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Abstract. This paper argues that flatness appears as a central notion inthe veri-
fication of counter automata. A counter automaton is called flat when its control
graph can be “replaced”, equivalently w.r.t. reachability, by another one with no
nested loops. From a practical view point, we show that flatness is a necessary
and sufficient condition for termination of accelerated symbolic model check-
ing, a generic semi-algorithmic technique implemented in successful tools like
FAST, LASH or TREX. From a theoretical view point, we prove that many known
semilinear subclasses of counter automata are flat: reversal bounded counter ma-
chines, lossy vector addition systems with states, reversible Petri nets, persis-
tent and conflict-free Petri nets, etc. Hence, for these subclasses, the semilinear
reachability set can be computed using auniformaccelerated symbolic procedure
(whereas previous algorithms were specifically designed for each subclass).

1 Introduction

Petri netsandcounter automataare widely used formalisms to model concurrent dis-
tributed systems. Basically, a counter automaton is a finite-state automaton extended
with counters that hold nonnegative integer values. Operations on counters can be de-
fined by formulas in Presburger arithmetic. As the counters are unbounded, counter
automata are naturallyinfinite-statesystems.

Various formalisms have been proposed to model desired properties on systems. In
this work, we only considersafetyproperties: these properties (of the original system)
may often be expressed byreachability propertieson the model.

Reachability properties are algorithmically checkable for finite-statesystems (and
efficient implementations exist). However, the situation is more complex forinfinite-
statesystems: the reachability problem is undecidable even for restricted classes of
systems, such as Minsky machines [Min67].

Dedicated algorithms for counter automata.Many specialized algorithms have been
designed to solve verification problems for various classesof counter automata. The
reachability problem for Petri nets has been proved decidable [May84, Kos82]. The
binary reachability relation is effectively semilinear for reversible Petri nets [Tai68]
and for BPP-nets [Esp97], and the reachability setpost∗ is effectively semilinear for
cyclic Petri nets [AK77], for persistent Petri nets [LR78, May81] and for regular Petri
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Fig. 1. A non-flat counter automaton.

nets [VVN81]. The reachability setspost∗ andpre∗ are effectively semilinear for reversal-
bounded counter machines [Iba78], for lossy VASS [BM99] andfor 2-dimensional
VASS [HP79]. It was later shown thatpost∗ / pre∗ are still effectively semilinear for var-
ious extensions of2-dim VASS [FS00b, FS00a]. However, these methods suffer from
serious drawbacks: (1) they cannot be easily extended or combined, (2) from an imple-
mentation perspective, a dedicated tool would be needed foreach specialized algorithm,
and (3) in practice, counter automata rarely belong entirely to one of these semilinear
classes. Thus, generic symbolic model-checking techniques for general (undecidable)
classes have been recently developped and implemented.

Accelerated symbolic model-checking.Verification of reachability properties usually
proceeds through an iterative fixpoint computation of theforward reachability setpost∗

(resp.backward reachability setpre∗), starting from the initial states (resp. from the er-
ror states). When the state space is infinite, finitesymbolic representationsfor sets of
states are required. To help termination of this fixpoint computation, so-calledaccel-
erationtechniques (ormeta-transitions) are applied [BW94, BGWW97, BH99, FIS03,
FL02]. Basically, acceleration consists in computing in one step the effect of iterating
a given loop (of the control flow graph). Accelerated symbolic model checkers such as
LASH [Las], TREX [ABS01], and FAST [BFLP03] implement this approach.

Even though it behaves well in practice, accelerated symbolic model-checking is
only asemi-algorithm: it does not provide any guarantee of termination. For instance,
iteration of loops is not sufficient to compute the whole semilinear reachability set of the
counter automata depicted in figure 1, with initial state(q1, (0, 0)) (see Examples 2.4
and 4.5). Thus, we would like to combine the best of both approaches, by integrating,
for each known semilinear class, the dedicated algorithm’stechnology into improved
acceleration techniques that would ensure termination of the generic accelerated semi-
algorithm for this class. A first step towards this objectiveconsists in characterizing the
classes for which the generic accelerated semi-algorithm fials to terminate.

Our contribution. In this work, we investigate termination of accelerated symbolic
model-checking for known semilinear classes of counter automata. A natural notion in
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this framework isflatness[FO97, CJ98]: a counter automatonS is calledflat3 when its
control graph can be “replaced”, equivalently w.r.t. reachability, by another one with
no nested loops. We show that (global) flatness is a necessaryand sufficient condition
for termination of (binary) reachability set computationsby acceleration-based semi-
algorithms. In particular, we get that accelerated symbolic model checkers terminate on
a given system iff this system is flat (and a suitable search strategy is used).

We then turn our attention to the analysis of flatness for known semilinear classes
of counter automata. We show that most of the known semilinear classes of counter
automata (in particular the ones cited above) are flat. Our main technical contributions
are the proofs of flatness for the following classes: reversal-bounded counter machines,
reversible Petri nets and conflict-free Petri nets. In particular, we obtain that the bi-
nary reachability relation is effectively semilinear of conflict-free Petri nets. We also
show that cyclic Petri nets, persistent Petri nets, regularPetri nets and Lossy / Inserting
counter machines are flat, and we recall that BPP-nets and2-dim VASS are flat. As flat-
ness implies effective semilinearity of the forward / binary reachability set, our results
give new “uniform” proofs that these classes are semilinear. In particular, we obtain a
simpler semilinearity proofs for reversal-bounded counter machines and reversible Petri
nets.

It is also remarkable that accelerated symbolic model checkers designed to anal-
yse counter automata, such as LASH and FAST, terminate on all these classes. From a
practical viewpoint, our approach has several benefits: (1)we can apply agenericalgo-
rithm, which was designed for a much larger class of (undecidable) systems, and (2) the
— forward, backward and binary — reachability sets can be computed using the same
generic algorithm.

Outline. The paper is organized as follows. Section 2 presents general counter au-
tomata. We introduce the notion of flatness in Section 3 and weshow that flatness is
a necessary and sufficient condition for termination of accelerated symbolic model-
checking. In the last two sections, we show that many known semilinear restricted
classes of counter automata are flat: Section 4 deals with classes of counter machines,
and Section 5 deals with classes of Petri nets.

