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Abstract

Ant Colony Optimization (ACO) has become quite popular in recent
years. In contrast to many successful applications, the theoretical founda-
tion of this randomized search heuristic is rather weak. Building up such
a theory is demanded to understand how these heuristics work as well as
to come up with better algorithms for certain problems. Up to now, only
convergence results have been achieved showing that optimal solutions can
be obtained in a finite amount of time. We present the first runtime anal-
ysis of a simple ACO algorithm that transfers many rigorous results with
respect to the runtime of a simple evolutionary algorithm to our algorithm.
In addition, we examine the choice of the evaporation factor, which is a
crucial parameter in such an algorithm, in greater detail and analyze its
effect with respect to the runtime.

1 Introduction

The analysis of randomized search heuristics with respect to their runtime is a
growing research area where many results have been obtained in recent years.
This class of heuristics contains well-known approaches such as Randomized Lo-
cal Search (RLS), the Metropolis Algorithm (MA), Simulated Annealing (SA),
and Evolutionary Algorithms (EAs). Such heuristics are often applied to prob-
lems whose structure is not known or if there are not enough resources such
as time, money, or knowledge to obtain good specific algorithms. It is widely
acknowledged that a solid theoretical foundation for such heuristics is needed.
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Some general results on the runtime of RLS can be found in Papadimitriou,
Schäffer and Yannakakis (1990). The graph bisection problem has been subject
to analysis of MA (Jerrum and Sorkin, 1998), where MA can be seen as SA with
a fixed temperature. For a long time, it was an open question whether there is
a natural example where SA outperforms MA for all fixed temperatures. This
question has recently been answered by Wegener (2005) for instances of the
minimum spanning tree problem.

In this paper, we focus on another kind of randomized search heuristics,
namely Ant Colony Optimization (ACO). Like EAs, these heuristics imitate
optimization processes from nature, in this case the search of an ant colony for
a common source of food. Solving problems by ACO techniques has become
quite popular in recent years. Developed by Dorigo, Maniezzo and Colorni
(1991), they have shown to be a powerful heuristic approach to solve combina-
torial optimization problems (see Dorigo and Stützle, 2004, for an overview on
the problems that these heuristics have been applied to). From a theoretical
point of view, there are no results that provide estimates of the runtime of ACO
algorithms. Despite interesting theoretical investigations of models and dynam-
ics of ACO algorithms (Dorigo and Blum, 2005), convergence results are so far
the only results related to their runtimes. Dorigo and Blum (2005) explicitly
formulate the open problem to determine the runtime of ACO algorithms on
simple problems in a similar fashion to what has been done for EAs.

We solve this problem, starting the analysis of ACO algorithms with respect
to their expected runtimes and success probability after a specific number of
steps. RLS, SA, MA, and simple EAs search more or less locally, and runtime
bounds are often obtained by considering the neighborhood structure of the
considered problem. Considering ACO algorithms, this is different as search
points are obtained by random walks of ants on a so-called construction graph.
The traversal of an ant on this graph is determined by values on the edges
which are called pheromone values. Larger pheromone values correspond to
a higher probability of traversing a certain edge, where the choice of an edge
usually fixes a parameter in the current search space. The pheromone values
are updated if a good solution has been constructed in this random walk. This
update depends on the traversal of the ant and a so-called evaporation factor ρ.

The choice of ρ seems to be a crucial parameter in an ACO algorithm. Using
a large value of ρ, the last accepted solution changes the pheromone values by
a large amount such that there is a large probability of producing this solution
in the next step. In contrast to this, the use of a small evaporation factor leads
to a small effect of the last accepted solution such that an improvement may be
hard to find in the next step. We show that a simple ACO algorithm behaves for
large values of ρ as the simplest evolutionary algorithm called (1+1) EA. This
algorithm has been studied extensively with respect to its runtime on classes of
pseudo-boolean functions (see, e. g. Droste, Jansen and Wegener, 2002) as well
as on combinatorial optimization problems. The list of problems where run-
time bounds have been obtained include some of the best-known polynomially
solvable problems such as maximum matchings (Giel and Wegener, 2003) and
minimum spanning trees (Neumann and Wegener, 2004). It should be clear
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that we cannot expect such general heuristics to outperform the best-known al-
gorithms for these mentioned problems. The main aim of such analyses is to get
an understanding how these heuristics work. In the case of NP-hard problems,
one is usually interested in good approximations of optimal solutions. Witt
(2005) has presented a worst-case and average-case analysis of the (1+1) EA
for the partition problem, which is one of the first results on NP-hard problems.
All these results immediately transfer to our ACO algorithm with large ρ.

After having obtained these general results, we consider the effect of the
evaporation factor ρ on the runtime of our ACO algorithm in detail. This
analysis requires new techniques since it is the first one of its kind. We examine
the simplest non-trivial pseudo-boolean function called OneMax and show that
small values of ρ with high probability lead to an exponential optimization time
even for this simple function. In addition, we examine for which choices of ρ
the optimization time with high probability is still upper bounded by a small
polynomial. To achieve these bounds, we consider the expected function value
for the algorithm in the next step. It turns out that larger values of ρ change
the pheromone values on the edges such that the expected value in the next
step is determined by the function value of the best seen solution. Using results
obtained by Hoeffding (1956), we show that an improvement will be achieved
after an expected polynomial number of steps. In the case of small ρ, achieving
an improvement does not increase the expected value in the next step that
much. Here exponential lower bounds are obtained by showing that there is a
large gap between the expected value and the best function value seen so far.

