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Abstract

We consider the power of single level circuits in the context of graph
complexity. We first prove that the single level conjecture fails for fanin-2
circuits over the basis {⊕,∧, 1}. This shows that the (surpisingly tight)
phenomenon, established by Mirwald and Schnorr (1992) for quadratic
functions, has no analogon for graphs. We then show that the single level
conjecture fails for unbounded fanin circuits over {∨,∧, 1}. This partially
answers the question of Pudlák, Rödl and Savický (1986). We also prove
that Σ2 6= Π2 in a restricted version of the hierarhy of communication com-
plexity classes introduced by Babai, Frankl and Simon (1986). Further, we
show that even depth-2 circuits are surprisingly powerful: every bipartite
n×n graph of maximum degree ∆ can be represented by a monotone CNF
with O(∆ log n) clauses. We also discuss a relation between graphs and
ACC-circuits.

Keywords: Graph complexity, single level conjecture, Sylvester graphs,
communication complexity, ACC-circuits

AMS subject classification: 05C35, 05C60, 68Q17, 68R10, 94C30

1 Introduction

Let V = {1, . . . , n} be a set of n vertices. We identify vertices u ∈ V with
boolean variables xu, and consider boolean functions f : {0, 1}V → {0, 1} whose
set of variables is X = {xu : u ∈ V }. Such a function accepts/rejects a subset
of vertices S ⊆ V if it accepts/rejects the incidence vector of S. A non-edge is
a pair of non-adjacent vertices; if the graph is bipartite then a non-edge is a
pair of non-adjacent vertices from different parts (color classes), that is, pairs
of vertices in one color class are neither edges nor non-edges.

Following [5], we say that a boolean function represents a given graph G =
(V,E) if it accepts all edges and rejects all non-edges. That is, the function
must behave correctly only on 2-element sets of vertices—on other subsets of
vertices the function can take arbitrary values. For example, f(x1, x2, x3, x4) =
(x1 ∨x2)∧ (x3 ∨x4) represents a bipartite 2× 2 clique K2,2, a single variable xi

represents a complete star around i, etc. In particular, the (boolean) quadratic
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function fG(X) =
∨

ij∈E xixj as well as its algebraic counterpart f⊕G (X) =⊕
ij∈E xixj represent the graph G.
The circuit complexity of a graph is the minimum size of a circuit repre-

senting this graph. This concept is interesting because monotone lower bounds
for graphs imply non-monotone lower bounds for boolean functions. The ad-
jacency function of a bipartite n × n graph with n = 2m, whose vertices are
binary vectors of length m, is a boolean function in 2m variables which accepts
all edges and rejects all non-edges.

Lemma 1.1 (Magnification Lemma ([5])). In a (non-monotone) circuit com-
puting the adjacency function of a bipartite graph G it is possible to replace the
negated inputs with ORs of variables so that the obtained (monotone) circuit
represents G. The same holds with Parity gates instead of OR gates.

This fact is particularly useful in such circuit models where computing an
OR (or a Parity) of input literals is “cheap.” For example, if the circuit com-
puting f has unbounded fanin OR gates on the bottom (next to the inputs)
level, then the obtained (monotone) circuit represents G and has just the same
number of gates! Hence, if we could prove that a bipartite n× n graph G with
n = 2m cannot be represented using, say, fewer than nε gates, this would imme-
diately imply that the characteristic function f of G requires at least nε = 2εm

gates, which is exponential in the number 2m of variables of fm (this is where
the term “magnification” comes from).

In this paper we present some results concerning the complexity of graphs
as well as the single level conjecture for graphs. None of these results solve some
big problem nor their proofs are difficult. We hope however that they could be
useful when dealing with graph complexity—our understanding of wnat graphs
are hard for what kind of circuits is still poor.

2 Mirwald–Schnorr’s phenomenon fails for graphs

In this section we consider fanin-2 circuits over the basis {⊕,∧, 1}. A circuit is
a single level circuit if it has only one level of AND gates, that is, if every path
from an input to the output contains at most one AND gate.

The so-called “single level conjecture” for quadratic functions claimed that
single level circuits for quadratic functions are almost optimal, i.e. that the gap
is constant.

A strong support for the conjecture was given by Mirwald and Schnorr in [9]:
For every graph G, every optimal with respect to the number of AND gates
circuit over the basis {⊕,∧, 1} computing f⊕G is a single level circuit. That is,
if we count only AND gates then over the basis {⊕,∧, 1} we have no gap at all!

Our first result is that the theorem of Mirwald and Schnorr has no analogue
for graphs. Let Mn be a bipartite n×n graph consisting of n mutually disjoint
edges, that is, a perfect matching with n edges.