Proofs. Some proofs had to be omitted due to space constraints. A self-contained long
version of this paper (with detailed proofs for all results)can be obtained from the
authors.

2 General Counter Automata

This section is devoted to the presentation of general counter automata. We will consider
in section 4 a more effective subclass of counter automa based on guarded commands.
We first give basic definitions and notations that will be usedthroughout the paper.

3 Our notion of flatness is actually more general than in [CJ98]: there, a system is called flat
when it contains no nested loops.
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2.1 Numbers, Vectors, Relations

Let Z (resp.N, Z−, Q, Q+) denotes the set ofintegers(resp.nonnegative integers,
nonpositive integers, rational numbers, nonnegative rational numbers). We denote by
≤ the usual total order onQ. Givenk, l ∈ N, we write [k .. l] (resp.[k ..∞[) for the
interval of integers{i ∈ N / k ≤ i ≤ l} (resp.{i ∈ N / k ≤ i}). We write |X | the
cardinalof any finite setX .

Given a setX andn ∈ N, we writeXn for the set ofn-dim vectorsx of elements in
X . For any indexi ∈ [1 .. n], we denote byx[i] theith componentof ann-dim vectorx.

We now focus onn-dim vectors of (integer or rational) numbers. We write0 for the
all zero vector: 0[i] = 0 for all i ∈ [1 .. n]. We also denote by≤ theusual partial order
onQn, defined byx ≤ y if for all i ∈ [1 .. n] we havex[i] ≤ y[i].

Operations onn-dim vectors are componentwise extensions of their scalar counter-
part (e.g. forx, x′ ∈ Qn, x + x′ is the vectory ∈ Qn defined byy[i] = x[i] + x′[i] for all
i ∈ [1 .. n]). Forα ∈ Q andx ∈ Qn, α x is the vectory ∈ Qn defined byy[i] = α x[i]
for all i ∈ [1 .. n].

These operations are classically extended on sets ofn-dim vectors (e.g. forP, P ′ ⊆
Qn, P + P ′ = {p + p′ / p ∈ P, p′ ∈ P ′}). Moreover, in an operation involving sets of
n-dim vectors, we shortly writex for the singleton{x} (e.g. forP ⊆ Qn andx ∈ Qn,
we writex + P for {x} + P ).

A binary relationR on some setX is any subset ofX ×X . We shortly writexR x′

whenever(x, x′) ∈ R. Given a setY , we denote byR[Y ] the relational imageof Y
by R, defined byR[Y ] = {x ∈ X / ∃y ∈ Y, y R x}. The inverseof a binary relation
R on X is the binary relationR−1 on X defined byxR−1 x′ iff x′ R x. We sayR is
symmetricif R = R−1. Given two binary relationsR1, R2 onX , thecomposed binary
relation R1 · R2 on X is defined byx (R1 · R2)x′ if we havexR1 y andy R2 x′ for
somey ∈ X . We denote byR∗ the reflexive and transitive closureof R. The identity
relation onX is the binary relationIdX = {(x, x) / x ∈ X}. In the rest of the paper,
we will only consider binary relations, and they will shortly be calledrelations.

2.2 Presburger Arithmetic and Semilinear Sets

Presburger arithmetic(the first order additive theory over the integers〈Z, +,≤〉) is a
decidable logic used in a large range of applications. As described in [Lat04], this logic
is central in many areas including integer programming problems, compiler optimiza-
tion techniques, program analysis tools and model-checking.

Presburger-definable subsets ofZn may also be represented in terms ofsemilinear
sets[GS66]. For any subsetP ⊆ Zn, we denote byP ∗ the set of all (finite) linear
combinations of vectors inP :

P ∗ =
{

∑k
i=0

ci pi / k, c0, . . . , ck ∈ N andp0, . . . , pk ∈ P
}

A subsetS ⊆ Zn is said to be alinear setif S = (x + P ∗) for somex ∈ Zn and for
some finite subsetP ⊆ Zn ; moreoverx is called thebasisand vectors inP are called
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periods. A semilinear setis any finite union of linear sets. Let us recall that semilinear
sets are precisely the subsets ofZn that are definable in Presburger arithmetic [GS66].

Observe that any finite non empty setQ can be “encoded” using a bijectionη from
Q to [1 .. |Q|]. Thus, these semilinearity notions and Presburger-definability notions
naturally carry4 over subsets ofQ × Zn and over relations onQ × Zn.

2.3 Counter Automata

Definition 2.1. A n-dim counter automatonS (counter automatonfor short), is defined
as a tupleS = (Q, T, α, β, (Gt)t∈T ), whereQ is a finite non empty set oflocations, T
is a finite non empty set oftransitions, α : T → Q andβ : T → Q are thesourceand
targetmappings, and(Gt)t∈T is a family of binary relations onNn calledflow guards.

An n-dim counter automaton is basically a finite graph whose edges are labeled by
relations overn-dim vector of integers. Each componenti ∈ [1 .. n] corresponds to a
counter ranging overN. Operationally, control flows from one location to another along
transitions, and counters simultaneously change values according to the transition’s flow
guard.

Formally, letS = (Q, T, α, β, (Gt)t∈T ) be an-dim counter automaton. Theset of
configurationCS of S is Q×Nn, and the semantics of each transitiont ∈ T is given by
theaction reachability relationRS(t) overCS defined by:

(q, x) RS(t) (q′, x′) if q = α(t) and q′ = β(t) and x Gt x′

Definition 2.2. An initialized n-dim counter automaton(S, I) is a tuple such thatS is
ann-dim counter automaton andI ⊆ CS.

We writeT + for the set of allnon empty wordst0 · · · tk with ti ∈ T , andε denotes
theempty word. The setT +∪{ε} of all wordsπ overT is denoted byT ∗. For any word
π ∈ T ∗ and for anyt ∈ T , we let|π|t denote the number of occurences oft in π. Flow
guards and transition reachability relations are naturally extended to words:

{

Gε = IdNn

Gπ·t = Gπ · Gt

{

RS(ε) = IdCS

RS(π · t) = RS(π) · RS(t)

A languageoverT is any subsetL of T ∗. We also extend flow guards and reach-
ability relations to languages :GL =

⋃

π∈L Gπ andRS(L) =
⋃

π∈L RS(π). For any
languageL ⊆ T ∗ and for any set of configurationsI ⊆ CS, we respectively denote by
postS(L, I) and bypreS(L, I) the set ofsuccessorconfigurations(RS(L))[I] and the
set ofpredecessorconfigurations(RS(L))−1[I].

