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Abstract — This paper presents some initial attempts to 
mathematically model the dynamics of a continuous Estimation 
of Distribution Algorithm (EDA) based on Gaussian 
distributions. Case studies are conducted on both unimodal and 
multimodal problems to highlight the effectiveness of the 
proposed technique and explore some fundamental issues of the 
EDA. With some general assumptions, we can show that, for 
one-dimensional unimodal problems and with the (µ, λ) scheme: 
(1). The convergence behaviour of the EDA is independent of 
the test function except its general shape; (2). When starting far 
away from the global optimum, the EDA may get stuck; (3). 
Given a certain selection pressure, there is a unique parameter 
value that could help the EDA achieve desirable performance; 
for one-dimensional multimodal problems: (1). The EDA could 
get stuck with the (µ, λ) scheme; (2). The EDA will never get 
stuck with the (µ+λ) scheme. 

  
 

I. INTRODUCTION 
 

Estimation of Distribution Algorithms (EDAs) [8] refer to 
a relatively new paradigm of Evolutionary Algorithms (EAs), 
which is based on statistical Machine Learning techniques 
instead of conventional genetic operators such as crossover 
and mutation. The major advantage of EDAs is that they can 
explicitly build a probability density function based on the 
distribution of promising individuals and utilize the 
dependence information to conduct optimization efficiently, 
which is particular important upon the presence of strong 
epistasis among variables.  

Usually, EAs are evaluated on the empirical basis while 
only limited progresses have been made in the theoretical 
aspect, especially compared to the large number of 
algorithms in the literature[1]. This is mainly due to their 
complex dynamics and massive parallel behaviour as well as 
the lack of appropriate modelling techniques.   

In traditional EAs, new individuals are generated by 
directly manipulating current individuals through various 
stochastic genetic operators. Consequently, it may be not 
straightforward to precisely estimate the new population and 
thus predict the detailed evolution process in each generation. 
Fortunately, this issue may be less challenging in EDAs 
because the searching process is solely driven by a high-
level statistical model and all individuals are generated by 
sampling from this model. In order to describe the behaviour 
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of an EDA, only the model needs to be estimated, which can 
often be fully specified by a few parameters. This clarity in 
the mechanism of EDAs makes it possible to conduct more 
detailed theoretical analysis[2, 4, 7, 9-11, 13]. 

In this paper, a general technique is proposed to model the 
behaviour of a continuous EDA based on Gaussian 
distributions and Truncation Selection, which is aimed at 
precisely predicting the Gaussian model in each generation 
specified by the mean and standard deviation parameters. 
The importance of this technique is that it can be used to 
theoretically investigate some fundamental issues such as the 
influence of various algorithm factors and the problem 
structure. 

As to the previous related work that we are aware of, 
González et. al and Grahl et. al present some theoretical 
results for the UMDAc algorithm, which is equal to the EDA 
used in this paper in one dimensional spaces [5, 6]. However, 
our work is different in several aspects. For example, we 
consider not only unimodal but also multimodal problems on 
which some interesting dynamics could be observed. 
Furthermore, in addition to the (µ, λ) scheme, the more 
complex (µ+λ) scheme is also taken into account (i.e., in 
both cases µ=λ), which has not been attempted before.  

 

II. ESTIMATION OF DISTRIBUTION ALGORITHMS 
 

TABLE I 
THE GENERAL FRAMEWORK OF THE GAUSSIAN EDA 

   Initialize and evaluate the starting population P 

          While stopping criteria not met 

                 Select the top individuals Psel 

                 Fit a Gaussian model θ to Psel 

                 Sample a set of individuals P' from θ 

                 Evaluate new individuals in P'   

                 Use P' as the new population            
                                         or 
                 Select the top individuals from P U P' 

           End While 

The general mechanism of EDAs is an iterative process of 
evolving a statistical model such as Gaussian models, 
Gaussian Mixture models and Gaussian Networks, which 
specifies the distribution of the promising individuals in the 
current population. The major motivation is that, with the 
guidance of the statistical model, EDAs are expected to be 
able to explicitly capture the dependence relationship among 

Dagstuhl Seminar Proceedings 06061
Theory of Evolutionary Algorithms
http://drops.dagstuhl.de/opus/volltexte/2006/594



problem parameters and may achieve faster convergence 
speed when complex dependence relationship does exist in 
the problem of interest.  

