Flat counter automata almost everywhere!
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Abstract. This paper argues that flatness appears as a central notioa veri-
fication of counter automata. A counter automaton is calkgdsfhen its control
graph can be “replaced”, equivalently w.r.t. reachahility another one with no
nested loops. From a practical view point, we show that fkstrie a necessary
and sufficient condition for termination of accelerated bgiic model check-
ing, a generic semi-algorithmic technique implementeduiccessful tools like
FAsST, LAsSH or TREX. From a theoretical view point, we prove that many known
semilinear subclasses of counter automata are flat: ré\®ngaded counter ma-
chines, lossy vector addition systems with states, rdder$tetri nets, persis-
tent and conflict-free Petri nets, etc. Hence, for theselaabes, the semilinear
reachability set can be computed usingréformaccelerated symbolic procedure
(whereas previous algorithms were specifically designeddoh subclass).

1 Introduction

Petri netsandcounter automatare widely used formalisms to model concurrent dis-
tributed systems. Basically, a counter automaton is a fstaee automaton extended
with counters that hold nonnegative integer values. OfTaon counters can be de-
fined by formulas in Presburger arithmetic. As the counteesusbounded, counter
automata are naturallgfinite-statesystems.

Various formalisms have been proposed to model desiredepiiep on systems. In
this work, we only considesafetyproperties: these properties (of the original system)
may often be expressed bgachability propertie®n the model.

Reachability properties are algorithmically checkableffioite-statesystems (and
efficient implementations exist). However, the situatisnriore complex foinfinite-
state systems: the reachability problem is undecidable evendsitricted classes of
systems, such as Minsky machines [Min67].

Dedicated algorithms for counter automataMany specialized algorithms have been
designed to solve verification problems for various clasgesounter automata. The
reachability problem for Petri nets has been proved detad@hay84, Kos82]. The
binary reachability relation is effectively semilinear fieversible Petri nets [Tai68]
and for BPP-nets [Esp97], and the reachabilitygst™* is effectively semilinear for
cyclic Petri nets [AK77], for persistent Petri nets [LR78al81] and for regular Petri
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Fig. 1. A non-flat counter automaton.

nets [VVNB8L1]. The reachability sepwst* andpre* are effectively semilinear for reversal-
bounded counter machines [Iba78], for lossy VASS [BM99] &md2-dimensional
VASS [HP79]. It was later shown thabst™ / pre* are still effectively semilinear for var-
ious extensions of-dim VASS [FS00b, FS00a]. However, these methods suffen fro
serious drawbacks: (1) they cannot be easily extended obiceu, (2) from an imple-
mentation perspective, a dedicated tool would be needeshftir specialized algorithm,
and (3) in practice, counter automata rarely belong egtiebne of these semilinear
classes. Thus, generic symbolic model-checking techsifpregeneral (undecidable)
classes have been recently developped and implemented.

Accelerated symbolic model-checkind/erification of reachability properties usually
proceeds through an iterative fixpoint computation offtvevard reachability sepost*
(resp.backward reachability saire*), starting from the initial states (resp. from the er-
ror states). When the state space is infinite, fiitmbolic representatiorfer sets of
states are required. To help termination of this fixpoint patation, so-calleéccel-
erationtechniques (ometa-transitiongare applied [BW94, BGWW97, BH99, FIS03,
FLO2]. Basically, acceleration consists in computing ire @tep the effect of iterating
a given loop (of the control flow graph). Accelerated symbatiodel checkers such as
LAsH [Las], TREX [ABSO01], and FAsT [BFLPO3] implement this approach.

Even though it behaves well in practice, accelerated syimbaobdel-checking is
only asemialgorithm: it does not provide any guarantee of termimatfeor instance,
iteration of loops is not sufficient to compute the whole daraar reachability set of the
counter automata depicted in figure 1, with initial stége (0,0)) (see Examples 2.4
and 4.5). Thus, we would like to combine the best of both apgines, by integrating,
for each known semilinear class, the dedicated algorithecthnology into improved
acceleration techniques that would ensure terminatioh@feneric accelerated semi-
algorithm for this class. A first step towards this objectie@sists in characterizing the
classes for which the generic accelerated semi-algoritaisitth terminate.

Our contribution. In this work, we investigate termination of accelerated ksglit
model-checking for known semilinear classes of countesraata. A natural notion in



this framework iflatnes{FO97, CJ98]: a counter automateéris calledflat® when its
control graph can be “replaced”, equivalently w.r.t. reslity, by another one with
no nested loops. We show that (global) flatness is a neceardrgufficient condition
for termination of (binary) reachability set computatidnsacceleration-based semi-
algorithms. In particular, we get that accelerated syntralbdel checkers terminate on
a given system iff this system is flat (and a suitable seareltesty is used).

We then turn our attention to the analysis of flatness for kneemilinear classes
of counter automata. We show that most of the known semilinksses of counter
automata (in particular the ones cited above) are flat. Oum teahnical contributions
are the proofs of flatness for the following classes: revdysanded counter machines,
reversible Petri nets and conflict-free Petri nets. In paldir, we obtain that the bi-
nary reachability relation is effectively semilinear ofnflict-free Petri nets. We also
show that cyclic Petri nets, persistent Petri nets, redeédri nets and Lossy/ Inserting
counter machines are flat, and we recall that BPP-net&-atiioh VASS are flat. As flat-
ness implies effective semilinearity of the forward/bineeachability set, our results
give new “uniform” proofs that these classes are semilin@gparticular, we obtain a
simpler semilinearity proofs for reversal-bounded countachines and reversible Petri
nets.