Theorem 2.1. Over the basis {⊕,∧, 1}, the graph Mn can be represented by
a circuit using only logarithmic in n number of AND gates, but the number of
AND gates in single level circuits for Mn is linear.
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Hence, the gap in this case may be as large as Ω(n/ log n).

Proof. For a graph G, let L(G) be the minimum number of AND gates in a
(fanin-2) circuit over the basis {⊕,∧, 1} representing G, and let L1(G) be the
single level version of this measure. Our goal is to show that L(Mn) ≤ log n
and L1(Mn) = Ω(n).

Upper bound: L(Mn) ≤ log n. Let n = 2r. We identify vertices of Mn

with vectors in {0, 1}r and look at Mn as a bipartite n × n graph with parts
U = {0, 1}r and W = {0, 1}r, and where two vertices (vectors) u ∈ U and
w ∈ W are adjacent if and only if u = w. Let X = {xu | u ∈ U}∪{yw | y ∈ W}
be the corresponding set of boolean variables, and consider the functions gi,
i = 1, . . . , r defined by

gi(X) =
⊕

u∈U,ui=0

xu ⊕
⊕

w∈W,wi=1

xw.

It is easy to see, that the function gi(X) accepts an arc uv ∈ U×W (i.e. a vector
in {0, 1}X with exactly two 1’s in positions u and w) if and only if ui = wi. Since
an arc uv is adjacent in Mn if and only if ui = wi for all i = 1, . . . , r, the function
F (X) =

∧r
i=1 gi(X) represents the graph Mn, implying that L(Mn) ≤ r = log n.

Lower bound: L1(Mn) = Ω(n). By a rank of a graph G, rk(G), we will mean
the rank over GF(2) of the adjacency matrix of G. Observe that L1(G) ≤ t
iff G can be represented by a sum

⊕t
i=1 `i,1 ∧ `i,2 of t products of linear forms

over GF(2). The graph represented by a linear form is just a union of two
vertex disjoint bipartite cliques, and hence, has rank at most 2. Thus, the
graph G itself has rank rk(G) ≤ 4t, implying that L1(G) ≥ 1

4rk(G) holds for
every bipartite graph G. Since the perfect matching Mn has full rank, the lower
bound L1(Mn) = Ω(n) follows.

An interesting question is the status of the single level conjecture for circuits
over the basis {⊕,∧, 1} in the case of unbounded fanin gates. Single level circuits
in this case have the form

F (X) =
s⊕

i=1

r∧
j=1

`ij(X) (1)

where `ij(X) =
⊕n

k=1 λijkxk⊕λij are linear functions over GF(2). Any product
of r linear forms represents a fat matching of size at most 2r, i.e. a union of at
most 2r vertex-disjoint bipartite cliques (see [6]). Hence, if F represents a graph
G, then s ≥ rk(G)/2r. Therefore, if r is relatively small, say r = o(log n), then
already a perfect matching Mn requires circuits of size Ω(n). However, what
happens if we do not restrict the middle fanin r? That the question may be
interesting follows from a result, due to Razborov [11], that some “combinato-
rially complicated” graphs—like Ramsey graphs, i.e. n-vertex graphs without a
clique or independent set larger than O(log n)—can be represented by a circuit
of the form (1) with s = (log n)O(1) and r = O(log log n). This is a direct con-
sequence of the following more general result proved in [11]. If G(s, r) denotes
a random graph represented by a random circuit of the form (1), obtained by a
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random and independent choice of the coefficients λijk and λij , then for every
graph H on k vertices, the graph G(s, r) with r ≥ log

(
k
2

)
+ 1 contains a copy

of H as an induced subgraph with probability at most(
n

k

)[
2−(k

2) + e−s/2r
]
.

3 Depth-3 circuits may be much weaker

We now consider the unbounded fanin version of the single level conjecture: does
monotone depth-3 circuits (i.e. monotone Σ3 circuits) for quadratic function
and/or graphs are almost optimal? In the context of graphs this question was
explicitely raised by Pudlák, Rödl and Savický in [10].

The reason, why the unbounded fanin version of the conjecture for graphs
is interesting, is twofold: (i) the presence of unbounded fanin gates may expo-
nentially increase the power of single level circuits for quadratic functions, and
(ii) a lower bound of the form nΩ(1) on the size of a monotone single level cir-
cuit with unbounded fanin gates would imply a nonlinear lower bound for NC1

circuits (see [6] for details). Note that every quadratic function in n variables
can be computed by a monotone Σ3-circuit of linear size:

fG(X) =
∨
u∈V

xu ∧

( ∨
v:uv∈E

xv

)

Below we combine a result of Lokam [8] with the Magnification Lemma to
show that also in the case of unbounded fanin circuits the gap may be as large as√

log n, and this holds for quadratic functions and for graphs. This (partially)
answers the question of [10]. We—like the authors of [10]—conjecture that the
actual gap should be much larger.