In the continuous EDA used in this paper (Table 1), a 
portion of top individuals in the current population P are 
selected using Truncation Selection at each generation and a 
multivariate Gaussian model θ with full covariance structure 
is then built using the maximum likelihood estimate. All new 
individuals P' are generated by sampling from θ and the new 
population is created through either the (µ, λ) scheme (i.e., 
replace all old individuals) or the (µ+λ) scheme (i.e., choose 
the top individuals from the union of old and new 
individuals). Note that P and P' are of the same size in this 
framework (i.e., µ=λ). 

 

III. MODELLING UNIMODAL PROBLEMS 
 

 
Fig. 1. A typical one-dimensional unimodal problem  

 
The 1D unimodal problems considered in this section 

have the general structure like the quadratic function y=x2 as 
shown in Figure 1. The only assumption is that each problem 
is symmetric with regard to its global minimum, which is 
placed at the origin without loss of generality (i.e., there are 
no upper and lower boundaries). For the EDA, an infinitely 
large population size is assumed so that new individuals 
have exactly the same statistics as the Gaussian model from 
which they are sampled. However, as will be shown in the 
experiments, a moderate population size is often sufficient to 
produce a close match between empirical and theoretical 
results. Furthermore, it is assumed that the initial population 
is generated from a Gaussian (µ0, δ0). During evolution, the 
Gaussian model will be evolved towards the origin with 
changing mean and standard deviation values. A demo of the 
dynamics of the EDA is shown in Figure 2. 

 
Fig. 2. A demo of the dynamics of the EDA on the unimodal problem 

With the (µ, λ) scheme, the Gaussian model to be built in 
the ith generation is completely determined by selected 
individuals in the ith population sampled from the Gaussian 
model built in the (i-1)th generation. As a result, there is a 
simple recursive relationship among the models in different 
generations. Another important feature is that the selected 
individuals in any generation are restricted within a 
continuous range [-α, α] as shown in Figure 1 with the value 
of α depending on the model parameters as well as the 
selection pressure τ (0<τ<1). This is because Truncation 
Selection applies a deterministic fitness threshold and only 
individuals strictly better than it could be chosen.  

The specific value of α in the (i+1)th generation can be 
calculated by solving the following equation: 
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The meaning of Eq. 1 is that the cumulative density of the 

Gaussian distribution within [-α, α] should be equal to τ, 
which is the portion of individuals to be selected. Although 
it may be difficult to come up with an analytical solution to 
Eq.1, it is easy to see that the value of the left hand side 
increases from zero monotonically as α +∞, which makes 
it possible to use a simple line searching method to find the 
appropriate α value at a desired accuracy level. 

Once the value of α is available, the mean parameter µi+1 
and standard deviation parameter δi+1 are determined by the 
statistics of the individuals within [-α, α]: 
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Now we have enough tools to describe the EDA’s 

behavior on unimodal problems. It should be pointed out that, 
in the above three equations, there is no utilization of any 
specific information of test functions. This shows that the 
convergence behavior of the EDA in this situation is 
independent of the problems except their general structure 
(i.e., strictly unimodal, symmetric with regard to the origin). 

In the next, some case studies are to be conducted to 
formally investigate the dynamics of the EDA with regard to 
various algorithm factors. Figures 3&4 shows the standard 
deviations and the mean values of the EDA with µ0 = -20 
and τ=0.3 where the three lines in each plot represent results 
with δ0=0.1, 1.0 and 5.0 respectively. A few interesting 
things that can be observed from the above case study are 
summarized as below: 

 
 When the mean of the Gaussian model was far from 

the global optimum (i.e., several standard deviations 
away from the origin), the trajectories of the standard 
deviation values were approximately logarithmically 
linear, which means that the standard deviations of 
the Gaussian model reduced exponentially. 
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 The gradient of the trajectory was independent of δ0 
(i.e., all standard deviation trajectories were parallel 
to each other). 

 The EDA could still get stuck on unimodal problems 
even with an infinite population, especially with 
small initial standard deviations as shown by the flat 
curves in Figure 4. 

 
Fig. 3. The trajectories of the standard deviation parameter of the 

Gaussian model on unimodal problems with different initial δ0 values  
 

 
Fig. 4. The trajectories of the mean parameter of the Gaussian model on 

unimodal problems with different initial δ0 values 
 

In order to demonstrate the influence of the selection 
pressure on the dynamics of the EDA, the standard 
deviations and the mean values of the EDA with µ0 = -20 
and δ0=1.0 are shown in Figures 5&6 where the three lines 
represent results with selection pressure τ =0.1, 0.3 and 0.5 
respectively. It is clear that as the selection pressure 
increased, the convergence speed of the EDA also increased 
accordingly (i.e., the slope of the trajectory of the standard 
deviation values became steeper). Again, no satisfactory 
performance could be achieved as the EDA quickly got 
stuck somewhere far from the optimum. 