It is also remarkable that accelerated symbolic model atrscilesigned to anal-
yse counter automata, such asdt and FAST, terminate on all these classes. From a
practical viewpoint, our approach has several benefitav€lgan apply genericalgo-
rithm, which was designed for a much larger class of (unddate) systems, and (2) the
— forward, backward and binary — reachability sets can bepmdad using the same
generic algorithm.

Outline. The paper is organized as follows. Section 2 presents dgetauater au-
tomata. We introduce the notion of flatness in Section 3 andhvasv that flatness is
a necessary and sufficient condition for termination of kreged symbolic model-
checking. In the last two sections, we show that many knownilsear restricted
classes of counter automata are flat: Section 4 deals wissadeof counter machines,
and Section 5 deals with classes of Petri nets.

Proofs. Some proofs had to be omitted due to space constraints. Aaethined long
version of this paper (with detailed proofs for all resuitgh be obtained from the
authors.

2 General Counter Automata

This section is devoted to the presentation of general evantomata. We will consider
in section 4 a more effective subclass of counter automadb@sguarded commands.
We first give basic definitions and notations that will be ugedughout the paper.

% Our notion of flatness is actually more general than in [CJ88re, a system is called flat
when it contains no nested loops.



2.1 Numbers, Vectors, Relations

Let Z (resp.N, Z—, Q, Q) denotes the set dfhtegers(resp.nonnegative integers
nonpositive integergational numbersnonnegative rational numbéersWe denote by
< theusual total order orQ. Givenk,! € N, we write [k ..{] (resp.[k .. co[) for the
interval of integers{: € N/ k < ¢ <[} (resp.{i € N/ k < i}). We write| X| the
cardinal of any finite setX.

Given a sefX andn € N, we write X" for the set of.-dim vectorsx of elements in
X . Forany index € [1 .. n], we denote by[i] thei** componenbf ann-dim vectorx.

We now focus om-dim vectors of (integer or rational) numbers. We wfitior the
all zero vector0[i] = 0 for all i € [1..n]. We also denote b¥ theusual partial order
onQ", defined by <y ifforall i € [1..n] we havex[i] < y[i].

Operations om-dim vectors are componentwise extensions of their scalanter-
part (e.g. foix,x’ € Q™, x+ X’ is the vectoy € Q™ defined byy[:] = x[i] + x'[¢] for all
i € [1..n]). Fora € Q andx € Q", ax is the vectoy € Q™ defined byy[i] = ax]i]
foralli e [1..n].

These operations are classically extended on setsdih vectors (e.g. foP, P’ C
Q", P+ P ={p+p /pe€ Pp € P'}). Moreover, in an operation involving sets of
n-dim vectors, we shortly write for the singleton{x} (e.g. forP C Q™ andx € Q",
we writex + P for {x} + P).

A binary relation? on some sek is any subset oK x X. We shortly writer R z’
whenever(z,z’) € R. Given a seft’, we denote byR[Y] the relational imageof Y
by R, defined byR[Y] = {z € X / 3y € Y,y Rz}. Theinverseof a binary relation
R on X is the binary relation?~* on X defined byz R~ 2’ iff 2/ Rx. We sayR is
symmetridf R = R~!. Given two binary relation®;, R, on X, thecomposed binary
relation R; - Re on X is defined byx (R; - R2) 2’ if we havex Ry y andy Ry 2’ for
somey € X. We denote byR* thereflexive and transitive closuef R. Theidentity
relation on X is the binary relatioddx = {(z,z) / x € X}. In the rest of the paper,
we will only consider binary relations, and they will shgrile calledrelations

2.2 Presburger Arithmetic and Semilinear Sets

Presburger arithmetigthe first order additive theory over the integérs +, <)) is a
decidable logic used in a large range of applications. Asritesd in [Lat04], this logic
is central in many areas including integer programming lemls, compiler optimiza-
tion techniques, program analysis tools and model-chgckin

Presburger-definable subsetsZf may also be represented in termssemilinear
sets[GS66]. For any subseP C Z", we denote byP* the set of all (finite) linear
combinations of vectors i#:

P* = {Zfzocipi/k,co,...,ck eNandpo,...,pkeP}

A subsetS C Z" is said to be dinear setif S = (x + P*) for somex € Z" and for
some finite subsa? C Z" ; moreovelix is called thebasisand vectors inP are called



periods A semilinear sets any finite union of linear sets. Let us recall that semdine
sets are precisely the subset&dfthat are definable in Presburger arithmetic [GS66].

Observe that any finite non empty ggtcan be “encoded” using a bijectionfrom
Q to [1..]Q|]. Thus, these semilinearity notions and Presburger-défityahotions
naturally carry over subsets of) x Z™ and over relations 0@ x Z™.

2.3 Counter Automata

Definition 2.1. A n-dim counter automato® (counter automatofor short), is defined
asatupleS = (Q, T, a, 3, (Gt)ier), WwhereQ is a finite non empty set dbcations T’
is a finite non empty set dfansitionsa : T'— Q andg : T' — @ are thesourceand
targetmappings, andG: ). is a family of binary relations oiN"™ called flow guards

An n-dim counter automaton is basically a finite graph whose gdge labeled by
relations ovem-dim vector of integers. Each componeént [1..n] corresponds to a
counter ranging oveX. Operationally, control flows from one location to anothleng
transitions, and counters simultaneously change valuwes@iag to the transition’s flow
guard.