A Sylvester graph is a bipartite n×n graph H with n = 2m vertices in each
part (color class) identified with subsets of {1, . . . ,m}; two vertices u and v are
adjacent iff |u ∩ v| is odd. The saturated extension of H is a (non-bipartite)
graph G = (V,E) consisting of two cliques with the bipartite graph H in-
between. That is, two vertices u 6= v ∈ V are adjacent in G iff either both these
vertices lie in the same color class of H or uv is an edge of H. Since every
edge/non-edge of H is also an edge/non-edge of G, every circuit computing G
must also represent H.

Theorem 3.1. Let G be the saturated extension of an n × n Sylvester graph
H. Then the gaps between general monotone and single level circuits for the
quadratic function fG as well as for the graph H are at least

√
log n.

Proof. By a “circuit” we will now mean a circuit with unbounded fanin gates.
We are going to combine the Magnification Lemma with the following result.

Theorem 3.2 (Lokam [8]). Every monotone depth-3 formula representing an
n× n Hadamard graph has at least Ω

(
(log n)3/(log log n)5

)
gates.
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Note that for depth-3 circuits, Theorem 3.2 implies the lower bound
Ω((log n)3/2−ε): just take the maximum of the fanins of gates on the top and
middle level. By Lemma 1.1, every monotone depth-3 circuit representing the
Sylvester graph H, and hence, any monotone depth-3 circuit computing the
quadratic function fG of its saturated extension G, must have at least so many
gates.

On the other hand, if we allow larger depth, then the graph H can be
represented using much fewer gates. Indeed, the adjacency function of H is the
inner product function IPm =

∑m
i=1 xiyi (mod 2). This function has a trivial

(non-monotone) circuit of linear in m = log n size. By Lemma 1.1, the graph H
can be represented by a monotone circuit of size O(log n). Since G is a saturated
extension of H, Lemma 3.8 of [6] implies that also fG can be computed by a
monotone circuit of size O(log n).

4 Upper bounds for depth-3 circuits

Let Σ3(G) denote the minimum size of a monotone depth-3 circuit representing
the graph G. It is easy to show that Σ3(G) = Ω(

√
n) for almost all n-vertex

graphs. On the other hand, a lower bound Σ3(G) = Ω(nε) (with an arbitrary
small constant ε > 0) for an explicit graph G, together with a reduction of
Valiant [12], would imply that its adjacency function requires non-monotone log-
depth circuits of super-linear size (see, e.g., [5]). Unfortunately, our knowledge
about the power of depth-3 circuits for graphs is very poor: we cannot even
prove large poly-logarithmic lower bounds (the best remains the lower bound
of Lokam [8] mentioned above).

In view of these difficulties with proving lower bounds, it is natural to try
to obtain good upper bounds. That is, to understand what graphs are “bad”
candidates, i.e. can be represented by small monotone depth-3 circuits.

Let cnf(H) be the minimum number r of clauses in a monotone CNF

F (X) = (
∨

u∈S1

xu) ∧ (
∨

u∈S2

xu) ∧ · · · ∧ (
∨

u∈Sr

xu) (2)

representing the graph H. In oder to show that some graph G cannot be
represented by a small monotone Σ3-circuit, it would be enough to show that
cnf(H) is large for every dense enough subgraph H of G.

However, it turns out that already CNFs allow to represent a lot of graphs
quite compactly. A CNF (2) represents a graph iff every edge (looked as a
2-element set) intersets all of the sets S1, . . . , Sr, and every non-edge avoids at
least one of these sets. Hence, cnf(H) equals the minimum number of indepen-
dent sets covering all non-edges of H. Alon [1] has proved that this number does
not exceed O(∆2 log n), where ∆ is the maximum degree of H. For bipartite
graphs we can prove a somewhat better upper bound.

Theorem 4.1. Let H be bipartite n-vertex graph, and ∆ the minimum over
the two color classes of the maximal degree of a vertex in this class. Then
cnf(H) = O(∆ log n).
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Proof. Let H ⊆ U ×W and assume w.l.o.g. that ∆ is the maximal degree of a
vertex in W . Consider the following procedure of choosing a clique A×B in H:
pick every vertex u ∈ U independently, with probability p = 1/(2∆) to get a
subset A ⊆ U , and take B = W \N(A), where N(A) is the set of all neighbors
of vertices in A. Apply this procedure t = O(∆ lnn) times to get k cliques
Ai×Bi, i = 1, . . . , t. Let us estimate the probability that some (fixed) edge uv
of H is not covered by all these cliques. This edge is covered by Ai × Bi, if u
was chosen in Ai and no neighbor of v was chosen in Ai. Hence, uv is covered
by Ai × Bi with probability at least p(1 − p)∆ ≥ pe−p∆/(1−p) ≥ pe−2pd = p/e,
and the probability that uv is not covered by any of t cliques Ai ×Bi does not
exceed (1 − p/e)t ≤ e−tp/e. Hence, the probability that some of the non-edges
of H remains uncovered does not exceed n2e−tp/e = exp(2 ln n − t/(2e∆)),
which is < 1 for t = c∆ log n with a sufficiently large constant c. Hence,
the edges of H can be covered by O(∆ lnn) bipartite cliques, implying that
cnf(H) = O(∆ log n).

