
Software Verification: Infinite-State Model

Checking and Static Program Analysis

Dagstuhl Seminar 06081
February 19–24, 2006

Parosh Abdulla1, Ahmed Bouajjani2, and Markus Müller-Olm3

1 Uppsala Universitet, Sweden
2 LIAFA–Université Paris VII, France

3 Westfälische Wilhelms-Universität Münster, Germany

Abstract. This is the executive summary of Dagstuhl Seminar 06081,
“Software Verification: Infinite-State Model Checking and Static Pro-
gram Analysis”. The seminar was held from February 19 to February 24,
2006, at the International Conference and Research Center for Computer
Science Schloss Dagstuhl, Germany.

1 Introduction

Software systems are present at the very heart of many daily-life applications,
such as in communication (telephony and mobile Internet), transportation, en-
ergy, health, etc. Such systems are often critical in the sense that their failure
can have considerable human or economical consequences. Therefore, there is a
real need of rigorous and automated methods for software development which
guarantee a high level of reliability. It is well-known that, to ensure reliability,
development methods must include algorithmic analysis and verification tech-
niques which allow (1) automatic detection of defective system behavior and (2)
automatic correctness analysis of systems with respect to their specifications.

For modern software systems, many complex aspects are of crucial impor-
tance such as manipulation of data over unbounded domains (integers, reals,
etc.), object-orientation, dynamic memory structures (creation of objects, pointer
manipulation), dynamic control (multi-threading, procedure calls), synchroniza-
tion between concurrent processes, parameterization, real-time and hybrid mod-
eling, etc. The development of software analysis and verification methods and
tools allowing to deal efficiently with such aspects constitutes a major scientific
and technological challenge. Two important and quite active research communi-
ties are particularly concerned with this challenge: the community of computer-
aided verification, especially the community of (infinite-state) model checking,
and the community of static program analysis. The two communities are adopt-
ing different approaches: The model-checking community studies complete meth-
ods for the verification/analysis of abstract models. These abstract models may
involve infinity features such as those mentioned above. On the other hand, the

Dagstuhl Seminar Proceedings 06081
Software Verification: Infinite-State Model Checking and Static Program Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/797



program analysis community works with approximate analyses applied on for-
malisms that are closer to programming languages and specification formalisms
used in practice.

While the approaches and the developed techniques are different, the two
communities share a common mathematical background and their methods are
based on common basic concepts and principles: transition systems and automata-
based models, abstractions, fixpoint computations, reachability analysis based
on symbolic representation structures of (potentially infinite) sets of configura-
tions, etc.

2 Dagstuhl Seminar 06081

Dagstuhl Seminar 06081 “Software Verification: Infinite-State Verification and
Static Program Analysis” brought together 51 researchers from these two com-
munities in order to (1) improve and deepen the mutual understanding of the
developed technologies, (2) compare these technologies and identify complemen-
tary aspects, and (3) trigger collaborations leading to new developments. The
seminar was held from February 19 to February 24, 2006, at the International
Conference and Research Center for Computer Science Schloss Dagstuhl, Ger-
many. The participants came from 12 countries, mainly from Europe and the
US. More specifically, 1 participant came from Austria, 2 from Belgium, 1 from
The Czech Republic, 1 from Denmark, 12 from France, 12 from Germany, 3
from Israel, 1 from Italy, 1 from Russia, 2 from Switzerland, 5 from the United
Kingdom, and 10 from the United States.

In 31 talks, the participants presented results of their recent research. These
talks touched many issues of automatic software verification including: abstrac-
tion techniques, invariant generation, termination analysis, automata-based rep-
resentation structures and applications of regular model checking, analysis of
pointer and heap structures, timed and hybrid systems, multi-threaded pro-
grams, parameterized systems, probabilistic models and verification methods,
etc.

In a final session on Friday morning, the participants discussed how to
progress further in the field of automatic software verification and how to get the
developed technology to practice. Lack of common benchmarks and notations
and a tendency to evaluate techniques on academic toy examples rather than on
real code (e.g., from Java libraries) were identified as obstacles to fair compar-
ison of different analyses and broader dissemination of the results. Reasons for
this are that the area is quite broad with many different aspects, and that some
of the techniques are still in an experimental stage.

During the evenings and nights, the great facilities of Dagstuhl offered plenty
of opportunities to enjoy other pleasures besides science, among them beer,
cheese, and music (in alphabetical order). On Wednesday afternoon there was
an opportunity to join an excursion to Luxembourg city.

2



3 Main Results and Approaches

This section summarizes briefly some of the main results and approaches which
have been presented at the seminar.