Formally, let§ = (Q, T, a, 8, (G:)ter) be an-dim counter automaton. Theet of
configurationCg of 8 is Q x N, and the semantics of each transitioa T is given by
theaction reachability relatioriRs (t) overCs defined by:

(9 Rs(t) (¢.X) | q=a(t) andq = B(t) andx Gy X

Definition 2.2. Aninitialized n-dim counter automato(8, I) is a tuple such tha$ is
ann-dim counter automaton anbiC Cs.

We write T+ for the set of alhon empty wordg, - - - t;, with ¢; € T, ande denotes
theempty wordThe sefl’'* U {e} of all words overT is denoted by"™*. For any word
7w € T* and for anyt € T', we let|r |, denote the number of occurenceg @f 7. Flow
guards and transition reachability relations are natyedtended to words:

{GE = IdNn {RS(E) = IdCS
Gﬂ'-t:GTr'Gt RS(TF't):Rg(ﬂ')'Rg(t)

A languageoverT' is any subsel, of T*. We also extend flow guards and reach-
ability relations to languagesG'y, = U, ., G» andRs(L) = U, Rs(m). For any
languagd. C T* and for any set of configuratiodsC Cs, we respectively denote by
postg (L, I) and bypreg (L, I') the set ofsuccessoconfigurationdRs(L))[I] and the
set ofpredecessoconfiguration§Rs (L))~ [1].

Definition 2.3. Given a counter automatd$) theone-step reachability relatiaf S is
the relationRs (T'), shortly writtenRs. Theglobal reachability relatioof S is the rela-
tion Rg(T*), shortly writtenR§. Given a subset C Cs, the setpostg (T, I), shortly
written post (1), andpreg (7™, I), shortly writtenpreg (1), are respectively called the
forward reachability setf (8, I') and thebackward reachability seff (S, I).

4 Obviously, the extension of these notions does not depenhestencoding™.



Remark that the global reachability relation is the reflexand transitive closure of
the one-step reachability relation.rdachability subrelations any relation? C R§.
For the reader familiar with transition systems, the openatl semantics o§ can be
viewed as the infinite-state transition syst@fp, Rs).

Theinverse counter automatdit! of a counter automatdhis obtained fron8 by
replacing the flow guards;; with their inversea; *. Aspreg (L, I) = postg_. (L, I) for
everyL C T* andI C Cs, we restrict our attention (without loss of generality) he t
global reachability relatiorand theforward reachability sefshortly calledeachability
setfrom now on).

Consider two locationg andq’ in a systen8. A word € T* is called gpath from
qto ¢ if either (1)7 = eandq = ¢/, or (2) 7 = to-- -t with k € N and satisfies:
q = alt), qd = B(ty) andB(t;i—1) = a(t;) for everyi € [1..k]. A path fromg to g is
called aloop ong, or shortly aloop. We denote byi7s(q, ¢') the set of all paths from
gtoq in8. The sequ’q,eQ ITg(q,q") of all pathsin 8 is written ITg. A trace of an
initialized counter automatof8, ) is any wordr € T* such thapost(r, I) # (. Note
that every trace is a path, but the converse is not true.

Notation. In the following, we will simply writeR (resp.post, II, C) instead ofRg
(resp.postg, ITs,Cs), when the underlying counter automaton is unambiguousvilie

also sometimes write» (resp.2, L, ) instead ofR (resp.R(c), R(L), R*).

Example 2.4.Consider the2-dim counter automatoé depicted in figure 1. Counters
are denoted by andy and flow guards are given by predicates avey, x’, andy’
(with an implicit conjonction between equalities). Intuilly, the loopl/; on location
q1 transfers the contents of the first counter into the secondteo, while the loog,

lltllgtgll
—

on locationg, does the converséntermediate locationslong (¢1, (1,2))
(g1, (4,1)) are also depicted above. This counter automaton exhibiitsples global
reachability relation, since it is readily seen that, (z,y)) = (q1, (2, %)) if and only
if: (z'+y')—(z+y)iseven, and’+y’ = z+yimpliesz’ < x. Relation(qe, (z,y)) =
(g2, (¢, y")) is similar, and thus we obtain, by composition with relai® (¢;) and
Re(t2), thaté has a semilinear global reachability relation. O

3 Flatness as a criterion for acceleration completeness

We now investigate termination of accelerated symbolicheaility computations on
counter automata. An important concept used in this papeaisof semilinear path
scheme (SLP$).S04].

Definition 3.1. [LS04] Alinear path schem@PS for short) for a counter automatén
is any language C IIg of the formp = 0¢070; - - - 0,01 Whereoy, 01,04, ... ,0k, 0%
are words. Asemilinear regular path scherf®LPS for short) is any finite union of LPS.

Definition 3.2. A counter automatoB (resp. initialized counter automatds, 1)) is
called globally flat (resp.flat) if there exists an SLPS for § satisfyingR* = R(p)

(resp.post*(I) = post(p, I)).



Thisflatnessondition may seem to be a very restrictive property. Howeave will
later prove that most of the known semilinear classes of glautomata are in fact
flat. The following lemma follows from Lemma 4.1 in [LS04], duit will be crucial
to prove flatness for several classes of counter automatser@ that this lemma is
not a (direct) consequence of Parikh’s Theorem, since weineghe SLPS to be
a subset of the considered regular languagdRecall that, assuming a linear order
T = {t1,...,t,n} OnT, theParikh map? is the total mapping frorf™* to N"* defined
by ¥ (r) = ([l -, I7le,.)-

Lemma 3.3. Given a counter automato8y, for any regular languagd. C I, there
exists an SLPg C L such that(p) = ¥(L).

Accelerated symbolic model-checking consists in the ugerdtive fixpoint com-
putation, accelerated with the computation of (the effédftsome loops. In order to
cope with the many variants, we analyze termination for genersions of these ac-
celerated reachability computations. Thus, the semirifgos presented below cannot
be directly implemented. Effectivity issues will be dissed in Remark 3.5.