Thus, all bipartite graphs of small degree in at least one color class are
“bad” candidates. On the other hand, some graphs of large degree are also
bad. Such are, in particular, graphs which can be covered by a small number
of bipartite cliques or “fat matchings”.

A fat matching is a union of vertex-disjoint bipartite cliques (these cliques
need not to cover all vertices); the number of such cliques is the size of a fat
matching. Hence, a matching with k edges is a fat matching of size k, and a
bipartite clique is a fat matching of size 1.

Lemma 4.1. If a bipartite graph G can be covered by t fat matchings, each of
size at most 2r, then Σ3(G) ≤ 2t max{1, r}.

Proof. Fix an arbitrary covering of G ⊆ U ×W by t fat matchings of size 2r.
The case r = 0 (covering by bipartite graphs) is obvious. So, assume that r ≥ 1,
and let H be any fat matching from that covering with the largest cnf(H). This
graph has the form H =

⋃k
i=1 Ai×Bi where the sets Ai (as well as the sets Bi)

are disjoint.
It is easy to show (see, e.g., [5]) that cnf(G) is the smallest number d for

which each vertex u can be associated with a subset Su ⊆ {1, . . . , d} such that
Su ∩ Sv = ∅ if uv is an edge, and Su ∩ Sv 6= ∅ if uv is a non-edge of G.

Let now S1, . . . , SK with K =
(
2r
r

)
> 2r = k be all distinct r-element subsets

of {1, . . . , 2r}. Associate all vertices in Ai with the i-th set Si, and all vertices
in Bi with the complement Si. Associate all the remaining vertices with the
set S0 = {1, . . . , 2r}. It is easy to see that a pair of vertices u ∈ U and v ∈ W
are adjacent in H iff their associated sets are disjoint. Hence, cnf(H) ≤ 2r,
implying that Σ3(G) ≤ t · cnf(H) ≤ 2rt.

5 Depth-3 circuits and the hierarhy of communica-
tion complexity classes

In 1986 Babai, Frankl and Simon [2] defined a hierarhy of communication com-
plexity classes and asked whether Σcc

2 = Πcc
2 in this hierarchy. The combinato-
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rial definition of this hierarchy is the following.
We consider bipartite n × n graphs. The initial set Πcc

0 is defined in [2] as
the set of all (bipartite) cliques, and Σcc

0 is the set of their complements.1 For
every i ≥ 0, a Σcc

i+1-graph is a union of 2polylog(m) Πcc
i -graphs, and a Πcc

i+1-graph
is a complement of a Σcc

i -graph.

Problem 5.1 (Babai–Frankl–Simon [2]). Does Σcc
2 6= Πcc

2 ?

Combining the Magnification Lemma and a result from [4] we can answer
this question affirmatively when the hierarchy is constructed starting from the
set Πc

0 consisting of “canonical” cliques. That is, we look at vertices of a
bipartite n × n graph H ⊆ U × W with n = 2m as binary vectors of length
m; hence, U = W = {0, 1}m. Recall that a subcube of {0, 1}m is a subset
A ⊆ {0, 1}m of the form

A = {a : ai1 = σ1, . . . , aik = σk}

for some 1 ≤ i1 < i2 < · · · < ik ≤ m and σ1, . . . , σk ∈ {0, 1}. A clique A×B is
canonical if both A and B are subcubes of {0, 1}m.

Let now the initial set Πc
0 consist of all canonical cliques, and let Σc

i and
Πc

i be the classes of the resulting hierarchy. Note that this is a very restricted
version of the original hierarchy since the first class Πc

0 contains much fewer
graphs than that of the original hierarchy.

Theorem 5.2. Σc
2 6= Πc

2.

For the proof we need the following fact, which can be easily derived from
the Magnification Lemma in [5].

