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Abstract. We outline a method for quantifying the error of a se-
quence prediction. With sequence predictions represented by semimea-
sures v(z) we define their error to be —log, v(z). We note that enumer-
able semimeasures are those which model the sequence as the output of a
computable system given unknown input. Using this we define the simu-
lation complexity of a computable system C relative to another U giving
an exact bound on their difference in error. This error in turn gives an
exact upper bound on the number of predictions v gets incorrect.

1 A prediction’s error

Suppose we wish to predict a sequence over a finite alphabet X.
Definition 1. [3] A semimeasure v is a function v: X* — [0,1] satisfying:

1. Normalisation:

v(ie)=1

2. Coherence:

Z v(ze) <v(x)

ceX

v(x) is the probability the true sequence begins with z, for finite strings « € X*.
The two conditions are both necessary and sufficient for this interpretation to
make sense. In this way semimeasures are predictions of what the true sequence
is.

The smaller the probability v(x) that v assigns to the sequence so far z, the
more the prediction is in error. We thus define the error as a decreasing function
of the probability v(z):

Definition 2. The error Ev: X* — [0, 00] of a prediction v is

Ev(z) = —logy v(x)
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The logarithm, as opposed to another decreasing function, is necessary for the
following decomposition:
Ev(z) = —logv(x)

||

= —log H v(zi|z<;)

i=1
||
= Z —logv(x;|ze;)
i=1
|z|
= ZEV(xi|x<,-)
i=1

where the second step follows the product rule of probability theory. Note that:

1. z; is the ith symbol of x; x.; is the first + — 1 symbols of x.

2. v(zi|lr<;) = v(rwiz;)/v(z<;) is the probability the ith symbol is x;, given
that the predictor knows all the earlier symbols z ;.

This reduces predictions of the whole sequence x to sub-predictions of each ele-
ment of the sequence x;. The total error Ev(x) is separated into errors Ev(z;|z<;)
for each of these sub-predictions. Ev(x) measures the cumulative error in the
sub-predictions.

The decomposition gives intuition into what the error means. If a particular sub-
prediction assigns more than probability 1/2 to the correct answer we consider
the sub-prediction correct. This means all incorrect sub-predictions assign less
than probability 1/2 and thus have an error greater than 1. As a direct result:

Lemma 1. A prediction v has at most |Ev(z)| incorrect sub-predictions.

2 Predicting sequences generated by computable systems

Definition 3. [3] An enumerable semimeasure v(x) is a semimeasure where
the set

{(z,p):p<v(x), pe[0,1]NQ}
is computably enumerable.
This means there is a computable process we can ask
“does v predict x with at least probability p?”

and always receive an answer when it’s “yes”. Although all practially imple-
mentable semimeasures will be enumerable, the converse doesn’t hold. We use



this large a class because it has a nice represention: enumerable semimeasures
correspond to predictions about the output of a computable system.

A system C is a black box which can input bits p; € 2 and output symbols
z; € X. The outputs and inputs may be interleaved in any way. Given a series
of input bits, a system’s output forms a sequence. Define a system C’s behaviour

C:2* — X#

where 2* is the set of finite binary sequences and X# the set of finite and infinite
sequences over X. C(p) is the sequence of outputs C' makes when p is the series
of input bits available. We stop recording outputs if C' tries to read more than
p bits.

Definition 4. A computable system is a system with computable behaviour.
In particular, its behaviour C can be implemented by a monotone Turing ma-
chine.

Equivalently, the behaviour C:2* — X# is computable when the following sets
are computably enumerable:

{px)e2" x X" 12 <C(p)}

{(p,z) € 2" x X* : p is non-terminal for C and =z = C(p)}

A string & € 2* is non-terminal for C if there exists y # « such that C(z) <
C(y). This means that C' eventually outputs more symbols after receiving
more input bits.

Functions satisfying the above axioms are called processes in [1].

Suppose we know nothing about how the input to the computable system C' is
generated: we assign equal probability to 0’s and 1’s. The probability the output
begins with z is pc(x):

Definition 5. [2] A computable system C’s output semimeasure is:
o= ¥ 2
p:C(p)=x*
where C(p) = xx means p is a minimal inpul string such that C(p) begins with

x (i.e. no prefix of p has output beginning with x ).

Lemma 2. For any computable system C, the output semimeasure pc is enu-
merable.



Theorem 1. For any enumerable semimeasure v(x) there exists a computable
system C' such that

v(z) = po(z)

Prediction using an enumerable semimeasure is equivalent to modelling the se-
quence as generated by a computable system fed an unknown input. See [3] for
a similar result.

3 Complexity of prediction bounds error difference

Definition 6. A computable system U simulates a computable system C with
constant ko € IN if for all x there exists an injective f,:

fordp: C(p) = 2%} — {q: U(q) = %}
such that
|f=()| < |p| + ke

U simulates C if we can recode all the minimal input strings for C' outputting
x as minimal input strings for U doing the same without increasing their length
too much.

Definition 7. The simulation complexity Sy (C) of a computable system C
relative to another U is

Sy (C) = min{ke : U simulates C with constant k¢ '}

This simulation complexity is the least amount of overhead the best simulation
needs. We use this measure rather than a standard one to derive exact results.

Definition 8. The simulation complexity Sy (v) of a semimeasure v relative
to U 1s:
Sy (v) = min{Sy(C) : Vo pc(z) = v(x)}

Sy (v) is the simulation complexity of the simplest computable system C' which
simulates v (i.e. has v as its output semimeasure).

Theorem 2. For computable systems U and C, and for all x:
Eup(z) < Euc(x) + Sy (C)
Corollary 1. Given a computable system U, and any enumerable semimeasure

' Epup () < Ev(z) + Su(v)



References

1. Calude, 2002. Information and Randomness. An Algorithmic Perspective, 2nd Edi-
tion. Springer-Verlag.

2. Hutter, 2004. Universal Artificial Intelligence. Springer, Berlin.

3. Li and Vitanyi, 1997. An Introduction to Kolmogorov Complexity and its Appli-
cations, 2nd Edition. Springer-Verlag, New York.