Semi-Algorithm Accel-R*(S)

Semi-Algorithm Accel-post™ (8, I)

Input:

A counter automatos.

Output:

The global reachability relatioR g .

let R« Ideg
repeat forever
sel ect one of the following tasks:
oif R(I')-RC RreturnR
eselect re T*andR',R" C R
let R— RU(R -R(r*)-R")
eselect tecTandR,R"CR
let R— RU(R -R(t)-R")

Input:

An initialized counter automatofs, I).
Output:

The reachability setostg (7).

let X «— 1
repeat forever
sel ect one of the following tasks:
eif post(T,X)C XreturnX
eselect reT*andX’' C X
l et X « X Upost(r*, X")
eselect tecTandX' C X
l et X « X Upost(t, X")

Theorem 3.4. Given any counter automatéhand any subset C Cg, we have:

i) for every terminating execution atcel-R*(8) (resp.Accel-post* (8, I)), the re-
turned valueret satisfiesret = R§ (resp.ret = post§([)).

i7) there exists a terminating executionfafcel-R*(8) (resp.Accel-post* (8, I)) iff
S is globally flat (resp(8, I) is flat).

Remark 3.5.In order to implement these two semi-algorithms, a symbelresenta-

tion for sets of (pairs of) configurations is required. Sémeér sets are usually used
since (1) they are expressive enough to express most mhftoe guards, and (2)

they enjoy nice decidability and closure properties. Muegpeffective acceleration

results [FLO2, CJ98, Boi03] can be used in order to perforengticond task of the
algorithm (for some classes of semilinear flow guards).

Remark 3.6.Model-checkers ksT, LASH and TReEX implement “deterministic refine-
ments” of the semi-algorithmsccel-post* and Accel-R*. FAST takes as input an
initialized counter automaton in the form offiaite-linear systemwhere flow guards



are given by partial integral affine transformations witmgmear definition domains.
The heuristics implemented inABT ensure termination for all flat finite-linear sys-
tem [FLO2].

4 Flat Counter Machines

In the remaining of this paper, we focus on a restricted ctdssounter automata,
called counter machines, where flow guards are restrictedlinear relations given
by guarded commands. Counter machines form a fairly laagsaf counter automata,
as it contains for instance Petri nets and Minsky machineswilVshow, in this section
and in the next section, that many known semilinear subetagkcounter machines are
flat.

First, we introduce some new notations that will be used egisntly. Recall that
a minimal elemenbf a subsetX C Q" is anym € X such that for every € X, if
x < m thenx = m. We denote byMin(X) the set of minimal elementsf X. It is well
known that any subset &f" has finitely many minimal elements [Dic13].

For everyi € [1..n], we denotes; thei*" basis vectoof N" defined bye;[j] = 1
if j = i ande;[j] = 0 otherwise. The sef=, >}" will be considered as an alphabet,
and every symbo¥t € {=,>}" will also denote the partial order d@" defined by:

x #y if x[i] #[¢] y[¢] forall i € [1..n].

4.1 Counter Machines

Flow guards of counter machines belong to a basic subclassmilinear relations,
called guarded commands, which we now presentzAtim guarded commanid any
relation overN" that may be written a$(x,x') € N°" / x# p andx’ = x + §} for
some# € {=,>}", u € N*, andé € Z™ such thaju + § > 0.

Remark 4.1.The class ofi.-dim guarded commands is the closure under composition
of three kinds of basic relations:

— incremenbofa counteti € [1..n]: {(x,x') € N*" /X' =x+e;}
— decrementfacounteli € [1..n]: {(x,x') € N" /X' =x — e;}
- 0-testof a counteri € [1..n]: {(x,x') € N> / x[i] = 0 andx’ = x}

Definition 4.2. An n-dim counter machin¢counter machine for short) is a#-tuple
8§ =(Q,T,c, B, (Gt)rer, #,1,9), where(Q, T, «, 5, (Gy)ier) IS @ counter automa-
ton, and wheret : T'— {=,>}",u: T — N* and§ : T — Z™ are three transition
labelings satisfyingu(¢t)+d(¢t) > 0andG, = {(x,x’) / x#(t) u(t) andx’ = x+4(t)}
foreveryt € T.

Transition labelings#, 1 andé will be calledcondition labeling min labelingand
displacement labelingespectively. We extend the displacement labeding words in
the obvious wayé () = 0 andd(r - t) = §(m) + ().



When#(t) € {>}" for every transitiont € T, we say that the counter machiée
is test-free The class of test-free counter machines is equivalentealdss ofvector
addition systems with stat@idP79].

Obviously, any counter machine may be viewed as a countenaion. In the fol-
lowing, we will identify a counter machine with its correspbng counter automaton.
Observe that for any configuratioiig x) and(¢’, x’) of a counter maching, and for
any wordr € T*, we haveiq,x) = (¢',x') impliesx’ = x + 6(r).

The followingacceleration theorerfor counter machines, which was actually proved
for larger classes of counter automata, shows that the abditi subrelation “along”
any SLPS is effectively semilinear. As a direct consequearidais theorem (see for
instance [LS04]), we obtain that flatness (resp. global délsghimplies effective semi-
linearity of the reachability set (resp. of the global resulity relation).

Theorem 4.3 ([CJ98, FLO2, Boi03]).For any SLPS in a counter machine, the
reachability subrelatioriRs(p) is effectively semilinear.