 Note that with a weak selection pressure (i.e., τ=0.5), the 
EDA converged relatively slowly but only made limited 
progress before getting stuck. This is because the larger the 
portion of individuals to be selected, the smaller the distance 
between µi and µi+1. In the extreme situation where τ=1.0, 
the EDA will simply keep building a new model based on 
the population generated from the previous model, which 
will result in a stationary statistical model and no progress 
could be expected. Certainly, in practical situations where 
the population sizes are limited, the EDA is expected to 
present some kind of random walking behaviour. 

 
Fig. 5. The trajectories of the standard deviation parameter of the 

Gaussian model on unimodal problems with different selection pressures 
 

 
Fig. 6. The trajectories of the mean parameter of the Gaussian model on 

unimodal problems with different selection pressures 
 

In the above two case studies, the EDA was never able to 
converge to the global optimum and, as suggested by our 
previous research[12], it is necessary to explicitly maintain 
the population diversity to prevent the EDA from converging 
too quickly. A simple approach is to introduce a new 
algorithm parameter γ, which is used to amplify the original 
standard deviation parameter (i.e., δ'i= γ· δi). Certainly, for 
γ=1.0, the EDA will be kept unchanged. Figures 7 & 8 
shows the standard deviations and the mean values of the 
EDA with µ0 = -20, δ0=1.0 and τ =0.3 where the three lines 
in each plot represent results with γ =1.0, 1.5 and 2.0 
respectively. It is evident that this new parameter could 
dramatically change the dynamics of the EDA. With γ>1.0, 
the standard deviations were often orders of magnitude 
larger than in the original EDA. In the meantime, the mean 
of the Gaussian model could also consistently move towards 
the global optimum with γ=2.0, showing some significantly 
improved performance. 

However, it does not necessarily mean that such large γ 
values should be used in practice where the population size 
is limited. The issue is that the standard deviation may 
increase during evolution and become quite large, which 
makes the EDA close to doing random search. Since the 
distance between the current model and the global optimum 
is typically not known in optimization, having the standard 
deviation increase or decrease may all seem to be dangerous. 
As a result, a good strategy is to keep the current standard 
deviation value unchanged. Recall that, when the EDA is far 
from the global optimum, its convergence trajectory is only 
influenced by τ and is independent of the initial standard 
deviation. So, for different τ values, there are corresponding 
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optimum γ values (i.e., γ*= δ i / δ i+1). For example, the γ* 
values for τ=0.1, 0.3 & 0.5 are approximately 2.4315, 1.9443 
and 1.6589 respectively. 

 
Fig. 7. The trajectories of the standard deviation parameter of the 

Gaussian model on unimodal problems with diversity maintenance 
 

 
Fig. 8. The trajectories of the mean parameter of the Gaussian model on 

unimodal problems with diversity maintenance 
 

In order to demonstrate the effect of the optimum γ values, 
we investigated both empirically and theoretically the EDA 
with γ*=1.9943 in accordance with τ=0.3. The EDA started 
with µ0=-20 and δ0=1.0 and, for empirical studies, the 
population size was 5000 and results were averaged over 25 
independent trials. 

 Figure 9 shows that the standard deviation of the EDA 
was almost unchanged within the first 16 generations due to 
the γ* value in use. After that, when the EDA was quite 
close to the global optimum as shown in Figure 10, it started 
converging very quickly and changed its behavior to local 
searching. This is because when it is far from the global 
optimum, the problem could be regarded as being 
monotonous and its behavior is approximately consistent.  
However, the gradient of the convergence trajectory of the 
EDA gets significantly larger when it is close to the global 
optimum and the original γ* value is no longer large enough 
to keep the standard deviation unchanged. This phenomenon 
could be roughly explained by the fact that when the 
Gaussian model is very close to the optimum, selected 
individuals tend to distribute within a much smaller range 
than when the Gaussian model is far from the optimum. 

In fact, this property is very useful as it could adapt the 
EDA’s behavior depending on its current situation (i.e., this 
is an important advantage over a hill-climbing algorithm 
with fixed step size). At last, the empirical results marked by 
‘+’ had a good match against the theoretical analysis, which 
verified the soundness of our methods. 