A Σ3-circuit for H ⊆ U × W with U = W = {0, 1}m is canonical if for
every OR gate g =

∨
u∈S xu on the bottom (next to the inputs) level, both sets

S ∩U and S ∩W are complements of subcubes of {0, 1}m. Let Σcan
3 (H) be the

minimum size of a monotone cannonical Σ3-circuit representing H. It is easy to
see that H ∈ Σc

2 iff Σcan
3 (H) ≤ 2polylog(m). On the other hand, from the proof

of the Magnification Lemma in [5] it is not difficult to derive the following

Lemma 5.1. If f is the adjacency function of H, then Σ3(f) = Σcan
3 (H).

Proof. (sketch) Let f(y, z) be the adjacency function of H, and let F (y, z) be
a Σ3-circuit computing f . Replace each input literal yσ

i (resp., zσ
i ) by an OR

of variables ∨
{xu : u ∈ U, ui = σ}

(resp.,
∨
{xw : w ∈ W, wi = σ}). The obtained monotone Σ3-circuit F ′(X)

on the variables X = {xv v ∈ U ∪ W} is canonical. Moreover, it is easy to
check (see [5]) that F ′(X) represents H. Hence, Σ3(f) ≥ Σcan

3 (H). The other
direction Σ3(f) ≤ Σcan

3 (H) is also easy because in each bottom OR gate g =∨
u∈S xu of a monotone canonical circuit representing H, each set of variables

{xu : u ∈ U, ui = σ} corresponds to the literal yσ
i .

1A complement of a bipartite graph H ⊆ U ×W is the bipartite graph H = (U ×W ) \H.
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Corollary 5.3. A graph H belongs to Σc
2 iff its adjacency function can be

computed by a Σ3 circuit of size 2polylog(m).

Now we turn to the actual proof of the theorem.

Proof. (of Theorem) Let m = r2 and consider the following Kneser-type graph
Hm ⊆ U ×W . Its vertices are 0-1 matrices u = {uij} of dimension r × r, and
two matrices u and v are adjacent iff ∃i ∀j uij · vij = 0. Hence,

fm(x, y) =
r∨

i=1

r∧
j=1

(xij ∨ yij)

is the adjacency function of Hm. By Corollary 5.3, the graph Hm belongs to Σc
2.

On the other hand, it is proved in [4] that any Π3-circuit computing fm requites
2Ω(m) gates. Since ¬fm is the adjacency function of the complement Hm of Hm,
we obtain that Σcan

3 (Hm) = Σ3(¬fm) = Π3(fm) ≥ 2Ω(m). By Corollary 5.3, the
complement of Hm does not belong to Σc

2.

6 Graphs and ACC-circuits

A SY M -circuit of size d is a depth-2 circuit of the form SY M(C1, . . . , Cd) where
SY M is a symmetric boolean function in d variables and each Ci is an OR of
some variables and their negations. If there are no negated variables, then the
corresponding circuit in a SY M+-circuit. A circuit is monotone if it has no
negated variables. The type of such a circuit is the subset K ⊆ {0, 1, . . . , d}
such that SY M(x1, . . . , xd) = 1 iff

∑
i xi ∈ K. An ACC-circuit is a constant

depth circuit with unbounded fanin AND, OR and arbitrary MOD m gates;
such a gate outputs 1 precisely when the sum of input bits is divisible by m.

Our interest in SY M -circuits comes from the result of Yao [13] which,
together with the Magnification Lemma, implies that if a bipartite n×n graph
G cannot be recognized by a SY M+-circuit of size d ≤ 2(log log n)O(1)

, then its
adjacency function cannot be computed by ACC-circuits of polynomial size.

A system A = {A1, . . . , An} of (not necessarily distict) subsets of {1, . . . , d}
represents a given n-vertex graph G if there is a subset L ⊆ {0, 1, . . . , d} (called
the type of the representation) such that

(i) |Ai ∩Aj | ∈ L if {i, j} is an edge, and

(ii) |Ai ∩Aj | 6∈ L if {i, j} is a non-edge of G.

The intersection dimension of G, dim(G), is the smallest size d of the univer-
sum for which such a representation exists. If the type L is given, then the
corresponding measure is denoted by dimL(G); hence, dim(G) is the minimum
of dimL(G) over all possible types L.

Proposition 6.1. For every graph G, dim(G) is the minimum size of a SY M+-
circuit representing G.
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Proof. Take an arbitrary graph G = ([n], E), and let

SY M(
∨

i∈S1

xi,
∨

i∈S2

xi, . . . ,
∨

i∈Sd

xi)

be a minimal SY M+-circuit representing this graph, where SY M is a sym-
metric boolean function of some type K ⊆ {0, 1, . . . , d}. We will show only
one direction d ≥ dim(G); the other is similar. For each vertex i ∈ [n], let
Ai = {j : i 6∈ Sj}. Then |Ai ∩ Aj | is the mumber of clauses rejecting the arc
e = {i, j}. Hence, e is an edge in G iff the number of clauses accepting e belongs
to K iff d− |Ai ∩Aj | ∈ K iff |Ai ∩Aj | ∈ L, where L = {d− k : k ∈ K}.