Corollary 4.4. The global reachability relatiorR§ (resp. reachability sepostg (7))
of any globally flat counter machirte(resp. flat initialized counter machin@&, 1)) is
effectively semilinear.

Our example counter automaténwhich actually is a counter machine, shows that
the converse of this corollary does not hold (see also Rerhar.

Example 4.5.Recall that the counter automaténintroduced in Example 2.4 has a
semilinear global reachability relation. In particulaethreachability sepost: (1) is
semilinear for any semilinear sétC C¢. However, (&, (g1, (0,0))) is not flat. Intu-
itively, any loopd € T is eitherinl}, I3, [T t1 T* to 17, orinis to T ¢ 15. In each case,
we can verify thapost. (0*, I) is finite for any finitel C C¢. An induction over the
length of an SLPS, proves thapost, (6%, I) is finite for any finitel C C¢ and for
any SLPSp. As the reachability sqtost: ({(¢1,(0,0))}) = {(q1,(z,y)) /z+y €
2N} U{(q2, (z,y)) / +y—1 € 2N} is infinite we deduce thd€, (¢1, (0,0))) is not
flat.

Remark 4.6.Unfortunately, flatness is undecidable for counter machihedeed, the
boundedness problem (®sts ({(g,x0)}) finite?), which is known to be undecidable
for 2-dim counter machines, is reducible to the flatness probkefallbws: (1) if (S, I)

is flat, then we can compute a semilinear descriptiosts(Z) and decide whether
post§ (1) is finite ; (2) if (8, I) is not flat, therpost§ ({(g,%o)}) is necessarily infinite.

4.2 Reversal-bounded Counter Machines

We focus in this subsection on reversal-bounded countehimes. Intuitively, an ini-
tialized counter maching, I) will be called reversal-bounded when there existsN
such that every counter in every runsfrom I makes at most reversals (alternations
between nondecreasing and nonincreasing modes) [Ibai&Jd&finition will be made
precise with the use letter morphisms.



Consider a finite sef’ of transitions and a displacement labelihngT — Z™. For
everyi € [1..n], we define the morphism? : T* — {4, —}* by: ©?(t) = + if
S(t)[i] > 0, @2 (t) = — if 6(1)[i] < 0, andy? (t) = e if 5(t)[i] = 0.

Definition 4.7. An initialized counter machinéS, I'), with transition setI” and dis-
placement labeling, is calledreversal-boundeiithere exists: € N such thatp? () €
({+}*U{=}*)" for every: € [1..n] and every tracer of § from I. A counter machine
§ is calledglobally reversal-boundeti (8, Cs) is reversal-bounded.

Recall that the global reachability relation (resp. reddlitg set) of any reversal-
bounded counter machine (resp. initialized counter maghis effectively semilin-
ear [Iba78]. We show that these two classes are flat. Notethlese results do not
follow from the effective semilinearity proof given in [1B8] which uses Parikh’s The-
orem and manipulations on semilinear sets.

Proposition 4.8. Every reversal-bounded initialized counter machine is Batry glob-
ally reversal-bounded counter machine is globally flat.

4.3 Lossy/Inserting Counter Machines

Let us now focus on lossy/inserting counter machinesnAtim counter machine will

be called lossy (resp. inserting) when for every locatjcend for every counter €
[1..n], there is a loop on ¢ whose flow guard is the decrement (resp. increment) of
counteri. Formally:

Definition 4.9. A counter maching, with location set) and transition sef’, is called
lossy(resp.inserting if for everyq € @ and for everyi € [1..n], there exists a loog
ong suchthatG, = {(x,x') € N>" /X' = x —e;} (resp.G, = {(x,x') € N** / x' =
X + ez})

Observe that the inverse of any lossy (resp. inserting) esumachine is an insert-
ing (resp. lossy) counter machine. The reachability setngfiaitialized lossy (resp.
inserting) counter machine is obviously semilinear sinée downward (resp. upward)
closed (w.r.t. the usual partial order on configurationsafriter automata). Moreover,
it is effectively semilinear for any initialized lossy tefsee counter machine and for any
initialized inserting counter machine [BM99]. We show thatse two classes are flat.

Proposition 4.10. Every initialized lossy test-free counter machine is flatefy ini-
tialized inserting counter machine is flat.

The previous proposition cannot be extended to global f&atngince there exists
a 3-dim lossy test-free counter machine having a non segaitifand hence non flat)
global reachability relation [LS04]. Moreover, the testdness condition cannot be re-
laxed for lossy counter machines, since the semilineahadzility set is not in general
constructible for initialized lossy counter machines [BISBM99]. The following re-
mark shows that the test-freeness condition cannot be rednexen in dimensio?.

5 We use an explicit representation of losses and insertdusflatness results given in Propo-
sition 4.10 also hold when losses and insertions are “hakitioin the semantics.
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Remark 4.11 Recall that every initialize@-dim lossy counter machine has an effec-
tively semilinear reachability set [FS00a]. Still, there anitialized2-dim lossy counter
machines that are not flat. Consider for instance our exacopieter machine(, {(¢1, (1,0))}),
which is not flat according to Example 2.4, augmented witk losps on each location:

the resulting2-dim lossy counter machine obviously remains non flat.

4.4 Test-free2-dim Counter Machines

We briefly recall in this section known results on test-fzedim counter machines. The
reachability set of any initialized test-fr@edim counter machine is effectively semi-
linear [HP79]. Moreover, the global reachability relatisralso effectively semilinear

for this class [LS04]. The proof of this second result adyuased flatness-based proof
techniques:

Proposition 4.12 ([LS04]).Every test-fre@-dim counter machine is globally flat.