Definition 2.3. Given a counter automatonS, theone-step reachability relationof S is
the relationRS(T ), shortly writtenRS. Theglobal reachability relationof S is the rela-
tionRS(T ∗), shortly writtenR∗

S
. Given a subsetI ⊆ CS, the setspostS(T ∗, I), shortly

written post∗
S
(I), andpreS(T ∗, I), shortly writtenpre∗

S
(I), are respectively called the

forward reachability setof (S, I) and thebackward reachability setof (S, I).

4 Obviously, the extension of these notions does not depend onthe “encoding”η.
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Remark that the global reachability relation is the reflexive and transitive closure of
the one-step reachability relation. Areachability subrelationis any relationR ⊆ R∗

S
.

For the reader familiar with transition systems, the operational semantics ofS can be
viewed as the infinite-state transition system(CS,RS).

Theinverse counter automatonS−1 of a counter automatonS is obtained fromS by
replacing the flow guardsGt with their inverseG−1

t . AspreS(L, I) = postS−1(L, I) for
everyL ⊆ T ∗ andI ⊆ CS, we restrict our attention (without loss of generality) to the
global reachability relationand theforward reachability set(shortly calledreachability
setfrom now on).

Consider two locationsq andq′ in a systemS. A wordπ ∈ T ∗ is called apath from
q to q′ if either (1)π = ε andq = q′, or (2) π = t0 · · · tk with k ∈ N and satisfies:
q = α(t0), q′ = β(tk) andβ(ti−1) = α(ti) for everyi ∈ [1 .. k]. A path fromq to q is
called aloop onq, or shortly aloop. We denote byΠS(q, q′) the set of all paths from
q to q′ in S. The set

⋃

q,q′∈Q ΠS(q, q′) of all pathsin S is writtenΠS. A traceof an
initialized counter automaton(S, I) is any wordπ ∈ T ∗ such thatpost(π, I) 6= ∅. Note
that every trace is a path, but the converse is not true.

Notation. In the following, we will simply writeR (resp.post, Π , C) instead ofRS

(resp.postS, ΠS, CS), when the underlying counter automaton is unambiguous. Wewill

also sometimes write→ (resp.
σ
−→,

L
−→,

∗
−→) instead ofR (resp.R(σ), R(L), R∗).

Example 2.4.Consider the2-dim counter automatonE depicted in figure 1. Counters
are denoted byx andy and flow guards are given by predicates overx, y, x′, andy′

(with an implicit conjonction between equalities). Intuitively, the loopl1 on location
q1 transfers the contents of the first counter into the second counter, while the loopl2

on locationq2 does the converse.Intermediate locationsalong(q1, (1, 2))
l1t1l4

2
t2l1

−−−−−−→
(q1, (4, 1)) are also depicted above. This counter automaton exhibits a simple global
reachability relation, since it is readily seen that(q1, (x, y))

∗
−→ (q1, (x

′, y′)) if and only
if: (x′+y′)−(x+y) is even, andx′+y′ = x+y impliesx′ ≤ x. Relation(q2, (x, y))

∗
−→

(q2, (x
′, y′)) is similar, and thus we obtain, by composition with relationsRE(t1) and

RE(t2), thatE has a semilinear global reachability relation. ⊓⊔

3 Flatness as a criterion for acceleration completeness

We now investigate termination of accelerated symbolic reachability computations on
counter automata. An important concept used in this paper isthat of semilinear path
scheme (SLPS)[LS04].

Definition 3.1. [LS04] A linear path scheme(LPS for short) for a counter automatonS
is any languageρ ⊆ ΠS of the formρ = σ0θ

∗
1σ1 · · · θ

∗
kσk whereσ0, θ1, σ1, . . . , θk, σk

are words. Asemilinear regular path scheme(SLPS for short) is any finite union of LPS.

Definition 3.2. A counter automatonS (resp. initialized counter automaton(S, I)) is
called globally flat (resp.flat) if there exists an SLPSρ for S satisfyingR∗ = R(ρ)
(resp.post∗(I) = post(ρ, I)).
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Thisflatnesscondition may seem to be a very restrictive property. However, we will
later prove that most of the known semilinear classes of counter automata are in fact
flat. The following lemma follows from Lemma 4.1 in [LS04], and it will be crucial
to prove flatness for several classes of counter automata. Observe that this lemma is
not a (direct) consequence of Parikh’s Theorem, since we require the SLPSρ to be
a subset of the considered regular languageL. Recall that, assuming a linear order
T = {t1, . . . , tm} onT , theParikh mapΨ is the total mapping fromT ∗ to Nm defined
by Ψ(π) = (|π|t1 , . . . , |π|tm

).

Lemma 3.3. Given a counter automatonS, for any regular languageL ⊆ Π , there
exists an SLPSρ ⊆ L such thatΨ(ρ) = Ψ(L).

Accelerated symbolic model-checking consists in the usualiterative fixpoint com-
putation, accelerated with the computation of (the effect of) some loops. In order to
cope with the many variants, we analyze termination for generic versions of these ac-
celerated reachability computations. Thus, the semi-algorithms presented below cannot
be directly implemented. Effectivity issues will be discussed in Remark 3.5.

Semi-Algorithm Accel-R∗(S)

Input:
A counter automatonS.
Output:
The global reachability relationR∗

S .

let R← IdCS

repeat forever
select one of the following tasks:
• ifR(T ) ·R ⊆ R return R
• select π ∈ T ∗ andR′, R′′ ⊆ R
let R← R ∪ (R′ · R(π∗) ·R′′)
• select t ∈ T andR′, R′′ ⊆ R
let R← R ∪ (R′ · R(t) · R′′)

Semi-Algorithm Accel-post
∗(S, I)

Input:
An initialized counter automaton(S, I).
Output:
The reachability setpost

∗

S(I).

let X ← I
repeat forever
select one of the following tasks:
• if post(T, X) ⊆ X return X
• select π ∈ T ∗ andX ′ ⊆ X
let X ← X ∪ post(π∗, X ′)
• select t ∈ T andX ′ ⊆ X
let X ← X ∪ post(t, X ′)

Theorem 3.4. Given any counter automatonS and any subsetI ⊆ CS, we have:

i) for every terminating execution ofAccel-R∗(S) (resp.Accel-post∗(S, I)), the re-
turned valueret satisfies:ret = R∗

S
(resp.ret = post∗

S
(I)).

ii) there exists a terminating execution ofAccel-R∗(S) (resp.Accel-post∗(S, I)) iff
S is globally flat (resp.(S, I) is flat).