Abstraction techniques. A lot of effort is devoted to automated data abstrac-
tion methods, following the idea to combine predicate abstraction with counter-
example guided abstraction refinement (CEGAR). One of the main issues in this
context is to provide powerful and scalable techniques for automatic detection
of abstractions which are sufficiently accurate for the given property. Recent
developments on this topic are based on using the notion of interpolants. An-
other important issue is to adapt these techniques to programs with complex
control features such as procedure calls and multi-threading. Recent results pro-
pose the extension of the CEGAR framework to such programs using abstract
model-checking techniques for communicating pushdown systems.

Abstraction techniques can also be used in order to enforce termination of
symbolic reachability analysis. Instead of checking a property on an abstract
model (which is the approach generally adopted in the model-checking commu-
nity), it is possible to introduce abstraction in the analysis by considering ap-
proximate successor computations (which is usually the approach followed in the
abstract interpretation community). Recent work tries to define such abstract
analysis algorithms which are complete for significant classes of models (i.e., they
can decide for these models whether some reachability property holds or not).
Interesting results have been obtained concerning complete forward reachability
analysis algorithms for the class of well-structured systems (such as Petri nets
and lossy channel systems).

Automata-based techniques. Finite-state (word/tree) automata can repre-
sent potentially infinite (regular) sets of (encodings of) system configurations.
These representations can be used in the computation of reachability sets (or
approximations of these sets) for the given system (when each operation of the
system is modeled as a transformation on the word/tree encodings of the config-
urations). Techniques such as meta-transition based (or transitive closure based)
acceleration, widening, or (finite range) abstraction are used in order to ensure
the termination of the analysis. This approach (more and more known under the
name of “regular model checking”) has been adopted for dealing with various
classes of systems such as counter systems (using binary encodings of integers),
pushdown systems, FIFO channel systems, parameterized networks of processes,
and more recently, systems with dynamic linked structures (such as lists, doubly
linked lists, trees, etc).

Pointer and heap structure analysis. Reasoning about programs with point-
ers and dynamic management of the memory is one of the most challenging issues
in software verification. A lot of effort is devoted to finding powerful and scal-
able methods and techniques dealing with significant classes of such programs.

3



Several of these works concentrate on the case of programs with lists (with possi-
bility of sharing and cyclicality). Among these works there are approaches based
on (1) logics such as fragments of separation logic or the first-order theory of
Boolean algebra of sets, (2) word abstract regular model checking, (3) transla-
tions to counter automata (where counters allow to reason about the lengths of
the lists), (4) instrumentation of programs, etc.

Other works provide approaches and frameworks for dealing with more gen-
eral classes of programs based on (1) logics such as separation logic or fragments
of first-order logic on graphs with reachability predicates, (2) tree abstract reg-
ular model checking, (3) graph rewriting, etc.

Few other works propose techniques allowing to reason on both the shapes
of the dynamic linked structures and on the data they carry (i.e., the values in
the data fields in each object of the structure).

Termination analysis. Several groups are developing approaches for auto-
matic verification of program termination. One of the approaches is based on
checking the existence of a decreasing ranking function. Recent developments
concern the reduction of this problem to an arithmetical decision problem. An-
other interesting approach is based on checking the existence of a finite union
of well-founded relations covering the transitive closure of the transition rela-
tion of the program. Recent work concerning this approach proposes systematic
techniques for discovering such well-founded relations iteratively using a counter-
example guided principle.

More specific approaches have been developed for dealing with programs
with lists. By including information on the length of the lists in the program
models, it is possible to reduce the termination problem of such programs to
the termination analysis of programs with counters. The latter problem can be
solved using the techniques mentioned earlier.

Probabilistic models. Recent research directions consider the verification
problem of probabilistic (infinite-state) models of programs. Impressive new de-
cidability results have been obtained recently concerning probabilistic pushdown
systems and probabilistic lossy channel systems. Also decidability of equivalence
and refinement checking of probabilistic programs have been studied.

Parametric verification. Parametric verification intends to verify systems
comprising a network of an arbitrary number of identical or similar components
running concurrently. Typical examples of such systems are mutual exclusion,
cache coherence, and broadcast protocols. Recent work in this area is concerned
with inferring invariants of such networks automatically. Another technique uses
abstraction: it views the network from the perspective of one component and
abstracts the other components by a combination of predicate and counter ab-
straction.

4



Timed systems. In the area of timed systems, recent decidability results about
metric temporal logics and dense-time Petri nets were presented at the seminar.
Although the details are quite different, a recurring idea is to reduce the problem
to a problem about an untimed or discrete model for which decidability is well-
understood, e.g., using the theory of well-structured systems based on the notion
of well-quasi orderings.

Acknowledgments

As the organizers we wish to thank the staff of the Dagstuhl office in Saarbrücken
and at Schloss Dagstuhl itself for their great support in organizing and running
the seminar. We also would like to thank all the participants of the seminar for
their talks and their expertise that made the seminar such a fruitful research
venue.

5