5 Flat Petri Nets

We now restrict our attention to a well-known and extensiv@udied subclass of
counter machines: Petri nets. Usually, a Petri net is giwea Hirected graph whose
nodes are either places or transitions. We give an equivdlefinition in terms of
counter machines.

Definition 5.1. An n-dim Petri net(Petri net for short) is any test-free-dim counter
machine whose location set is a singleton.

As the set) of locations in a Petri net is a singleton, we unambiguoustyade any
configuration(q, x) by x.

5.1 Cyclic and Reversible Petri Nets

We focus in this subsection on two subclasses of Petri ogtdic Petri netdAK77]
andreversible Petri net§Tai68]. Intuitively, an initialized Petri net will be caltl cyclic
if its reachability set is a strongly connected componentt @ Petri net will be called
reversible if every transition has an inverse.

Definition 5.2. An initialized Petri nets, I) is calledcyclicif I C post*(X) for every
X C post*(I). A Petri netS is called globally cyclicif (8,xg) is cyclic for every
xg € Cs.

Definition 5.3. A Petri net with transition set’ is calledreversibleif for everyt € T,
there exists’ € T such thatR (') = R(¢) .

Observe that a Petri net is globally cyclic iff its global cbability relation is sym-
metric iff for every transitiort, there exists a path such thatR (r) = R(¢)~!. Thus,
every reversible Petri netis globally cyclic. It is well-dwn that the global reachability
relation (resp. reachability set) of any reversible Petti(nesp. cyclic initialized Petri
net) is effectively semilinear [AK77, Tai68, BF97]. We shtivat these three classes are
flat.

11



Proposition 5.4. Every cyclic initialized Petri net is flat. Every globallyatic Petri net
is globally flat.

Remark 5.5.Recall that global flatness implies effective semilingadf the global
reachability relation. Hence, combined with the short igigen in [Hir94] that ev-
ery congruence ofN” is semilinear, the previous proposition gives an easy podof
effective semilinearity ofR* for reversible petri nets. The first proof (and only proof,
to our knowledge) of this result is presented in [Tai68] arid Very difficult to read.

5.2 Regular Petri Nets

We now turn our attention to the class of regular Petri netd¢N81]. Recall that the
trace set of an initialized Petri né§, I) is the set of all pathsr € T* such that
post(m, I) # ().

Definition 5.6. An initialized Petri net is calledegularif its trace set is a regular lan-
guage.

A singly-initialized Petri neis any initialized Petri ne(S, I) where[ is a single-
ton. It follows from Parikh’s Theorem that the reachabibigt of any regular singly-
initialized Petri net is effectively semilinear [VVN81]. ®deduce from Lemma 3.3,
which is a variant of Parikh’s Theorem, that this class isialty flat.

Proposition 5.7. Every regular singly-initialized Petri net is flat.

5.3 Persistent and Conflict-free Petri Nets

Persistent and Conflict-free Petri nets are among the fibstlasses of Petri nets intro-
duced in the literature. Intuitively, a Petri net is conflicte if every “enabled” transi-

tion remains enabled until it is taken. For persistent Redts, this condition only has
to hold for reachable configurations.

Definition 5.8. An initialized Petri net(8, I) is called persistentf for any transitions

t1,t2 With ¢1 # t9, and for anyx, x;,xa € post (/) such thatx n, x1 andx 2, X2,

there exists! € post} (I) such that -2 x'.

Definition 5.9. A Petri netS is calledconflict-freeif (8, Cs) is persistent.

Semilinearity of the reachability set for singly-initiaéid persistent Petri nets was
first proved in [LR78] in a non-constructive way, and a caomstive proof was later
presented in [May81]. It turns out that flatness, and henfeetdfe semilinearity, can
actually be deduced from the first proof. Let us first recall tammas from [LR78]: a
weaker version of Lemma 3.1 and Lemma 4.3.

Lemma 5.10. Given any singly-initialized persistent Petri n@&, {x¢}), for any two
traceso; andos with ¥ (o1) < ¥(02), there exists a path’ such thatr; ¢’ is a trace
and¥(o3) =¥ (o1) + ¥ (o).

12



Lemma 5.11. For any singly-initialized persistent Petri né§, {xo}), there exists a
finite setF of pathsr € T+ with §(7) > 0 such that for every, = x = x/, if x < x’
then there exists1, ..., € F such thatk =", x’.

Following the proof given in [LR78] that singly-initializEpersistent Petri nets have
semilinear reachability sets, we deduce the following theo

Theorem 5.12. Every semilinearly-initialized persistent Petri net istfla
Corollary 5.13. Every conflict-free Petri net is globally flat.

Remark 5.14 Recall that global flatness implies effective semilingadt the global
reachability relation. Hence, the we obtain that the glebathability relation is effec-
tively semilinear for conflict-free Petri nets.

5.4 BPP-Nets

We briefly recall in this section known results on BPP-nets.nAdim Petri net, with
transition sefl” and min labelingy, is called aBPP-netif for everyt € T, u(t) = e;
for some;i € [1..n].

Let us recall that the global reachability relation is effiealy semilinear for BPP-
nets [Esp97, FO97]. The proof of this result given in [FOXally uses flathess-based
proof techniques:

Proposition 5.15 ([FO97]).Every BPP-net is globally flat.
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A Proofs of Section 3

Theorem 3.4. Given any counter automatéhand any subset C Cs, we have:

i) for every terminating execution atcel-R*(8) (resp.Accel-post* (8, I)), the re-
turned valueret satisfiesret = R§ (resp.ret = post§([)).

i7) there exists a terminating executionfafcel-R*(8) (resp.Accel-post* (8, I)) iff
S is globally flat (resp(8, I) is flat).

