors of all elements of X belong to Y . For a �xed X andY the probability of this event is bounded by
( 1n
)tn
sin
e we made tn
 independent 
hoi
es (n
 times for ea
h of t elements) and the probabilityto get into Y for one 
hoi
e is at most 1=n
 (the set Y 
overs at most 1=n
 fra
tion of R).To get a bound for a probability of violating the requirement, we multiply this boundby the number of pairs X, Y . The set X 
an be 
hosen in at most (2n)t di�erent ways(for ea
h element of t elements we have at most 2n 
hoi
es; a
tually the number is smallersin
e the order of elements does not matter), and for Y we have at most (2kn
)t 
hoi
es.This is for a �xed t; we need then to add these bounds for all t ≤ 2k. Therefore the totalbound is 2k

∑t=1 ( 1n
)tn
 (2n)t (2kn
)t3



This is a geometri
 series; the sum is less than 1 (whi
h is our goal) if the base is small.Indeed, the base is
( 1n
)n
 (2n) (2kn
) = 2n+kn
(n
−1)and 
 = 2 makes it small (it even tends to zero as n → ∞). O�ine version is proved.Online modi�
ationsAssume that graph E ⊂ L×R satis�es the 
onditions for the o�ine version (for given nand k). Now we use the same graph in online setting with the following straightforward(\greedy") strategy. When a new element x ∈ L arrives, we 
he
k if it has neighbors thatare not used yet. If yes, one of these neighbors is 
hosen to be a 
ounterpart of x. If not,x is \reje
ted".Before we explain what to do with the reje
ted elements, let us prove that at mosthalf of 2k given elements 
ould be reje
ted. Assume that more than 2k−1 elements arereje
ted. Then less than 2k−1 elements are served and therefore less than 2k−1 elementsof R are used as 
ounterparts. But all neighbors of all reje
ted elements are used (sin
ethis is the only reason for reje
tion), and we get the 
ontradi
tion with the 
ondition#N(X) ≥ #X if X is the set of reje
ted elements.Now we need to deal with reje
ted elements. They are forwarded to the \next layer"where the task is to �nd online mat
hing for 2k−1 elements. If we 
an do this, then we
ombine both graphs using the same L and disjoint right parts R1 and R2. And theelements reje
ted at the �rst layer are satis�ed at the se
ond one. In other terms: (n; k)online problem is redu
ed to (n; k) o�ine problem and (n; k − 1) online problem. Thelatter 
an then be redu
ed to (n; k − 1) o�ine and (n; k − 2) online problems et
.Finally we get k levels. Ea
h level satis�es at least half of the requests and forwardsthe remaining half to the next layer. After k levels of �ltering only one request 
an beleft unserved, and one more layer is enough. (Note that we may use the same graph onall layers.)More pre
isely, we have proved the following statement: Let E ⊂ L × R be a graphthat satis�es the 
onditions of the o�ine version for given n and k. Repla
e ea
h elementin R by (k+1) 
opies, all 
onne
ted to the same elements of L as before. Then new graphprovides online mat
hings up to size 2k.Note that this 
onstru
tion multiplies the size of R and the degree of verti
es in L by(k + 1), so they remain polynomial in n.The 
ombinatorial statement is proven.5 QuestionsIt would be interesting to �nd

• a more dire
t proof of 
ombinatorial statement, without �rst proving its o�ineversion;
• an expli
it 
onstru
tion for graphs with the required property;
• what is the 
omputational 
omplexity of the problem \
ompute a maximal t su
hthat given graph allows online mat
hings of size t";4



• a 
ombinatorial statement that would imply not only Mu
hnik theorem but alsoWolf { Slepyan theorem (its 
ounterpart in Shannon information theory);
• the 
onne
tion between this result and known results about expander and extra
torgraphs. A
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