Remark 3.5.In order to implement these two semi-algorithms, a symbolicrepresenta-
tion for sets of (pairs of) configurations is required. Semilinear sets are usually used
since (1) they are expressive enough to express most practical flow guards, and (2)
they enjoy nice decidability and closure properties. Moreover, effective acceleration
results [FL02, CJ98, Boi03] can be used in order to perform the second task of the
algorithm (for some classes of semilinear flow guards).

Remark 3.6.Model-checkers FAST, LASH and TREX implement “deterministic refine-
ments” of the semi-algorithmsAccel-post∗ andAccel-R∗. FAST takes as input an
initialized counter automaton in the form of afinite-linear system, where flow guards
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are given by partial integral affine transformations with semilinear definition domains.
The heuristics implemented in FAST ensure termination for all flat finite-linear sys-
tem [FL02].

4 Flat Counter Machines

In the remaining of this paper, we focus on a restricted classof counter automata,
called counter machines, where flow guards are restricted semilinear relations given
by guarded commands. Counter machines form a fairly large class of counter automata,
as it contains for instance Petri nets and Minsky machines. We will show, in this section
and in the next section, that many known semilinear subclasses of counter machines are
flat.

First, we introduce some new notations that will be used subsequently. Recall that
a minimal elementof a subsetX ⊆ Qn is anym ∈ X such that for everyx ∈ X , if
x ≤ m thenx = m. We denote byMin(X) theset of minimal elementsof X . It is well
known that any subset ofNn has finitely many minimal elements [Dic13].

For everyi ∈ [1 .. n], we denoteei theith basis vectorof Nn defined by:ei[j] = 1
if j = i andei[j] = 0 otherwise. The set{=,≥}n will be considered as an alphabet,
and every symbol# ∈ {=,≥}n will also denote the partial order onQn defined by:
x# y if x[i] #[i] y[i] for all i ∈ [1 .. n].

4.1 Counter Machines

Flow guards of counter machines belong to a basic subclass ofsemilinear relations,
called guarded commands, which we now present. Ann-dim guarded commandis any
relation overNn that may be written as{(x, x′) ∈ N2n / x# µ andx′ = x + δ} for
some# ∈ {=,≥}n, µ ∈ Nn, andδ ∈ Zn such thatµ + δ ≥ 0.

Remark 4.1.The class ofn-dim guarded commands is the closure under composition
of three kinds of basic relations:

– incrementof a counteri ∈ [1 .. n] : {(x, x′) ∈ N2n / x′ = x + ei}
– decrementof a counteri ∈ [1 .. n] : {(x, x′) ∈ N2n / x′ = x − ei}
– 0-testof a counteri ∈ [1 .. n] : {(x, x′) ∈ N2n / x[i] = 0 andx′ = x}

Definition 4.2. An n-dim counter machine(counter machine for short) is an8-tuple
S = (Q, T, α, β, (Gt)t∈T , #, µ, δ), where(Q, T, α, β, (Gt)t∈T ) is a counter automa-
ton, and where# : T → {=,≥}n, µ : T → Nn andδ : T → Zn are three transition
labelings satisfying:µ(t)+δ(t) ≥ 0 andGt = {(x, x′) / x#(t)µ(t) andx′ = x+δ(t)}
for everyt ∈ T .

Transition labelings#, µ andδ will be calledcondition labeling, min labelingand
displacement labelingrespectively. We extend the displacement labelingδ to words in
the obvious way:δ(ε) = 0 andδ(π · t) = δ(π) + δ(t).
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When#(t) ∈ {≥}n for every transitiont ∈ T , we say that the counter machineS

is test-free. The class of test-free counter machines is equivalent to the class ofvector
addition systems with states[HP79].

Obviously, any counter machine may be viewed as a counter automaton. In the fol-
lowing, we will identify a counter machine with its corresponding counter automaton.
Observe that for any configurations(q, x) and(q′, x′) of a counter machineS, and for
any wordπ ∈ T ∗, we have:(q, x)

π
−→ (q′, x′) impliesx′ = x + δ(π).

The followingacceleration theoremfor counter machines, which was actually proved
for larger classes of counter automata, shows that the reachability subrelation “along”
any SLPS is effectively semilinear. As a direct consequenceof this theorem (see for
instance [LS04]), we obtain that flatness (resp. global flatness) implies effective semi-
linearity of the reachability set (resp. of the global reachability relation).

Theorem 4.3 ([CJ98, FL02, Boi03]).For any SLPSρ in a counter machineS, the
reachability subrelationRS(ρ) is effectively semilinear.

Corollary 4.4. The global reachability relationR∗
S

(resp. reachability setpost∗
S
(I))

of any globally flat counter machineS (resp. flat initialized counter machine(S, I)) is
effectively semilinear.

Our example counter automatonE, which actually is a counter machine, shows that
the converse of this corollary does not hold (see also Remark4.11).

Example 4.5.Recall that the counter automatonE introduced in Example 2.4 has a
semilinear global reachability relation. In particular the reachability setpost∗

E
(I) is

semilinear for any semilinear setI ⊆ CE. However,(E, (q1, (0, 0))) is not flat. Intu-
itively, any loopθ ∈ T ∗ is either inl∗1 , l∗2 , l∗1 t1 T ∗ t2 l∗1, or in l∗2 t2 T ∗ t1 l∗2 . In each case,
we can verify thatpostE(θ∗, I) is finite for any finiteI ⊆ CE. An induction over the
length of an SLPSρ, proves thatpostE(θ∗, I) is finite for any finiteI ⊆ CE and for
any SLPSρ. As the reachability setpost∗

E
({(q1, (0, 0))}) = {(q1, (x, y)) / x + y ∈

2 N}∪ {(q2, (x, y)) / x+ y− 1 ∈ 2 N} is infinite we deduce that(E, (q1, (0, 0))) is not
flat.

Remark 4.6.Unfortunately, flatness is undecidable for counter machines. Indeed, the
boundedness problem (ispost∗

S
({(q, x0)}) finite?), which is known to be undecidable

for 2-dim counter machines, is reducible to the flatness problem as follows: (1) if (S, I)
is flat, then we can compute a semilinear descriptionpost∗

S
(I) and decide whether

post∗
S
(I) is finite ; (2) if (S, I) is not flat, thenpost∗

S
({(q, x0)}) is necessarily infinite.