Proof. Assume that the semi-algorithiccel-R*(8) terminates. From an immediate
induction over the number of times a new task is done, we dethat there exists an
SLPSp such thapost*(I) = post(p, I). Hence(8, I) is flat and moreover the returned
value ispost*(I). For the converse, assume tliét ) is flat. There exists an SLP&S
such thapost* () = post(p, I). From this SLPS, we deduce an execution of the semi-
algorithm Accel-R*(8) that terminates. The proof is similar for the semi-algarith
Accel-R*. ad

B Proofs of Section 4

Lemma B.1. For any alphabefl", the languagd™* may be written as a finite union of
languages of the forrty Uj - - - tx—1 U;;_4 i, where:

i) eacht; € T'and eachV; C T, and
i1) for everyj € [0..k — 1] and for everyt € Uj, there existg: < j < [ such that
t=1ty =1.

Proof. For anyT” C T', let T%, (resp.T”,) denote the set of all words € 7" such
that|o|; > 2 (resp.|o|; = 2) for all t € T'. We have the following equalify

™ o= |J U @ m 1"
TCT T'CT\T'

Thus, itis sufficient to prove that for arfy C T, TX, may be written as a finite union
of languages of the required form. Now, given any werd- t,...t; € T, where
t; € T', and giveni € [0..k — 1], let U7 be the set of transitions € 7" such that
[to...ti—1|¢ = 1. Observe that we have:

TS, = U W)t a (U7 )t

G':to'”tkETéz

Itis readily seen that this decomposition satistieandii), which concludes the proof.
O

6 Recall that theshuffle operatorm over languages is defined by:

L L' = {wowg - - wrwy, / wo -+ wg € Landwyg---wy, € L'}
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Proposition 4.7. Every reversal-bounded initialized counter machine is Batry glob-
ally reversal-bounded counter machine is globally flat.

Proof. Consider an initializea-dim counter machinés, I), with transition sef”” and
displacement labeling. For everydisplacement mode € {4, —}", we denote by},
the set of transitions € T such thatp?(t) € {m[i], e} for everyi € [1..n].

Observe thats, I) is reversal-bounded (resp.is globally reversal-bounded) iff
there exists: € N such thatpost*(I) = post(L",I) (resp.R* = R(L")) where
L= Um€{+,7}" Tr. Hence, in order to prove the proposition, it is sufficienstow
thatR(T) is flat for everym € {+, —}™.

Consider a fixeth € {+, —}™ and let us prove th& (T}) = R(p) for some SLPS
p. The proof relies on the observation that, along every pathnters are evolving in
same “direction”. Hence, guards have to be checked onlyhiffitst and the last oc-
currence of each transition. Thus, the following decompmsiof 7}, will be useful.
According to Lemma B.1, the languad& may be written as a finite union of lan-
guages of the formy Uy - - - t1, U} t41 such that conditions) andiz) of Lemma B.1
are satisfied.

Now let us consider any languade= to Uy - - - t U} tp+1 such that conditions
i) andii) are satisfied. We show th&(L) is flat, which will conclude the proof. For
everyt € T, we denote by the transition obtained from by relaxing the guardt
has the same source and target,aand its flow guard is defined bz = {(x,x') €
N2" /%' = x+4§(t)}. Itis readily seen that, for any transitiore 7}, and for any words
' €Tk, wehaveR(tmtn't) = R(twin't).

We also denote by/; the set{t / t € U,} for eachj € [0..k]. We obtain that
R(L) = R(toUp ---tx Uk trs1). For everyj € [0..k], there exists according to
Lemma 3.3 an SLP$; C U; such thatll N U;  andp; have the same reflexive
closure. Therefore, we get that:

R(T;) = {((2.%), (¢'.x)) € Cs / In € (I(q,4') N T;), ¥ =x+ ()}
= R(p5)
since forevery € [1..n], allthes(?)[i], with# € U;, have the same sign. Consequently,
we get:

to) - R(To ) -+~ R(tx) - R(TL") - Ritr+1)

to) - R(po) - - - R(tk) - R(Pr) - R(tw+1)

toPo - -t P th1)

to po -tk pr try1)

where, for everyj € [0.. k], we denote by, the SLPS obtained from; by replacing

eacht by ¢ (note thatp; C U, which justifies the last equality in the above equations).
0
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Proposition 4.9. Every initialized inserting counter machine is flat. Evenitialized
lossy test-free counter machine is flat.

Proof. Consider an initialized inserting counter mach{i8eI). It is readily seen that
post*(I) = Min(post*(I)) + N™. As Min(post*(I)) is finite, there exists a finite
set of pathsp,, C II such thatpost(p,,,I) = Min(post*(/)). Moreover, for ev-
eryq € @Q and for everyi € [1..n], there exists a loom,; on ¢ such thatG, =
{(x,x) € N** /X' = x + e;}. Consider the SLP$ = |, (mg,1)" - (7g,n)*

It is readily seen thaR(p) = {((¢,x),(¢,x’)) € Cs / ¢ € Q andx’ > x}. There-
fore, post* (I) = post(pm p, I). We only sketch the proof of flatness for lossy test-free

counter machines. Consider an initialized lossy testdmeter machinéS, 7). Recall
that Karp-Miller’s algorithm [KM69] basically (1) compuwe forward reachability tree
where nodes are labeled by vectorglifu{w})", and (2) accelerates sequences of tran-
sitions in order to replace some componentsbbserve that vectors ifN U {w})”
may be interpreted as downward-closed subsel$"ofThus, Karp-Miller’'s algorithm
may be seen as a “refinement” of thecel er at ed- post* semi-algorithm, where at
each step, loops corresponding to losses are acceleratieat $e current set of reach-
able configurations becomes downward-closed. Since Kalpsd algorithm always
terminates, we deduce from Theorem 3.4 {l$af) is flat. O

C Proofs of Section 5

Proposition 5.4. Every cyclic initialized Petri net is flat. Every globallyatic Petri net
is globally flat.