 
Fig. 9. The trajectory of the standard deviation parameter of the Gaussian 

model on unimodal problems with diversity maintenance (γ*=1.9443, τ=0.3) 
 

 
Fig. 10. The trajectory of the mean parameter of the Gaussian model on 
unimodal problems with diversity maintenance (γ*=1.9443, τ=0.3) 

 

IV. MODELLING MULTIMODAL PROBLEMS 
 

In this section, we will apply the modelling techniques in 
a more general way. Firstly, the problems to be solved have 
a global optimum and a local optimum. Secondly, in 
addition to the relatively simple (µ, λ) scheme, the (µ+λ) 
scheme is also considered, which choose the best individuals 
from the union of both old and new populations.  

For the following analysis and experiments, test problems 
(i.e., to be maximized) are constructed by two Gaussian 
functions due to their smoothness and symmetric shape (i.e., 
this has nothing to do with the Gaussian model of the EDA). 
The fitness value of x is determined by the Gaussian function 
that gives it the larger value. Each Gaussian function is 
governed by its µj and δj while ωj is used to adjust its height. 

                 }{ )(),(max)( 21 xGxGxF =                (4) 
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Two examples are shown in Figures 11&12 with different 
parameter values. When there are two or more peaks in the 
problem, it is not always sufficient to describe the range of 
selected individuals by a single interval because they may 
come from different peaks. In Figure 11, when the worst 
fitness value (selection threshold) indicated by line A is 
greater than the value of the local optimum at x=0.2, all 
selected individuals will come from the peak corresponding 
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to the global optimum at x=-0.3 and bounded within [x1, x2], 
which is similar to the unimodal case. On the other hand, 
when the threshold is lower, as indicated by line B, the 
selected individuals will be from both peaks and two 
intervals [x1, x2] and [x3, x4] are required. Furthermore, when 
the two peaks are very close, it is possible that only one 
interval is needed, as shown in Figure 12. 

 
Fig. 11. A multimodal problem with two separate optima 

 

 
Fig. 12. A multimodal problem with two close optima 

 
Similarly, the initial population is sampled from a 

Gaussian (µ0, δ0). In general, with the (µ, λ) scheme, the two 
intervals at the (i+1)th generation represented by [x1, x2] and 
[x3, x4] could be calculated by solving the following 
equation (i.e., solved by line searching in practice): 
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In situations like the threshold A in Figure 11, the 

additional condition will reduce to G1(x1)=G1(x2), assuming 
G1(x) corresponds to the global optimum. Furthermore, in 
situations like Figure 12, the two intervals [x1, x2] and [x3, x4] 
satisfying the additional condition may overlap with each 
other. Consequently, the two intervals must be merged 
together. In both cases x3 and x4 are set to some identical 
values, representing an empty interval. 

Once the intervals are determined, the new model 
parameters are calculated in a similar manner as in the 
unimodal case (i.e., ],[],[ 4321 xxxx U=Ω ): 
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The major difference between the (µ, λ) scheme and the 
(µ+λ) scheme is that the latter may keep old individuals of 
high quality to the next generation. That is to say, the ith 
population is not solely sampled from the statistical model 
built in the (i-1)th generation. Instead, it can be decomposed 
into a subset of individuals generated by the initial Gaussian 
model (i.e., the initial population) and i-1 subsets of 
individuals generated from the previous i-1 models 
respectively. Following this rule, it is easy to work out the 
new equations with the similar meaning as Eqs. 5-7: 
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A test problem was constructed according to Eq. 4 with 
the global optimum created by a Gaussian (-0.5, 0.05) as 
well as a local optimum created by a Gaussian (0.5, 0.2), 
which was scaled up by a factor of 3.5 to make it a 
competitive optimum (i.e., a large basin as well as 87.5% of 
the fitness value of the global optimum).  

The initial Gaussian model was set as µ0=0 and δ0=0.5. 
Since the initial Gaussian model was centred in the middle 
between the two optima, it is likely that, at least at the 
beginning of evolution, quite a large portion of selected 
individuals might come from the peak corresponding to the 
local optimum due to its significantly larger basin size. From 
this point of view, this problem is deceptive and it would be 
interesting to see how the EDA could handle this difficulty 
with the two selection schemes. 

The dynamics of the EDA with the (µ+λ) scheme is 
shown in Figures 13&14 (i.e., τ=0.3). Compared to the 
monotonous behaviour observed in the unimodal case, the 
behaviour of the EDA is much more complicated on 
multimodal problems. For example, in the first five 
generations, the standard deviation values were shrinking 
and, in the meantime, the mean of the Gaussian was moving 
towards the local optimum.  