4.2 Reversal-bounded Counter Machines

We focus in this subsection on reversal-bounded counter machines. Intuitively, an ini-
tialized counter machine(S, I) will be called reversal-bounded when there existsr ∈ N

such that every counter in every run ofS from I makes at mostr reversals (alternations
between nondecreasing and nonincreasing modes) [Iba78]. The definition will be made
precise with the use letter morphisms.
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Consider a finite setT of transitions and a displacement labelingδ : T → Zn. For
every i ∈ [1 .. n], we define the morphismϕδ

i : T ∗ → {+,−}∗ by: ϕδ
i (t) = + if

δ(t)[i] > 0, ϕδ
i (t) = − if δ(t)[i] < 0, andϕδ

i (t) = ε if δ(t)[i] = 0.

Definition 4.7. An initialized counter machine(S, I), with transition setT and dis-
placement labelingδ, is calledreversal-boundedif there existsr ∈ N such thatϕδ

i (π) ∈
({+}∗ ∪ {−}∗)r for everyi ∈ [1 .. n] and every traceπ of S fromI. A counter machine
S is calledglobally reversal-boundedif (S, CS) is reversal-bounded.

Recall that the global reachability relation (resp. reachability set) of any reversal-
bounded counter machine (resp. initialized counter machine) is effectively semilin-
ear [Iba78]. We show that these two classes are flat. Note thatthese results do not
follow from the effective semilinearity proof given in [Iba78] which uses Parikh’s The-
orem and manipulations on semilinear sets.

Proposition 4.8. Every reversal-bounded initialized counter machine is flat. Every glob-
ally reversal-bounded counter machine is globally flat.

4.3 Lossy/Inserting Counter Machines

Let us now focus on lossy/inserting counter machines. Ann-dim counter machine will
be called lossy (resp. inserting) when for every locationq and for every counteri ∈
[1 .. n], there is a loop5 on q whose flow guard is the decrement (resp. increment) of
counteri. Formally:

Definition 4.9. A counter machineS, with location setQ and transition setT , is called
lossy(resp.inserting) if for everyq ∈ Q and for everyi ∈ [1 .. n], there exists a loopπ
on q such thatGπ = {(x, x′) ∈ N2n / x′ = x − ei} (resp.Gπ = {(x, x′) ∈ N2n / x′ =
x + ei}).

Observe that the inverse of any lossy (resp. inserting) counter machine is an insert-
ing (resp. lossy) counter machine. The reachability set of any initialized lossy (resp.
inserting) counter machine is obviously semilinear since it is downward (resp. upward)
closed (w.r.t. the usual partial order on configurations of counter automata). Moreover,
it is effectively semilinear for any initialized lossy test-free counter machine and for any
initialized inserting counter machine [BM99]. We show thatthese two classes are flat.

Proposition 4.10. Every initialized lossy test-free counter machine is flat. Every ini-
tialized inserting counter machine is flat.

The previous proposition cannot be extended to global flatness, since there exists
a 3-dim lossy test-free counter machine having a non semilinear (and hence non flat)
global reachability relation [LS04]. Moreover, the test-freeness condition cannot be re-
laxed for lossy counter machines, since the semilinear reachability set is not in general
constructible for initialized lossy counter machines [DJS99, BM99]. The following re-
mark shows that the test-freeness condition cannot be removed even in dimension2.

5 We use an explicit representation of losses and insertions.Our flatness results given in Propo-
sition 4.10 also hold when losses and insertions are “hardcoded” in the semantics.
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Remark 4.11.Recall that every initialized2-dim lossy counter machine has an effec-
tively semilinear reachability set [FS00a]. Still, there are initialized2-dim lossy counter
machines that are not flat. Consider for instance our examplecounter machine (E, {(q1, (1, 0))}),
which is not flat according to Example 2.4, augmented with loss loops on each location:
the resulting2-dim lossy counter machine obviously remains non flat.

4.4 Test-free2-dim Counter Machines

We briefly recall in this section known results on test-free2-dim counter machines. The
reachability set of any initialized test-free2-dim counter machine is effectively semi-
linear [HP79]. Moreover, the global reachability relationis also effectively semilinear
for this class [LS04]. The proof of this second result actually used flatness-based proof
techniques:

Proposition 4.12 ([LS04]).Every test-free2-dim counter machine is globally flat.

5 Flat Petri Nets

We now restrict our attention to a well-known and extensively studied subclass of
counter machines: Petri nets. Usually, a Petri net is given by a directed graph whose
nodes are either places or transitions. We give an equivalent definition in terms of
counter machines.

Definition 5.1. An n-dim Petri net(Petri net for short) is any test-freen-dim counter
machine whose location set is a singleton.

As the setQ of locations in a Petri net is a singleton, we unambiguously denote any
configuration(q, x) by x.

5.1 Cyclic and Reversible Petri Nets

We focus in this subsection on two subclasses of Petri nets:cyclic Petri nets[AK77]
andreversible Petri nets[Tai68]. Intuitively, an initialized Petri net will be called cyclic
if its reachability set is a strongly connected component ; and a Petri net will be called
reversible if every transition has an inverse.

Definition 5.2. An initialized Petri net(S, I) is calledcyclic if I ⊆ post∗(X) for every
X ⊆ post∗(I). A Petri netS is called globally cyclic if (S, x0) is cyclic for every
x0 ∈ CS.

Definition 5.3. A Petri net with transition setT is calledreversibleif for everyt ∈ T ,
there existst′ ∈ T such thatR(t′) = R(t)−1.