Proof. Let (8, I) be a cyclic initializedh-dim Petri net, and let, € I. Itis readily seen
thatpost*(I) = post*({xo}). From Theorem 3.5 in [BF97], we get that:

post*(I) = Min(post*({xo})) + (Min((post*(xg) —xo) N N"))*

For everym € Min(post*(I)) andp € Min((post*(xo) — x¢) N N™), there exists

Tm € T* such thaty, — m and there exists; € T* such that, SLN xg + p. The
SLPS witnessing flatness (8, ) is p’ - p, wherep is the union of ther,,,, andp’ is the
concatenation (in any order) of tie;)*.

Let 8 be a globally cyclio-dim Petri net. ASR* is symmetric, we obtain th&* is
a congruence oN" and hence itis semilinear [ES69]. Therefore, it is suffitteprove
that every linear set contained ®* is also contained ifR(p) for some SLP%. Con-
sider a basigx, x') € N?" and a finite set of period® = {(p1,p}),- -, (Px,Pi)} C
N?" and assume thak + P*) C R*. There existsrg, 7, ..., 7 in T* such that
x 2% X/, andx + p; — x' 4 p/ for everyi € [1..k]. As R* is symmetric, there exits
7o € T* such thak’ =% x. Consider the LP$ = (m70)* ... (mxT0)™ - mo. Itis readily
seen thaR(p) 2 (x,x’) + P*. O

Proposition 5.7. Every regular singly-initialized Petri net is flat.
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Proof. Let (8, {xo}) be aregular singly-initialized Petri net, and Ietlenote its regular
trace set. According to Lemma 3.3, there exists an ShRSL such thatl. andp have
the same reflexive closure. Assume that™ x. Sincer € L, there existsr’ € p such
that=’ is a permutation ofr. Henced(n') = é(w) and asr’ is a trace fronkg, we get

thatxy > xo + 8(n') = x. We conclude thagost* ({xo}) = post(p, {xo}). O
Theorem 5.12. Every semilinearly-initialized persistent Petri net istfla

Proof. Let us first prove that any singly-initialized persistentrPeet (S, I') with T =
{xo} if flat. Consider a finite sef’ = {1, ..., 7, } of pathsinl'* satisfying Lemma5.11
and let us first prove that, = (7} ... 7% )" is a SLPS such that for amy — x = x/,
if x < x’" then(x,x") € Rg(p+). From Lemma 5.11, there exists a sequenge...,m;,

in I such thak —~""", x/. As d(m) > 0foranyr € F, the wordr, ...m;, canbe
reordered into a word such thak — x’ andw = 77.?1] .. '”.%T where{ji,...,jm} =
{1,...,n} anda; > 0. Fromn™ € 7y ..., we deduce thab € p; and we get
(x,x') € Rs(py). Now, letM denote the setlin({(x, ¥ (o)) / xo = x}). Recall that
M isfiniteand in particular, there exists a finite subSgtof the trace set ofS, I) such
that M = {(xo + 6(0),¥(0)) / 0 € Xy}. Let us prove thaposts (/) = postg(p,I)

wherep = X - py. Assume thakg N x'. By definition of M, there existsy — x
with o € X, such that(x,¥(c)) < (X,¥(¢’)). According to Lemma 5.10, there
exists a pathy” such thato ¢” is a trace and(¢’) = ¥ (o) + ¥(o”). We get that

Xg = x <, xo + 6(0) + 6(0”") = xo + 6(¢’) = x'. Sincex = x’ andx < x/, we
obtain that(x,x') € Rs(p+). We have proved that € postg(p, ). We conclude that
any singly-initialized persistent Petri net is flat.

Now, let us prove that any linearly-initialized persist®etri Net(S, I) is flat. Re-
call that dinear set! is a set of the forni = (xo+ P*) where{x, } UP is a finite subset
of Cs. By adding to the Petri Ne& a transitiort,, such thaj(t,) = 0 andd(t,) = p for
each periog € P, we obtain a singly-initialized Petri N¢8’, I') wherel’ = {x¢}.
Remark thats, I) and(8', I’) have the same reachability set &8d, I") is persistent.
Thereforeg(§8', I') is flat and there exists a SLRSoverT” = T U {t, / p € P}, where
T is the transition set 08, such thaposty, (I') = postg, (p’, {xo}). By removing from
p' all letters that are not if", we get a SLP$ such thatpost§ (/) = postg(p,I).
Thereforeg(8, I) is flat. Finally, flatness for semilinearly-initialized jséstent Petri nets
follows from the fact that SLPS are closed under finite union. O

Corollary 5.13. Every conflict-free Petri net is globally flat.

Proof. Consider a conflict-free Petri ngtwith n countersey, ..., z,,. By adding toS n
new counterg, ..., z;, that are neither tested, nor incremented, nor decremented,
obtain a new conflict-free Petri nét with 2 n counters. Remark that for ay C T*,
we haveRs(L) = postg, (L, I) wherel = {(x,x') € N?" / x = x'}. As §' is conflict-
free, Theorem 5.12 proves th@’, I) is flat and in particular there exists an SLPS
p such thatpostg, (I) = postg.(p,I). We deduce thaRs = Rs(p) and hences is
globally flat. a
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