In Section 2, we introduce the simple ACO algorithm which we will consider.
We investigate its relation to the (1+1) EA in Section 3 and transfer the results
on this EA to our algorithm. In Section 4, we investigate the choice of the
evaporation factor ρ for the function OneMax in greater detail and finish with
some conclusions. In an appendix, it is shown how results by Hoeffding (1956)
can be adapted to suit our needs.

2 The Algorithm

Gutjahr (2003) has considered a graph-based ant system and investigated un-
der which conditions such an algorithm converges to an optimal solution. We
consider a simple graph-based ant system metaheuristic that has been inspired
by this algorithm. Such a heuristic produces solutions by random walks on a
construction graph. Let C = (V,E) be the construction graph with a desig-
nated start vertex s and pheromone values τ on the edges. Starting at s, an
ant traverses the construction graph depending on the pheromone value using
Algorithm 1. Assuming that the ant is at vertex v, the ant moves to a suc-
cessor w of v, where w is chosen proportional to the pheromone values of all
non-visited successors of v. The process is iterated until a situation is reached
where all successors of the current vertex v have been visited.
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Algorithm 1 (Construct(C, τ))

1.) v:=s, mark v as visited.

2.) While there is a successor of v in C that has not been visited:

a.) Let Nv be the set of non-visited successors of v and let
T :=

∑

(v,w)|w∈Nv
τv,w.

b.) Choose one successor w of v where the probability of selection of any
fixed u ∈ Nv is τv,u/T .

c.) Mark w as visited, set v := w and go to 2.).

3.) Return the solution x and the path P (x) constructed by this procedure.

Based on this construction procedure, solutions of our simple ACO algo-
rithm (see Algorithm 2) called 1-ANT are constructed. In the initialization
step, each edge gets a pheromone value of 1/|E| such that the pheromone val-
ues sum up to 1. After that, an initial solution x∗ is produced by a random
walk on the construction graph and the pheromone values are updated with
respected to this walk. In each iteration, a new solution x is constructed and
the pheromone values are updated if this solution is not inferior to the currently
best solution x∗. We formulate our algorithm for maximization problems al-
though it can be easily adapted to minimization.

Algorithm 2 (1-ANT)

1.) Set τu,v = 1/|E| for all (u, v) ∈ E.

2.) Compute x (and P (x)) using Construct(C, τ).

3.) Update(τ, P (x)) and set x∗ := x.

4.) Compute x (and P (x)) using Construct(C, τ).

5.) If f(x) ≥ f(x∗), Update(τ, P (x)) and set x∗ := x.

6.) Go to 4.).

For theoretical investigations, it is common to have no termination condition
in such an algorithm. One is interested in the random optimization time which
equals the number of constructed solutions until the algorithm has produced
an optimal search point. Usually, we try to bound the expected value of this
time.

We take a general view and consider optimization for pseudo-boolean goal
functions f : {0, 1}n → R for n ≥ 3. We investigate the construction graph
Cbool = (V,E) (see Figure 1) with s = v0, which seems to be the most natural
one in our setting. Optimizing bitstrings of length n, the graph has 3n + 1
vertices and 4n edges. The decision whether a bit xi, 1 ≤ i ≤ n, is set to
1 is made at node v3(i−1). In case that the edge (v3(i−1), v3(i−1)+1) is chosen,
xi is set to 1 in the constructed solution. Otherwise xi = 0 holds. After this
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Figure 1: Construction graph for pseudo-boolean optimization

decision has been made, there is only one single edge which can be traversed in
the next step. In case that (v3(i−1), v3(i−1)+1) has been chosen, the next edge is
(v3(i−1)+1, v3i), and otherwise the edge (v3(i−1)+2, v3i) will be traversed. Hence,
these edges have no influence on the constructed solution and we can assume
τ(v3(i−1) ,v3(i−1)+1) = τ(v3(i−1)+1 ,v3i) and τ(v3(i−1) ,v3(i−1)+2) = τ(v3(i−1)+2 ,v3i) for 1 ≤
i ≤ n. We call the edges (v3(i−1), v3(i−1)+1) and (v3(i−1)+1, v3i) 1-edges and the
other edges 0-edges. The edges (v3(i−1), v3(i−1)+1) and (v3(i−1), v3(i−1)+2) as well
as (v3(i−1)+1, v3i) and (v3(i−1)+2, v3i) are called complementary to each other.

The pheromone values are chosen such that at each time
∑

(u,v)∈E τ(u,v) = 1
holds. In addition, it seems to be useful to have bounds on the pheromone
values (see, e. g., Dorigo and Blum, 2005) to ensure that each search point
has a positive probability of being chosen in the next step. We restrict each
τ(u,v) to the interval

[

1
2n2 , n−1

2n2

]

and ensure
∑

(u,·)∈E τ(u,·) = 1
2n for u = v3i,

0 ≤ i ≤ n − 1, and
∑

(·,v) τ(·,v) = 1
2n for v = v3i+1, 1 ≤ i ≤ n. This can be

achieved by normalizing the pheromone values after an update and replacing
the current value by 1

2n2 if τu,v < 1
2n2 and by n−1

2n2 if τu,v > n−1
2n2 holds. Depending

on whether edge (u, v) is contained in the path P (x) of the accepted solution
x, the pheromone values are updated to τ ′ in the procedure Update(τ, P (x)) as
follows:

τ ′
(u,v) = min

{

(1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
,
n − 1

2n2

}

if (u, v) ∈ P (x)

and

τ ′
(u,v) = max

{

(1 − ρ) · τ(u,v)

1 − ρ + 2nρ
,

1

2n2

}

if (u, v) /∈ P (x).