It is easy to see that dim(G) ≤ n for every n × n bipartite graph G: just
associate to each vertex i on the left part the set Ai = {i}, and to each vertex
j on the right part the set Bj of its neighbors. Then |Ai ∩ Bj | ∈ {0, 1}, and
|Ai ∩Bj | = 1 precisely when i and j are adjacent; hence, we can take L = {1}.
Thus, even for type L = {1} we have that dimL(G) ≤ n for every n×n bipartite
graph G.

We also have that dim(G) ≥ log n for every “non-trivial” graph (i.e. graph,
no two vertices of which have the same neighborhood): we need different sets for
different vertices. However, this trivial upper bound is exponentially far from
the lower bound dim(G) = Ω(n) which, by an easy counting, is valid for almost
all graphs. On the other hand, as mentioned above, the solution of the following
problem would give us a super-polynomial lower bound for ACC-circuits.

Problem 6.2. Exhibit an explicit bipartite n × n graph G with dim(G) ≥
2(log log n)ω(1)

.

What graphs have large intersection dimension? What about Ramsey graphs,
i.e. graphs without a clique or independent set of size O(log n)? A naive ap-
proach to show that Ramsey graphs cannot have small intersection dimension
would be to show that, if d is small, then for any system A = {A1, . . . , An} of
subsets of {1, . . . , d}, the coloring cA(i, j) := |Ai ∩Aj | of the edges of Kn must
produce a monochromatic clique of size ω(log n). However, a result of Kos-
tochka and Rödl [7] on weak ∆-systems shows that this will not work: there
exists a family A of n subsets of {1, . . . , d} such that d ≤ (log n)3 and the
coloring cA of Kn produces no monochromatic clique of size ω(log n).

When trying to estimate the intersection dimension of a graph, we are faced
with the following problem. We have a system A = {A1, . . . , An} of subsets of
{1, . . . , d} and (if the type L of the intersections is not given) the only knowledge
about this system is that the intersection sizes |Ai∩Aj | must be consistent with
a given graph G = (V,E): the pairs Ai, Aj corresponding to edges and to non-
edges must have different intersection sizes. Hence, the whole information about
the set-system A we are interested in is given by its intersection matrix

I(A) = {|Ai ∩Aj | : 1 ≤ i, j ≤ n} .

Since I(A) is a matrix of scalar products of the corresponding characteristic
vectors, the size d of the universum is at least the rank of I(A) over the reals.
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Hence, the most direct (and most difficult) way would be to try to prove that
the intersection matrix I(A) of every set-system A representing G must have
large rank.

Another, less direct approach could be to try to use the properties of a given
graph G to construct a multi-linear polynomial f(x1, . . . , xd) =

∑
I⊆[d] aI

∏
i∈I xi

and to show that the matrix2

If (A) = {f(Ai ∩Aj) : 1 ≤ i, j ≤ n}

must have large rank. (Note that the intersection matrix I(A) is the matrix
If (A) with f =

∑d
i=1 xi.) If the weight w(f) of f—that is, the number of

monomials XI with non-zero coefficients—is not too large with respect to the
number d of variables of f then, as shown by Grolmusz in [3], d must be also
large enough.

Theorem 6.3 (Grolmusz [3]). Let R be either a field or a ring Zm for some
m. Let A = {A1, . . . , An} be a family of subsets of {1, . . . , d}. Let f(x1, . . . , xd)
be a multi-linear polynomial with non-negative integer coefficients. Then the
matrix If (A) has rank at most w(f) over R.

Proof. (sketch) Let f(x1, . . . , xd) =
∑

I⊆[d] aIXI , where XI =
∏

i∈I xi. Take
the incidence d × n matrix M of A. The incidence matrix M ′ of f(A) is a
N × n matrix with N =

∑
I⊆[d] aI , whose rows correspond to monomials XI

of f . There are aI identical rows in M ′ corresponding to the same monomial
XI =

∏
i∈I xi; the row corresponding to such a monomial is just a component-

wise AND of the rows i ∈ I of M . Let A′ = {A′
1, . . . , A

′
n}, where A′

i is a subset
of {1, . . . , N} defined by the i-th column of M ′. Note that

f(Ai ∩Aj) =
∑

I:XI(Ai∩Aj)=1

aI .

Using this, it is easy to verify that

f(Ai ∩Aj) = |A′
i ∩A′

j |

for all i, j. Hence, If (A) = I(A′). Since the rank of I(A′) cannot exceed the
number w(f) of its different rows, we are done.