Observe that a Petri net is globally cyclic iff its global reachability relation is sym-
metric iff for every transitiont, there exists a pathπ such thatR(π) = R(t)−1. Thus,
every reversible Petri net is globally cyclic. It is well-known that the global reachability
relation (resp. reachability set) of any reversible Petri net (resp. cyclic initialized Petri
net) is effectively semilinear [AK77, Tai68, BF97]. We showthat these three classes are
flat.
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Proposition 5.4. Every cyclic initialized Petri net is flat. Every globally cyclic Petri net
is globally flat.

Remark 5.5.Recall that global flatness implies effective semilinearity of the global
reachability relation. Hence, combined with the short proof given in [Hir94] that ev-
ery congruence onNn is semilinear, the previous proposition gives an easy proofof
effective semilinearity ofR∗ for reversible petri nets. The first proof (and only proof,
to our knowledge) of this result is presented in [Tai68] and it is very difficult to read.

5.2 Regular Petri Nets

We now turn our attention to the class of regular Petri nets [VVN81]. Recall that the
trace set of an initialized Petri net(S, I) is the set of all pathsπ ∈ T ∗ such that
post(π, I) 6= ∅.

Definition 5.6. An initialized Petri net is calledregularif its trace set is a regular lan-
guage.

A singly-initialized Petri netis any initialized Petri net(S, I) whereI is a single-
ton. It follows from Parikh’s Theorem that the reachabilityset of any regular singly-
initialized Petri net is effectively semilinear [VVN81]. We deduce from Lemma 3.3,
which is a variant of Parikh’s Theorem, that this class is actually flat.

Proposition 5.7. Every regular singly-initialized Petri net is flat.

5.3 Persistent and Conflict-free Petri Nets

Persistent and Conflict-free Petri nets are among the first subclasses of Petri nets intro-
duced in the literature. Intuitively, a Petri net is conflict-free if every “enabled” transi-
tion remains enabled until it is taken. For persistent Petrinets, this condition only has
to hold for reachable configurations.

Definition 5.8. An initialized Petri net(S, I) is calledpersistentif for any transitions

t1, t2 with t1 6= t2, and for anyx, x1, x2 ∈ post∗
S
(I) such thatx

t1−→ x1 andx
t2−→ x2,

there existsx′ ∈ post∗
S
(I) such thatx

t1t2−−→ x′.

Definition 5.9. A Petri netS is calledconflict-freeif (S, CS) is persistent.

Semilinearity of the reachability set for singly-initialized persistent Petri nets was
first proved in [LR78] in a non-constructive way, and a constructive proof was later
presented in [May81]. It turns out that flatness, and hence effective semilinearity, can
actually be deduced from the first proof. Let us first recall two lemmas from [LR78]: a
weaker version of Lemma 3.1 and Lemma 4.3.

Lemma 5.10. Given any singly-initialized persistent Petri net(S, {x0}), for any two
tracesσ1 andσ2 with Ψ(σ1) ≤ Ψ(σ2), there exists a pathσ′ such thatσ1 σ′ is a trace
andΨ(σ2) = Ψ(σ1) + Ψ(σ′).

12



Lemma 5.11. For any singly-initialized persistent Petri net(S, {x0}), there exists a
finite setF of pathsπ ∈ T + with δ(π) ≥ 0 such that for everyx0

∗
−→ x

∗
−→ x′, if x ≤ x′

then there existsπ1, . . . , πk ∈ F such thatx
π1···πk−−−−→ x′.

Following the proof given in [LR78] that singly-initialized persistent Petri nets have
semilinear reachability sets, we deduce the following theorem.

Theorem 5.12. Every semilinearly-initialized persistent Petri net is flat.

Corollary 5.13. Every conflict-free Petri net is globally flat.

Remark 5.14.Recall that global flatness implies effective semilinearity of the global
reachability relation. Hence, the we obtain that the globalreachability relation is effec-
tively semilinear for conflict-free Petri nets.

5.4 BPP-Nets

We briefly recall in this section known results on BPP-nets. An n-dim Petri net, with
transition setT and min labelingµ, is called aBPP-netif for every t ∈ T , µ(t) = ei

for somei ∈ [1 .. n].

Let us recall that the global reachability relation is effectively semilinear for BPP-
nets [Esp97, FO97]. The proof of this result given in [FO97] actually uses flatness-based
proof techniques:

Proposition 5.15 ([FO97]).Every BPP-net is globally flat.
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A Proofs of Section 3

Theorem 3.4. Given any counter automatonS and any subsetI ⊆ CS, we have:

i) for every terminating execution ofAccel-R∗(S) (resp.Accel-post∗(S, I)), the re-
turned valueret satisfies:ret = R∗

S
(resp.ret = post∗

S
(I)).

ii) there exists a terminating execution ofAccel-R∗(S) (resp.Accel-post∗(S, I)) iff
S is globally flat (resp.(S, I) is flat).

Proof. Assume that the semi-algorithmAccel-R∗(S) terminates. From an immediate
induction over the number of times a new task is done, we deduce that there exists an
SLPSρ such thatpost∗(I) = post(ρ, I). Hence(S, I) is flat and moreover the returned
value ispost∗(I). For the converse, assume that(S, I) is flat. There exists an SLPSρ
such thatpost∗(I) = post(ρ, I). From this SLPS, we deduce an execution of the semi-
algorithmAccel-R∗(S) that terminates. The proof is similar for the semi-algorithm
Accel-R∗. ⊓⊔

B Proofs of Section 4

Lemma B.1. For any alphabetT , the languageT + may be written as a finite union of
languages of the formt0 U∗

0 · · · tk−1 U∗
k−1

tk where:

i) eachtj ∈ T and eachUj ⊆ T , and
ii) for everyj ∈ [0 .. k − 1] and for everyt ∈ Uj , there existsh ≤ j < l such that

t = th = tl.