Due to the bounds on the pheromone values, the probability of fixing xi as
in an optimal solution is at least 1/n. Hence, the 1-ANT finds an optimum for
each pseudo-boolean function f regardless of ρ in expected time at most nn.

3 1-ANT and (1+1) EA

We consider the relation between the 1-ANT and a simple evolutionary algo-
rithm called (1+1) EA, which has extensively been studied with respect to its
runtime distribution. The (1+1) EA starts with a solution x∗ that is chosen
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uniformly at random and produces in each iteration a new solution x from
a currently best solution x∗ by flipping each bit of x∗ with probability 1/n.
Hence, the probability of producing a certain solution x with Hamming dis-
tance H(x, x∗) to x∗ is (1/n)H(x,x∗) · (1 − 1/n)n−H(x,x∗).

Algorithm 3 ((1+1) EA)

1.) Choose x∗ ∈ {0, 1}n uniformly at random.

2.) Construct x by flipping each bit of x∗ independently with probability 1/n.

3.) Replace x∗ by x if f(x) ≥ f(x∗).

4.) Go to 2.).

In the following, we consider the 1-ANT with values of ρ at least n−2
3n−2 ,

which is for large n approximately 1/3 . In this case, we show that the 1-ANT
behaves as the (1+1) EA on each function. This also means that the 1-ANT
has the same expected optimization time as the (1+1) EA on each function.

Theorem 1 Choosing ρ ≥ (n− 2)/(3n − 2), the 1-ANT has the same runtime
distribution as the (1+1) EA on each function.

Proof: In the initialization step of the (1+1) EA, a bitstring is chosen uniformly
at random, which means that Prob(xi = 1) = Prob(xi = 0) = 1/2 for all i, 1 ≤
i ≤ n. As τu,v = 1/(4n) holds for each edge (u, v) ∈ E, the probability to choose
the edge (v3i, v3i+1) equals the probability of choosing the edge (v3i, v3i+2) at
vertex v3i, 0 ≤ i ≤ n − 1, and is 1/2. Hence, the 1-ANT chooses the first
solution uniformly at random from the search space {0, 1}n as the (1+1) EA.

Assume that the up to now best solution constructed by the 1-ANT is x∗.
This implies that the edges of the construction graph corresponding to this
solution have been updated in the last update operation. Before the update,
the value τ(u,v) of each edge (u, v) ∈ P (x∗) was at least 1

2n2 and the value τ(u,v)

of edges (u, v) 6∈ P (x∗) was at most n−1
2n2 .

We inspect the case of an edge (u, v) ∈ P (x∗) in greater detail and consider
the function

h(ρ) :=
(1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
≥

(1 − ρ) · 1
2n2 + ρ

1 − ρ + 2nρ
=

1

2n2
· 1 + (2n2 − 1)ρ

1 + (2n − 1)ρ
=: h′(ρ).

For each fixed n ≥ 1, h′(ρ) is a non-decreasing function. Using n ≥ 3 and
ρ ≥ (n − 2)/(3n − 2), we get

h(ρ) ≥
1 + (2n2 − 1) n−2

3n−2

2n2 + (4n3 − 2n2) n−2
3n−2

=
2n3 − 4n2 + 2n

4n4 − 4n3
=

n − 1

2n2
.

Hence, the pheromone value of each edge (u, v) ∈ P (x∗) is n−1
2n2 after the update.

The pheromone value of each edge (u, v) 6∈ P (x∗) is 1
2n2 as the sum of the
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pheromone values of two complementary edges is 1
2n . After this update, the

probability to choose in the next solution x the bit xi = x∗
i is 2n(n−1)

2n2 = 1 − 1
n

and the probability to choose xi = 1 − x∗
i is 2n

2n2 = 1/n. Hence the probability
to produce a specific solution x that has Hamming distance H(x, x∗) to x∗ is
(1/n)H(x,x∗) · (1 − 1/n)n−H(x,x∗) as in the case of the (1+1) EA. �

4 1-ANT on OneMax

In the following, we inspect the choice of ρ in greater detail for a simple pseudo-
boolean function called OneMax defined by OneMax(x) =

∑n
i=1 xi. This is

the simplest non-trivial function that can be considered and analyses of ACO
algorithms for such simple functions are explicity demanded by Dorigo and
Blum (2005). Note that due to results on the (1+1) EA by Droste, Jansen and
Wegener (2002), the expected optimization time of the 1-ANT is O(n log n) on
each linear function if ρ ≥ (n − 2)/(3n − 2) holds.

We prepare ourselves by considering the effects of pheromone updates for
a solution x∗ in greater detail. Let τ(e) and τ ′(e) be the pheromone values on
edge e before resp. after the update. If e ∈ P (x∗), τ ′(e) ≥ τ(e) and τ ′(e) ≤ τ(e)
otherwise. The amount by which the pheromone value is increased on a 1-edge
equals the amount the pheromone value is decreased on the complementary
0-edge. However, the change of a pheromone value depends on the previous
value on the edge. In the following lemma, we bound the relative change of
pheromone values. We call an edge saturated iff its pheromone value is either

1
2n2 or n−1

2n2 .