A general frame to use this result to show that some graph G must have
large intersection dimension, could be as follows. Use the properties of the
given graph G to construct polynomial f(x1, . . . , xd) of weight w(f) ≤ dO(1)

such that, for every system A of subsets of {1, . . . , d} representing the graph
G, the matrix If (A) has large rank, say, at least r. Then d ≥ rΩ(1).

Bellow we show how this argument can be used to derive non-trivial lower
bounds on the intersection dimension if either: (i) the “modular size” of the
intersection type L is not too large, or (ii) if the type L is arbitrary but we
impose some additional conditions on the representing set systems A.

2f(Ai ∩Aj) denotes the value of f on the incidence vector of Ai ∩Aj .
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A difficult thing when dealing with SY M -circuits SY M(C1, . . . , Cd) is that
SY M can be a symmetric boolean function of arbitrary type L ⊆ {0, 1, . . . , d}.
On the other hand, if we know more about the type L, then lower bounds may
be much easier to prove. We illustrate this by the followng simple function.

Let NEm(~y, ~z) be a boolean function in 2m variables such that NE2m(~y, ~z) =
1 iff ~y 6= ~z (the non-equality function). Let SY M(C1, . . . , Cd) be a SY M -circuit
computing NE2m, where g is a symmetric boolean function in d variables of
some type L. We now show that, if the “modular size” of L is small, then the
size d of the circuit must be exponential in m.

For a subset L ⊆ {0, 1, . . . , d} and an integer m ≥ 1, let L (mod m) de-
note the set of distinct residues of elements of L modulo m. Let also L =
{0, 1, . . . , d} \ L. We say that L has

(i) modular size a if there is an integer m ≥ 1 such that the set L (mod m)
has at most a elements and is disjoint from L (mod m);

(ii) weak modular size b if for every ` ∈ L there is a prime p` ≤ b such that
the residue of ` modulo p` does not belong to L (mod p`).

In particular, the modular size of any set L never exceed its size |L| (just take
m = 1 in (i)). Hence, such simple symmetric functions, like AND, OR or Parity,
have modular size a = 1.

Since NEm is the adjacency function of the complement Mn of an n to n
matching Mn with n = 2m, exponential lower bounds on the SY M -circuit size
of NEm, when the type of a circuit has small (weak) modular size, follows from
the following

Proposition 6.4. If L has modular size a and weak modular size b, then

dimL(Mn) ≥ 1
e

max

{
n1/a,

(
n

|L|

)1/(b−1)
}

.

Proof. Let d = dimL(G), and let A = {A1, . . . , An, B1, . . . , Bn} be the corre-
sponding systems of subsets of {1, . . . , d} associated with the vertices of Mn;
hence,

|Ai ∩Bj | ∈ L ⇐⇒ i 6= j.

To prove the first estimate dimL(G) ≥ n1/a/e, take an m ≥ 1 such that
the set K = L (mod m) has size |K| ≤ a and shares no common element with
L (mod m). Consider the following multi-linear polynomial of degree at most
a in d variables z = (z1, . . . , zd) over the ring Zm:

f(z) =
∏
k∈K

(
d∑

i=1

zi − k

)
.

Then f(Ai ∩ Bi) 6= 0 since |Ai ∩ Bi| ∈ L and K = L (mod m) is disjoint from
L (mod m). Moreover, if i 6= j then |Ai ∩Bj | ∈ L, and hence, f(Ai ∩Bj) = 0.
This implies that the matrix If (A) has rank n over Zm, and Theorem 6.3
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implies that n ≤ w(f). Since w(f) ≤
∑a

i=0

(
d
i

)
≤
(

ed
a

)a
, the desired lower

bound d ≥ n1/s/e follows.
To prove the second estimate dimL(G) ≥ (n/|L|)1/(b−1) /e, take a subset

I ⊆ {1, . . . , n} such that |I| ≥ n/|L| and all intersections Ai ∩ Bi with i ∈ I
have the same size x ∈ L. Let p ≤ b be a prime number corresponding to x, i.e.
the residue x (mod p) does not appear in L (mod p). Let A′ = {Ai, Bi : i ∈ I}
be the corresponding sub-system of A. Consider the following multi-linear
polynomial of degree p− 1 in d variables z = (z1, . . . , zd) over GF (p):

f(z) = 1− g(z)p−1 with g(z) =
d∑

i=1

zi − x.

Then for every i, j ∈ I we have that f(Ai∩Bi) = 1 because g(Ai∩Bi) = 0, and
f(Ai ∩Bj) = 0 if i 6= j because then g(Ai ∩Bi) 6= 0. Hence, again, the matrix
If (A′) has rank |I| over GF (p), and Theorem 6.3 implies that |I| ≤ w(f). Since

|I| ≥ n/|L| and w(f) ≤
∑p−1

i=0

(
d
i

)
≤
(

ed
p−1

)p−1
, the desired lower bound on d

follows.