Proof. For anyT ′ ⊆ T , let T ′
≥2

(resp.T ′
=2) denote the set of all wordsσ ∈ T ′∗ such

that|σ|t ≥ 2 (resp.|σ|t = 2) for all t ∈ T ′. We have the following equality6:

T + =
⋃

T ′⊆T

⋃

T ′′⊆T\T ′

(T ′
≥2 x T ′′)

Thus, it is sufficient to prove that for anyT ′ ⊆ T , T ′
≥2

may be written as a finite union
of languages of the required form. Now, given any wordσ = t0 . . . tk ∈ T ′

=2 where
ti ∈ T ′, and giveni ∈ [0 .. k − 1], let Uσ

i be the set of transitionst ∈ T ′ such that
|t0 . . . ti−1|t = 1. Observe that we have:

T ′
≥2 =

⋃

σ=t0···tk∈T ′

=2

t0(U
σ
0 )∗ · · · tk−1(U

σ
k−1)

∗tk

It is readily seen that this decomposition satisfiesi) andii), which concludes the proof.
⊓⊔

6 Recall that theshuffle operatorx over languages is defined by:

L x L′ = {w0w
′

0 · · ·wkw′

k / w0 · · ·wk ∈ L andw′

0 · · ·w
′

k ∈ L′}

.

16



Proposition 4.7. Every reversal-bounded initialized counter machine is flat. Every glob-
ally reversal-bounded counter machine is globally flat.

Proof. Consider an initializedn-dim counter machine(S, I), with transition setT and
displacement labelingδ. For everydisplacement modem ∈ {+,−}n, we denote byTm

the set of transitionst ∈ T such thatϕδ
i (t) ∈ {m[i], ε} for everyi ∈ [1 .. n].

Observe that(S, I) is reversal-bounded (resp.S is globally reversal-bounded) iff
there existsr ∈ N such thatpost∗(I) = post(Lr, I) (resp.R∗ = R(Lr)) where
L =

⋃

m∈{+,−}n T ∗
m. Hence, in order to prove the proposition, it is sufficient toshow

thatR(T ∗
m) is flat for everym ∈ {+,−}n.

Consider a fixedm ∈ {+,−}n and let us prove thatR(T ∗
m) = R(ρ) for some SLPS

ρ. The proof relies on the observation that, along every path,counters are evolving in
same “direction”. Hence, guards have to be checked only for the first and the last oc-
currence of each transition. Thus, the following decomposition of T ∗

m will be useful.
According to Lemma B.1, the languageT ∗

m may be written as a finite union of lan-
guages of the formt0 U∗

0 · · · tk U∗
k tk+1 such that conditionsi) andii) of Lemma B.1

are satisfied.

Now let us consider any languageL = t0 U∗
0 · · · tk U∗

k tk+1 such that conditions
i) andii) are satisfied. We show thatR(L) is flat, which will conclude the proof. For
everyt ∈ T , we denote byt the transition obtained fromt by relaxing the guard:t
has the same source and target ast, and its flow guard is defined byGt = {(x, x′) ∈
N2n / x′ = x+ δ(t)}. It is readily seen that, for any transitiont ∈ Tm and for any words
π, π′ ∈ T ∗

m, we haveR(t π t π′ t) = R(t π t π′ t).

We also denote byUj the set{t / t ∈ Uj} for eachj ∈ [0 .. k]. We obtain that
R(L) = R(t0 U0

∗
· · · tk Uk

∗
tk+1). For everyj ∈ [0 .. k], there exists according to

Lemma 3.3 an SLPSρj ⊆ Uj
∗

such thatΠ ∩ Uj
∗

andρj have the same reflexive
closure. Therefore, we get that:

R(Uj
∗
) = {((q, x), (q′, x′)) ∈ CS / ∃π ∈ (Π(q, q′) ∩ Uj), x

′ = x + δ(π)}

= R(ρj)

since for everyi ∈ [1 .. n], all theδ(t)[i], with t ∈ Uj , have the same sign. Consequently,
we get:

R(L) = R(t0 U∗
0 · · · tk U∗

k tk+1)

= R(t0 U0

∗
· · · tk Uk

∗
tk+1)

= R(t0) · R(U0

∗
) · · ·R(tk) · R(Uk

∗
) · R(tk+1)

= R(t0) · R(ρ0) · · ·R(tk) · R(ρk) · R(tk+1)

= R(t0 ρ0 · · · tk ρk tk+1)

= R(t0 ρ0 · · · tk ρk tk+1)

where, for everyj ∈ [0 .. k], we denote byρj the SLPS obtained fromρj by replacing
eacht by t (note thatρj ⊆ U∗

j , which justifies the last equality in the above equations).
⊓⊔
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Proposition 4.9. Every initialized inserting counter machine is flat. Every initialized
lossy test-free counter machine is flat.

Proof. Consider an initialized inserting counter machine(S, I). It is readily seen that
post∗(I) = Min(post∗(I)) + Nn. As Min(post∗(I)) is finite, there exists a finite
set of pathsρm ⊆ Π such thatpost(ρm, I) = Min(post∗(I)). Moreover, for ev-
ery q ∈ Q and for everyi ∈ [1 .. n], there exists a loopπq,i on q such thatGπ =
{(x, x′) ∈ N2n / x′ = x + ei}. Consider the SLPSρ =

⋃

q∈Q(πq,1)
∗ . . . (πq,n)∗.

It is readily seen thatR(ρ) = {((q, x), (q, x′)) ∈ CS / q ∈ Q andx′ ≥ x}. There-
fore,post∗(I) = post(ρm ρ, I). We only sketch the proof of flatness for lossy test-free

counter machines. Consider an initialized lossy test-freecounter machine(S, I). Recall
that Karp-Miller’s algorithm [KM69] basically (1) computes a forward reachability tree
where nodes are labeled by vectors in(N∪{ω})n, and (2) accelerates sequences of tran-
sitions in order to replace some components byω. Observe that vectors in(N ∪ {ω})n

may be interpreted as downward-closed subsets ofNn. Thus, Karp-Miller’s algorithm
may be seen as a “refinement” of theAccelerated-post∗ semi-algorithm, where at
each step, loops corresponding to losses are accelerated sothat the current set of reach-
able configurations becomes downward-closed. Since Karp-Miller’s algorithm always
terminates, we deduce from Theorem 3.4 that(S, I) is flat. ⊓⊔

C Proofs of Section 5

Proposition 5.4. Every cyclic initialized Petri net is flat. Every globally cyclic Petri net
is globally flat.