Lemma 2 Let e1 and e2 be two edges of Cbool and let τ1 resp. τ2 be their current
pheromone values in the 1-ANT. Let τ ′

1 resp. τ ′
2 be their updated pheromone

values for the next accepted solution x. If e1, e2 ∈ P (x∗) and none of the edges
is saturated before or after the update, then |(τ ′

1 − τ1) − (τ ′
2 − τ2)| ≤ ρ|τ1 − τ2|.

Proof: W. l. o. g., τ2 ≥ τ1. Since e1, e2 ∈ P (x∗) and no edge is saturated,

τ ′
1 =

(1 − ρ)τ1 + ρ

1 − ρ + 2nρ
and τ ′

2 =
(1 − ρ)τ2 + ρ

1 − ρ + 2nρ
.

This implies

(τ ′
1 − τ1) − (τ ′

2 − τ2) =
ρ − τ12nρ − (ρ − τ22nρ)

1 − ρ + 2nρ
≥ 0.

Second, since the denominator is at least 1, we obtain

τ ′
1 − τ ′

2 ≤ ρ(τ2 − τ1) + (τ1 − τ2) ⇒ (τ ′
1 − τ1) − (τ ′

2 − τ2) ≤ ρ|τ1 − τ2|.
Taking the absolute value of (τ ′

1 − τ1) − (τ ′
2 − τ2), the claim follows. �

In the following, we will figure out which values of ρ lead to efficient runtimes
of the 1-ANT and which do not. Intuitively, 1/n is a threshold value for ρ since
the denominator of the normalization factor 1−ρ+2nρ diverges for ρ = ω(1/n)
and is 1 − ρ − o(1) for ρ = o(1/n). We will make precise that the behavior of
the 1-ANT on OneMax changes drastically when ρ is asymptotically smaller
resp. larger than 1/n.
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4.1 Exponential Lower Bounds

Choosing ρ = 0, the pheromone value on each edge is 1/(4n) at each time step.
This implies that the expected optimization time of the 1-ANT on OneMax

is 2n as each solution is chosen uniformly at random from {0, 1}n. In the
following, we show that the optimization time with overwhelming proability
still is exponential if ρ is convergent to 0 only polynomially fast.

Assume that the currently best solution x∗ has value k. Then the following
lemma gives a lower bound on the probability of overshooting k by a certain
amount in the next accepted step.

Lemma 3 Let X1, . . . , Xn ∈ {0, 1} be independent Poisson trials with success
probabilities pi, 1 ≤ i ≤ n. Let X := X1 + · · ·+ Xn, µ := E(X) = p1 + · · · + pn

and σ :=
√

Var(X). For any 0 ≤ k ≤ n − σ, let γk = max{2, (k − µ)/σ}. If
σ = ω(1) then Prob(X ≥ k + σ/γk | X ≥ k) = Ω(1).

Proof: Since the Xi are bounded and σ diverges, Lindeberg’s generalization
of the Central Limit Theorem (Feller, 1971, Chapter VIII.4) holds s. t. the
distribution of X converges to a Normal distribution with expectation µ and
variance σ2. We use approximations of the Normal distribution (with the com-
mon notion Φ(x) for its cumulative distribution function) and distinguish two
cases.

If 2 maximizes γk, we even show p̃k := Prob(X ≥ k + σ/γk) = Ω(1). Let
d̃k := (k+σ/γk −µ)/σ be the normalized deviation from the expectation. Since
by our assumptions (k − µ)/σ ≤ 2, we obtain d̃k = O(1). The Central Limit
Theorem implies p̃k = (1 ± o(1))(1 − Φ(d̃k)) = Ω(1).

Now let γk > 2. Let pk := Prob(X ≥ k), dk := (k − µ)/σ, and let p̃k

and d̃k as above. By our assumptions, 2 ≤ dk ≤ d̃k ≤ dk + 1/dk. We have to
bound p̃k/pk from below. We reuse the Central Limit Theorem and employ the
inequalities

(

1

x
− 1

x3

)

· 1√
2π

· e−x2/2 < 1 − Φ(x) <
1

x
· 1√

2π
· e−x2/2

(see Feller, 1968, Chapter VII.1). Hence,

p̃k

pk
≥ 1 − o(1)

1 + o(1)
·
(

dk

d̃k

− dk

(d̃k)3

)

· e−(1/2)((d̃k)2−(dk)2).

The first fraction and the ()-term are Ω(1). Finally, the e-term is Ω(1) since
(d̃k)

2 − (dk)2 ≤ (dk + 1/dk)2 − (dk)
2 ≤ 2 + 1/(dk)2 ≤ 3. �

Using this lemma, we are able to prove an exponential lower bound on
the runtime of the 1-ANT on OneMax. In order to show that the success
probability in an exponential number of steps is still exponentially small, we
assume that ρ = O(n−1−ε) for some constant ε > 0.
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Theorem 4 Let ρ = O(n−1−ε) for some constant ε > 0. Then the optimization

time of the 1-ANT on OneMax is 2Ω(nε/3) with probability 1 − 2−Ω(nε/3).