This indicates that the EDA was being misled by the large 
portion of selected individuals from the local optimum. 
However, after that point, the EDA moved back and 
consistently converged towards the global optimum, 
correcting its previous misjudgement. 
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Fig. 13. The trajectory of the standard deviation parameter of the 

Gaussian model on the multimodal test problem with the (µ+λ) scheme 
 

 
Fig. 14. The trajectory of the mean parameter of the Gaussian model on 

the multimodal test problem with the (µ+λ) scheme 
 

 
Fig. 15. The trajectory of the standard deviation parameter of the 

Gaussian model on the multimodal problem with the (µ, λ) scheme 

 

 
Fig. 16. The trajectory of the mean parameter of the Gaussian model on 

the multimodal problem with the (µ, λ) scheme 
 
 
 

It should be pointed out that the EDA with the (µ+λ) 
scheme will never get stuck at the local optimum with an 
infinitely large population provided that every point in the 
search space has the chance to be sampled based on the 
statistical model in use, even with small probabilities. This is 
because the (µ+λ) scheme could always memorize good 
individuals that have been found and those individuals from 
the basin corresponding to the global optimum (i.e., it is 
guaranteed that some of them would exist in the initial 
population) could not only prevent the EDA from 
converging to the local optimum infinitely but also gradually 
update the model towards the global optimum.  

By contrast, there could be a quite different story with the 
(µ, λ) scheme in which all old individuals are discarded. As 
long as individuals from the local optimum start dominating 
the population, the model will be updated towards the local 
optimum and the chance of getting new individuals from the 
global optimum will decrease, further reducing its influence 
in the population. In Figure 14, the standard deviation 
quickly dropped to nearly zero after five generations while, 
as shown in Figure 15, the mean got stuck at 0.5 where the 
local optimum was located. Again, in both cases, empirical 
results (i.e., population size = 10,000 and 25 independent 
trials) had a good match against the theoretical analysis. 

 

V. CONCLUSIONS 
 

A mathematical modelling technique is proposed under 
the assumption of infinite population size to investigate the 
dynamics of a continuous EDA with Truncation Selection 
and Gaussian models. The importance of this technique is 
that it provides a principled method to analyse the behaviour 
of the EDA under the influence of different algorithm / 
problem factors. 

In the most general situation, the first step is to identify 
the area where the currently best individuals are distributed. 
Typically, this area is specified by the contours of the fitness 
function. With the (µ, λ) scheme, this area represented by Ω 
should satisfy the following condition where P(X, µ, ∑) is 
the density function of multivariate Gaussian distributions: 
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The mean value of the new Gaussian model in the jth 
dimension could then be calculated by: 
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The standard deviation of the new Gaussian model in the 
jth dimension is given by: 
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Finally, the covariance between the jth and the kth 
variables is given by: 
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In the case studies, this technique is applied to 1D 
unimodal and multimodal problems and some interesting 
properties of the EDA have been found some of which are 
unknown in previous research. 

 
For 1D unimodal problems with the (µ, λ) scheme: 

 The dynamics of the EDA is independent of the test 
function except of its general shape, which is also 
true for the (µ+λ) scheme. 

 When starting far away from the global optimum, 
the EDA may get stuck. 

 Given a certain selection pressure, there is a unique 
γ* that could help the EDA achieve desirable 
performance by maintaining the diversity. 

 
For 1D multimodal problems: 

 The EDA could get stuck with the (µ, λ) scheme. 

 The EDA will never get stuck with the (µ+λ) 
scheme, which is also true for unimodal problems 
for obvious reasons. 

 The above conclusions also hold for high 
dimensional problems. 

 
Furthermore, the proposed method could be easily 

adapted to model other aspects of the evolution such as the 
portion of individuals on each optimum or the mean fitness 
value of the population. As to higher dimensional problems, 
some preliminary work has been successfully conducted on 
2D problems with and without dependences among 
parameters. However, a major challenge may come from 
specifying the boundaries of selected individuals and 
calculating multiple integrals over several variables. As a 
result, it seems that some further assumptions may be 
required to keep the complexity of such theoretical analysis 
at a reasonable level. 

At last, we have also noticed the connection between the 
theoretical analysis of EDAs and the existing work on 
Evolution Strategies [3], which may help these two areas 
benefit from each other. 
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