Proof. Let (S, I) be a cyclic initializedn-dim Petri net, and letx0 ∈ I. It is readily seen
thatpost∗(I) = post∗({x0}). From Theorem 3.5 in [BF97], we get that:

post∗(I) = Min(post∗({x0})) + (Min((post∗(x0) − x0) ∩ Nn))
∗

For everym ∈ Min(post∗(I)) andp ∈ Min((post∗(x0) − x0) ∩ Nn), there exists

πm ∈ T ∗ such thatx0
πm−−→ m and there existsπ′

p ∈ T ∗ such thatx0

π′

p

−→ x0 + p. The
SLPS witnessing flatness of(S, I) is ρ′ · ρ, whereρ is the union of theπm, andρ′ is the
concatenation (in any order) of the(π′

p)
∗.

Let S be a globally cyclicn-dim Petri net. AsR∗ is symmetric, we obtain thatR∗ is
a congruence onNn and hence it is semilinear [ES69]. Therefore, it is sufficient to prove
that every linear set contained inR∗ is also contained inR(ρ) for some SLPSρ. Con-
sider a basis(x, x′) ∈ N2n and a finite set of periodsP = {(p1, p

′
1), . . . , (pk, p′k)} ⊆

N2n and assume that(x + P ∗) ⊆ R∗. There existsπ0, π1, . . . , πk in T ∗ such that
x

π0−→ x′, andx + pi
πi−→ x′ + p′i for everyi ∈ [1 .. k]. AsR∗ is symmetric, there exits

π0 ∈ T ∗ such thatx′
π0−→ x. Consider the LPSρ = (π1π0)

∗ . . . (πkπ0)
∗ ·π0. It is readily

seen thatR(ρ) ⊇ (x, x′) + P ∗. ⊓⊔

Proposition 5.7. Every regular singly-initialized Petri net is flat.
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Proof. Let (S, {x0}) be a regular singly-initialized Petri net, and letL denote its regular
trace set. According to Lemma 3.3, there exists an SLPSρ ⊆ L such thatL andρ have
the same reflexive closure. Assume thatx0

π
−→ x. Sinceπ ∈ L, there existsπ′ ∈ ρ such

thatπ′ is a permutation ofπ. Henceδ(π′) = δ(π) and asπ′ is a trace fromx0, we get

thatx0

π′

−→ x0 + δ(π′) = x. We conclude thatpost∗({x0}) = post(ρ, {x0}). ⊓⊔

Theorem 5.12. Every semilinearly-initialized persistent Petri net is flat.

Proof. Let us first prove that any singly-initialized persistent Petri net (S, I) with I =
{x0} if flat. Consider a finite setF = {π1, . . . , πm} of paths inT + satisfying Lemma 5.11
and let us first prove thatρ+ = (π∗

1 . . . π∗
m)n is a SLPS such that for anyx0

∗
−→ x

∗
−→ x′,

if x ≤ x′ then(x, x′) ∈ RS(ρ+). From Lemma 5.11, there exists a sequenceπi1 , ...,πik

in F such thatx
πi1

...πi
k−−−−−→ x′. As δ(π) ≥ 0 for anyπ ∈ F , the wordπi1 . . . πik

can be
reordered into a wordw such thatx

w
−→ x′ andw = πα1

j1
. . . παm

jm
where{j1, . . . , jm} =

{1, . . . , n} andαi ≥ 0. Fromπαm

jm
∈ π∗

1 . . . π∗
m, we deduce thatw ∈ ρ+ and we get

(x, x′) ∈ RS(ρ+). Now, letM denote the setMin({(x, Ψ(σ)) / x0

σ
−→ x}). Recall that

M is finiteand in particular, there exists a finite subsetΣ0 of the trace set of(S, I) such
thatM = {(x0 + δ(σ), Ψ(σ)) / σ ∈ Σ0}. Let us prove thatpost∗

S
(I) = postS(ρ, I)

whereρ = Σ0 · ρ+. Assume thatx0

σ′

−→ x′. By definition ofM , there existsx0

σ
−→ x

with σ ∈ Σ0 such that(x, Ψ(σ)) ≤ (x′, Ψ(σ′)). According to Lemma 5.10, there
exists a pathσ′′ such thatσ σ′′ is a trace andΨ(σ′) = Ψ(σ) + Ψ(σ′′). We get that

x0

σ
−→ x

σ′′

−−→ x0 + δ(σ) + δ(σ′′) = x0 + δ(σ′) = x′. Sincex
∗
−→ x′ andx ≤ x′, we

obtain that(x, x′) ∈ RS(ρ+). We have proved thatx′ ∈ postS(ρ, I). We conclude that
any singly-initialized persistent Petri net is flat.

Now, let us prove that any linearly-initialized persistentPetri Net(S, I) is flat. Re-
call that alinear setI is a set of the formI = (x0+P ∗) where{x0}∪P is a finite subset
of CS. By adding to the Petri NetS a transitiontp such thatµ(tp) = 0 andδ(tp) = p for
each periodp ∈ P , we obtain a singly-initialized Petri Net(S′, I ′) whereI ′ = {x0}.
Remark that(S, I) and(S′, I ′) have the same reachability set and(S′, I ′) is persistent.
Therefore(S′, I ′) is flat and there exists a SLPSρ′ overT ′ = T ∪ {tp / p ∈ P}, where
T is the transition set ofS, such thatpost∗

S′(I ′) = postS′(ρ′, {x0}). By removing from
ρ′ all letters that are not inT , we get a SLPSρ such thatpost∗

S
(I) = postS(ρ, I).

Therefore(S, I) is flat. Finally, flatness for semilinearly-initialized persistent Petri nets
follows from the fact that SLPS are closed under finite union. ⊓⊔

Corollary 5.13. Every conflict-free Petri net is globally flat.

Proof. Consider a conflict-free Petri netS with n countersx1, ...,xn. By adding toS n
new countersx′

1, ..., x′
n that are neither tested, nor incremented, nor decremented,we

obtain a new conflict-free Petri netS′ with 2 n counters. Remark that for anyL ⊆ T ∗,
we haveRS(L) = postS′(L, I) whereI = {(x, x′) ∈ N2n / x = x′}. As S′ is conflict-
free, Theorem 5.12 proves that(S′, I) is flat and in particular there exists an SLPS
ρ such thatpost∗

S′(I) = postS′(ρ, I). We deduce thatR∗
S

= RS(ρ) and henceS is
globally flat. ⊓⊔
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