Proof: The main idea is to keep track of the so-called 1-potential, defined as
the sum of pheromone values on 1-edges. Note that the 1-potential multiplied
by n equals the expected OneMax-value of the next constructed solution x. If
the 1-potential is bounded above by 1/2+O(1/

√
n), Chernoff bounds yield that

the probability of OneMax(x) ≥ n/2+n1/2+ε/3 is bounded above by 2−Ω(nε/3).
We will show that with overwhelming probability, the 1-potential is bounded as
suggested as long as the OneMax-value of the so far best solution is bounded
above by n/2 + n1/2+ε/3.

Starting with initialization, we consider a phase of length s := b2cnε/3c for
some constant c to be chosen later and show that the success probability in the
phase is 2−Ω(nε/3). A main task is to bound the number of successful steps of the
phase, i. e., of steps where the new solution is accepted and a pheromone update
occurs. In a success with OneMax-value n/2 + i, n + 2i pheromone values on
1-edges are increased and n − 2i are decreased. Suppose all pheromone values
are 1/(4n) ± o(1/n) in the phase. Then Lemma 2 yields that the 1-potential
is changed by at most 4i(1 ± o(1))ρ due to the considered success. Hence, if
the best solution always had OneMax-value at most n/2 + n1/2+ε/3, the total
change of the 1-potential due to at most O(n2ε/3) successes would be at most

O(n2ε/3) · 4n1/2+ε/3 · (1 ± o(1))ρ = O(n1/2+ε) · O(1/n1+ε) = O(1/n1/2)

by our assumption on ρ. This would prove the theorem since initially, the
1-potential is 1/2.

Under the assumption on the pheromone values, we want to show that with
probability 1 − 2−Ω(nε/3), at most c′n2ε/3 successes occur in the phase, where
c′ is an appropriate constant. We already know that then the probability of
a success with value at least n/2 + n1/2+ε/3 is 2−Ω(nε/3) in each step of the

phase. If c is chosen small enough, this probability is 2−Ω(nε/3) for the whole
phase. Moreover, the initial value is at least n/2 − n1/2+ε/3 with probability

1 − 2−Ω(nε/3).

Let the so far best value be k. We apply Lemma 3 with respect to the
expected OneMax-value µ of the next constructed solution. Note that k−µ =
O(n1/2+ε/3) holds at each time step we consider. Moreover, pi = 1/2 ± o(1) is
assumed to hold for all bits, implying σ = Θ(n1/2). Hence, with probability Ω(1)
the next success leads to a value at least k+Ω(n1/2−ε/3). Using Chernoff bounds,

with probability 1− 2−Ω(nε/3), c′n2ε/3 successes increase the OneMax-value by
at least c′′n1/2+ε/3, where c′′ is an appropriate constant.

We still have to show the statement on the pheromone values. This is not
too difficult for our choice of ρ if the number of successes is bounded by O(n2ε/3).
Then the total change of pheromone on any fixed edge is bounded above by

ρ · O(n2ε/3) = O(n−1−ε) · O(n2ε/3) = o(1/n)

with probability 1 − 2−Ω(nε/3). Since the number of edges is bounded by 4n,
this holds also for all edges together. Since the sum of all failure probabilities
is 2−Ω(nε/3), this completes the proof. �
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4.2 Polynomial Upper Bounds

In the following, we consider for which values of ρ the optimization time of the
1-ANT on OneMax with high probability is still polynomial. We will show
that the function value of the last accepted solution determines the expected
value of the next solution almost exactly if ρ = Ω(n−1+ε), ε > 0 an arbitrary
constant. To determine the expected time to reach an improvement, we give a
lower bound on the probability of overshooting the expected value by at least
a small amount.

Lemma 5 Let X1, . . . , Xn ∈ {0, 1} be independent Poisson trials with success
probabilities pi ∈ [1/n, 1 − 1/n], 1 ≤ i ≤ n. Let X := X1 + · · · + Xn and
µ := E(X) = p1 + · · · + pn. Then Prob(X ≥ µ + 1/2) = Ω(1/n).

Proof: It follows from the work by Hoeffding (1956) that Prob(X ≥ µ + 1/2)
is minimized if the pi take on at most 3 different values, only one of which is
distinct from 1/n and 1 − 1/n. (See Lemma 9 in Appendix A.)

Let n` be the number of pi that are 1/n, nh be the number that are 1− 1/n
and na be the number that take a different value a, 1/n < a < 1 − 1/n. Let
the random variables belonging to each of the three sets be called `-variables,
h-variables and a-variables, respectively. Let X`, Xh and Xa be the sums of
the variables from these sets, i. e., X = X` + Xh + Xa, and let µ` = n`/n,
µh = nh(1 − 1/n) and µa = naa be the corresponding expectations. In the
following arguments we also cover the case that up to two sets are empty.

It always holds that Xh = nh ≥ µh with probability (1 − 1/n)nh = Ω(1).
We distinguish several cases according to the variables from the other two sets.
If n` = na = 0 then nh = n and X = n = µ + 1 with probability Ω(1).
Now we concentrate on the most complicated case that n` 6= 0 6= na, implying
µ` 6= 0 6= µa. If 0 < µ` ≤ 1/4 and 0 < µa ≤ 1/4, we exploit that X` ≥ 1 with
probability at least 1/n. Hence Xh + X` ≥ nh + 1 ≥ µh + (µ` + 3/4) ≥ µ + 1/2
with probability Ω(1/n).

Now let µa > 1/4 and 0 < µ` ≤ 1/4. We distinguish four cases depending on
na, µa and σa =

√

naa(1 − a). In all cases, we exploit that X` ≥ 1 ≥ µ` + 3/4
with probability Ω(1/n).

Case 1: na = O(1). Since µa ≥ 1/4, a = Ω(1). Hence, we have Xa = na ≥
µa with probability Ω(1), implying X = Xh + Xa + X` ≥ µh + µa + µ` + 3/4 =
µ + 3/4 with probability Ω(1/n).

Case 2: na = ω(1) and µa = O(1). Hence, Xa can be approximated by
means of the Poisson distribution with parameter µa, implying Xa ≥ µa with
probability at least (1−o(1)) ·e−µa (µa)

dµae/(dµae)! = Ω(1). Hence, we conclude
as in Case 1 that X ≥ µ + 3/4 with probability Ω(1/n).

Case 3: µa = ω(1) (implying na = ω(1)) and σa = ω(1). Using the Central
Limit Theorem (Feller, 1968), we approximate Xa by a Normal distribution,
implying Xa ≥ µa with probability Ω(1). We go on as in Case 1.
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Case 4: µa = ω(1) and σa = O(1). Since σ2
a = µa(1 − a) = O(1) implies

a ≥ 1/2 − o(1), we obtain 1 − a = O(1/µa) = O(1/na). Hence, Xa = na ≥ µa

with probability at least (1 − O(1/na))
na = Ω(1). We go on as in Case 1.

The case that 0 < µa ≤ 1/4 and µ` > 1/4 can be handled by an analogous
case distinction according to n` and µ`. Here some cases are even impossible.

We still have to study the situation that µa > 1/4 and µ` > 1/4. Then
we study to which of the four cases the a-variables and `-variables belong. If
both lead to one of the Cases 1 or 4, we even obtain X = n ≥ µ + 1 (since
pi ≤ 1 − 1/n) with probability Ω(1). Otherwise, at least one of the two sets of
variables lead to Case 2 or 3. W. l. o. g., let this be the a-variables. However,
both the approximation by the Poisson and the Normal distribution show that
even Xa ≥ µa + 1/2 still holds with probability Ω(1) then.

Finally, we have to consider the case that n` = 0 6= na or na = 0 6= n`.
It suffices to study the case na 6= 0. Considering the above four cases and the
extra case µa ≤ 1/4, the lemma follows by the same arguments as above. �

Theorem 6 Choosing ρ = Ω(n−1+ε), ε > 0 a constant, the optimization time

of the 1-ANT on OneMax is O(n2) with probability 1 − 2−Ω(nε/2).

Proof: We assume ρ ≤ 1/2 since the result follows from Theorem 1 otherwise.
In contrast to previous definitions, an edge is called saturated if its pheromone
value is n−1

2n2 and called unsaturated otherwise. Let x∗ be a newly accepted
solution and denote by S the set of saturated 1-edges and by U the set of
unsaturated 1-edges after the pheromone update. Let k = OneMax(x∗) and
decompose k according to k = ks+ku, where ks denotes the number of ones in x∗

whose corresponding 1-edges belong to S and ku to the number of ones in x∗

whose 1-edges belong to U . The probability that the edges of S contribute at
least ks to the next (not necessarily accepted) solution x is at least (1−1/n)ks =
Ω(1).

Consider the potential P of all edges of U before x∗ updates the pheromone
values. Let µ = Pn be the expected OneMax-value w. r. t. these edges before
the update. Depending on P and ku, we compute P ∗(ρ), the new 1-potential
on these edges:

P ∗(ρ) =
(1 − ρ)P + 2kuρ

(1 − ρ) + 2nρ
.

We denote by µ∗ = P ∗(ρ) · n the expected OneMax-value w. r. t. to edges
of U after the update has occured. Under certain assumptions, we will prove
that with probability 1−2−Ω(nε), µ∗+1/2 > ku. Since ku is an integer, Lemma 5
shows that the probability of producing in the next solution x at least dµ∗ +
1/2e ≥ ku + 1 ones by the mentioned edges is at least Ω(1/n). Consider the
difference

µ∗ − ku ≥ (1 − ρ)P + 2kuρ

(1 − ρ) + 2nρ
· n − ku =

(µ − ku)(1 − ρ)

(1 − ρ) + 2nρ
.

We exploit that ρ ≤ 1/2, implying 1 − ρ ≥ 0. Hence, if µ − ku ≥ 0 then
µ∗ ≥ ku > ku − 1/2 anyway. Assuming µ − ku < 0, we can lower bound
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the (negative) last fraction by (µ − ku)/(2nρ). Hence, if we can prove that
ku−µ < nρ, we obtain µ∗ > ku−1/2 as desired. We will bound the probability
of a large deviation ku−µ keeping track of the variance of the random OneMax-
value of x∗. Let v be the variance before the pheromone values have been
updated with respect to x∗ and denote by v∗ the variance after the update. If
v ≤ (nρ)3/2, then a Chernoff-Hoeffding-type bound

(Theorem 3.44 in Scheideler, 2000) yields

Prob(ku − µ ≥ nρ) ≤ e
− (nρ)2

2v(1+nρ/(3v)) = 2−Ω(
√

nρ) = 2−Ω(nε/2).

However, we cannot show that v ≤ (nρ)3/2 is likely for all points of time.
Therefore, we will prove v∗ ≥ v/(4nρ) for any time step. This will show that v∗

is large enough to compensate a large ku−µ in the following step, constructing x.

Suppose v > (nρ)3/2. Then v ≥ √
vnρ, and the above bound yields

Prob(ku − µ ≥ √
vnρ) ≤ e

− (
√

vnρ)2

2v+2
√

vnρ/3 ≤ e
− vnρ

2v+2v/3 = 2−Ω(nε).

Hence, with probability 1 − 2−Ω(nε), (ku − µ)/(2nρ) ≤
√

v/(2nρ), implying
µ∗ ≥ ku −

√

v/(2nρ). Due to the assumptions v > (nρ)3/2, v∗ ≥ v/(4nρ)
and nρ = Ω(nε), it follows that v∗ = ω(1). Hence, we can apply Lindeberg’s
generalization of the Central Limit Theorem for the value of x. The probability
of producing at least ku + 1 ones on the edges of U is bounded below by the
probability of producing at least 1 + µ∗ +

√

v/(2nρ) ones on these edges. By
the Central Limit Theorem, this has probability Ω(1) since

√
v∗ ≥

√

v/(2nρ).

We still have to show that v∗ ≥ v/(4nρ). It is sufficient to show a state-
ment on the success probability for each edge (u, v) of the construction graph.

Consider the expression τ ′
(u,v) ≥ (1−ρ)τ(u,v)

1−ρ+2nρ . The last fraction is at least
τ(u,v)

4nρ

since ρ ≤ 1/2.

The edges of S contribute with probability Ω(1) at least ks, and (if no failure

of probability 2−Ω(nε/2) occurs) with probability Ω(1/n), the value of the bits
corresponding to edges of U is at least ku + 1. At most n− 1 improvements are
needed, and, by Chernoff bounds, cn2 steps contain at least n−1 improvements
with probability 1 − 2−Ω(n) for an appropriate constant c. Since ρ ≤ 1/2,
ε ≤ 1 must hold. Hence, the sum of all failure probabilities for O(n2) steps is

2−Ω(nε/2). �

Conclusions

For the first time, bounds on the runtime of a simple ACO algorithm have been
obtained. Choosing a large evaporation factor, it behaves like the (1+1) EA
and all results on this algorithm transfer directly to our ACO algorithm. In
addition, we have inspected the effect of the evaporation factor in greater detail
for the function OneMax and figured out the border between a polynomial and
an exponential optimization time. Thereby, we have developed new techniques
for the analysis of randomized search heuristics.
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Papadimitriou, C. H., Schäffer, A. A., and Yannakakis, M. (1990). On the com-
plexity of local search. In Proceedings of the 22nd annual ACM symposium
on Theory of Computing (STOC ’90), 438–445. ACM Press.

Scheideler, C. (2000). Probabilistic Methods for Coordination Problems. HNI-
Verlagsschriftenreihe 78, University of Paderborn. Habilitation Thesis, avail-
able at http://www14.in.tum.de/personen/scheideler/index.html.en.

Wegener, I. (2005). Simulated annealing beats metropolis in combinatorial opti-
mization. In Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP ’05), vol. 3580 of Lecture Notes in
Computer Science, 589–601.

13



Witt, C. (2005). Worst-case and average-case approximations by simple ran-
domized search heuristics. In Proceedings of the 22nd Annual Symposium on
Theoretical Aspects of Computer Science (STACS ’05), vol. 3404 of Lecture
Notes in Computer Science, 44–56. Springer.

14



A Appendix

Hoeffding Lemma

In this section, we repeat Hoeffding’s technique, leading to Lemma 9. Note that
the following statements constitute only minor modifications of the first pages
in Hoeffding (1956).

The expected value of a function g(S) is

f(p) = E(g(S)) =

n
∑

k=0

g(k)Ank(p), (1)

where p = (p1, . . . , pn) and the probability Ank of S = k is given by

Ank(p) =
∑

(i1,...,in)∈{0,1}n,
i1+···+in=k

n
∏

j=1

p
ij
j (1 − pj)

1−ij , k = 0, 1 . . . , n.

The function f(p) is symmetric in the components of p and linear in each
component. Any function with these two properties can be represented in
form (1). We consider the problem of finding the maximum and the minimum
of f(p) in the section D of the hyperplane

p1 + p2 + · · · + pn = np (1/n < p < 1 − 1/n).

We denote by pi1,i2,...,im the point in the (n − m)-dimensional space, which
is obtained from p by omiting the coordinates pi1 , pi2 , . . . , pim .

Since f(p) is symmetric, and linear in each component, we can write

f(p) = fn−1,0(p
j) + pjfn−1,1(p

j), j = 1, 2, . . . , n, (2)

where the functions fn−1,0 and fn−1,1 are independent of the index j and sym-
metric and linear in the components of pj .

We define the functions fn−k,i by fn,0(p) = f(p) and

fn−k,i(p
1,2,...,k) = fn−k−1,i(p

1,2,...,k+1) + pk+1fn−k−1,i+1(p
1,2,...,k),

i = 0, 1, . . . , k, k = 0, 1, . . . n − 1. (3)

We obtain

f(p) =

m
∑

i=1

Cmi(p1, p2, . . . , pm)fn−m,i(p
1,...,m), m = 1, 2, . . . , n, (4)

where Cm0, Cm1, . . . , Cm,m are the symmetric sums

Cm0(p1, p2, . . . , pm) = 1 (5)

and

Cmi(p1, p2, . . . , pm)

= (p1p2 · · · pi) + (p1p2 · · · pi−1pi+1) + · · · + (pm−i+1pm−i+2 · · · pm)

for i > 0.
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Theorem 7 Let a = (a1, a2, . . . , an) be a point in D at which f(p) attains its
maximum. Then for every two distinct indices i, j, we have

fn−2,2(a
ij) ≤ 0 if ai 6= aj, (6)

fn−2,2(a
ij) = 0 if ai 6= aj, 1/n < ai, aj < 1 − 1/n, (7)

fn−2,2(a
ij) ≥ 0 if 1/n < ai = aj < 1 − 1/n. (8)

Proof: Let a′ denote the point which is obtained from a if ai and aj are
replaced by ai + x and aj − x. The point a′ is in D for all x in the interval I
defined by 1/n ≤ ai + x ≤ 1 − 1/n, 1/n ≤ aj − x ≤ 1 − 1/n. We have

f(a′) = fn−2,0(a
ij) + (ai + aj)fn−2,1(a

ij) + (ai + x)(aj − x)fn−2,2(a
ij).

Hence,
f(a′) − f(a) = x(aj − ai − x)fn−2,2(a

ij). (9)

Since f(a) is a maximum, the right side must be negative or zero for all x
in I. We may assume ai ≤ aj . If ai 6= aj, we can choose x positive and
sufficiently small such that x is in I and (6) holds. If 1/n < ai < 1 − 1/n and
1/n < aj < 1 − 1/n then the point x = −ai + 1/n is in the interior of I and
(8) must hold. Moreover, if ai 6= aj, together with (6), we obtain (7). If the
maximum is not attained at a′ when x is in I and is different and sufficiently
close to zero, the inequalities (6) and (8) must be strict. �

In general, the maximum or minimum of f(p) can be attained at more than
one point in D. The following theorem gives some information about the set of
points at which an extremum is attained.

Theorem 8 Let a be a point in D at which f(p) attains its maximum or its
minimum. Suppose that a has at least two unequal coordinates which are distinct
from 1/n and 1 − 1/n. Then f(p) attains its maximum (or minimum) at any
point in D which has the same number of 1/n coordinates and the same number
of 1 − 1/n coordinates as a has.

Proof: Let m = n − r − s be the number of coordinates of a = (a1, . . . , an)
which are distinct from 1/n and 1 − 1/n. We may take a1, . . . , am to be these
coordinates and assume a1 6= a2. We first show

fn−k,i(ak+1, . . . , an) = 0, i = 2, . . . , k. (10)

We prove this equation by induction on k. Due to Theorem 7 this holds for
k = 2. Let

bk = (b1, . . . , bk, ak+1, . . . , an), (11)

where

b1 + · · · + bk = a1 + · · · + ak, 1/n ≤ bi ≤ 1 − 1/n, i = 1, . . . , k. (12)
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The point bk is in D. By (4) and the induction hypothesis,

f(bk) = fn−k,0(ak+1, . . . , an)+(a1 + · · ·+ak)fn−k,1(ak+1, . . . , an) = f(a). (13)

Thus, the maximum is attained at every point bk which satisfies (11) and
(12). In particular (12) can be satisfied with b1 6= b2, b1 6= ak+1, b2 6= ak+1,
1/n < bi < 1 − 1/n, i = 1, . . . , k (since 1/n < aj < 1 − 1/n for j = 1, . . . ,m).
Under these assumptions, we can apply the induction hypothesis (10) with a re-
placed by the point bk, whose first k+1 coordinates can by suitably rearranged.
Hence,

fn−k,i(b1, ak+2, . . . , an) = 0, fn−k,i(b2, ak+2, . . . , an) = 0, i = 2, . . . k.

Applying (3) to the left sides of these equations, we obtain

fn−k−1,i(ak+2, . . . , an) + bhfn−k−1,i+1(ak+2, . . . , an) = 0,

i = 2, . . . , k, h = 1, 2. (14)

Since b1 6= b2, we find that (10) is satisfied with k replaced by k + 1. Thus
(10) holds for k = 2, . . . ,m. Equation (13) holds for every bm that satisfies (11)
and (12) and f is symmetric which completes the proof. �

Corollary 1 The maximum and minimum of f(p) in D are attained at points
whose coordinates take on at most three different values, only one of which is
distinct from 1/n and 1 − 1/n.

Lemma 9 Let X1, . . . , Xn ∈ {0, 1}n be independent Poisson trails with success
probabilities pi ∈ [1/n, 1 − 1/n], 1 ≤ i ≤ n. Let X = X1 + · · · + Xn and
µ = p1 + · · · + pn. Then Prob(X ≥ µ + 1/2) is minimized if the pi take on at
most three different values, only one which is distinct from 1/n and 1 − 1/n.

Proof: Consider (1) and set g(k) = 1 if k ≥ µ + 1/2 and g(k) = 0 otherwise.
Hence f(p) computes in this case the probability of obtaining a value at least
µ + 1/2 and we can apply Corollary 1. �
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