Proposition 6.4 implies that, using types of modular size a, the function
NEm cannot be computed by SY M -circuits of size smaller tham 2Ω(m/a). But
this function has a very small ACC circuit: NEm(~y, ~z) =

∨m
i=1 yi ⊕ zi. This is

no contradiction, because there are types L for which dimL(Mn) = O(log n).
This follows from a simple fact that the edges of Mn can be covered by O(log n)
bipartite complete subgraphs of Mn.

In our next example we show how the linear algebra method can be applied
in the situations, where we know something more about the set system A than
that it just is consistent with our graph—the type L in this case can be arbitrary!

Let A be a family of finite sets. Say that a pair X 6= Y ∈ A of its members
is a unifying pair if

|A ∩B ∩X| = |A ∩B ∩ Y | for all A 6= B ∈ A \ {X, Y }.

To ensure this, it would be enough, for example, that A ∩ B ⊆ X ∩ Y for all
A 6= B ∈ A \ {X, Y }.

Say that a graph G = (V,E) is k-separated if for every pair of distinct
vertices i 6= j there exists a subset S ⊆ V \ {i, j} of |S| = k vertices such that i
is connected to all vertices in S and j is connected to none of the vertices in S.
For example, an n-vertex Paley graph is k-separated with k = n/4.

Proposition 6.5. Let A be a system of n subsets of {1, . . . , d}, and assume
that it contains a unifying pair. If A represents some k-separated graph with
k ≥ 1, then d ≥ k.

Proof. Fix a prime number p ≥ d and work over the field GF (p). Let X, Y ∈ A
be a unifying pair in A, and let x and y be the corresponding to the sets X, Y
pair of vertices of G. Take a subset S ⊆ V \ {x, y} of |S| = k vertices, all of
which are joined to x and none of which is joined to y. Then

|Ai ∩X| 6= |Ai ∩ Y | for all i ∈ S (3)
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just because |Ai ∩X| ∈ L and |Ai ∩ Y | 6∈ L. Consider the following polynomial
in d variables (over GR(p))

f(z1, . . . , zd) =
∑
k∈X

zk −
∑
l∈Y

zl.

Let A′ = {Ai : i ∈ S}. Then the (i, j)-entry of the intersection matrix If (A′) is
|Ai∩Aj∩X|−|Ai∩Aj∩Y |. By (3), the diagonal entries are nonzero integers. On
the other hand, all other entries are zeros because |Ai∩Aj ∩X| = |Ai∩Aj ∩Y |
for all i 6= j ∈ S. Hence, the matrix If (A′) has full rank (over GF (p)), implying
that k = |S| ≤ w(f) ≤ |X ∪ Y | ≤ d.

7 A lower bound for fanin-2 circuits

In this section we consider standard (fanin-2) circuits over {∨,∧,¬}. Let C+(G)
be the minimum size of a monotone circuit representing the graph G.

Combining the Magnification Lemma with a result of Pudlák, Rödl and
Savický [10] about monotone complexity of boolean sums, it can be shown (see
[6]) that a lower bound C+(G) ≥ 12n+ϕ(n) for an explicit bipartite n×n graph
G with n = 2m would imply a lower bound ϕ(2m) on the size of non-monotone
circuits computing an explicit boolean function in 2m variables (the adjacency
function of G). Hence, proving even linear lower bounds C+(G) ≥ Cn for
graphs should be a very difficult task. Still, the following fact shows that at
least for C = 2 this can be easily done.

Proposition 7.1. Let Gn = Kn−1 + E1 be a complete graph on n− 1 vertices
plus one isolated vertex. Then C(Gn) ≥ 2n− 6.

Proof. Let Gn = (V,E) where V = {1, . . . , n} and n is the isolated vertex. Let
F (x1, . . . , xn) be an arbitrary monotone circuit representing Gn.

Claim 7.1. If n ≥ 3 then every input gate xi, i = 1, . . . , n − 1 has fanout at
least 2.

If the claim is true, then by setting one variable to a constant 0 at least two
gates become redundant. This gives the recurrence C(Gn) ≥ C(Gn−1)+ 2, and
this holds until n ≥ 3. Hence, we have that C(Gn) ≥ 2(n− 3) = 2n− 6.

It remains to prove the claim. For this, assume that some imput gate, say,
x1 has fanout 1. Let g(x1, xi) be the (unique) gate entered by this input gate.
We will show that then the circuit accepts some non-edge of Gn, i.e. some arc
{j, n} with j 6= n, a contradiction.

Case 1: g = ∧ and i = n. Then

1 = F (1, 1, 0, . . . , 0) = F (0, 1, 0, . . . , 0) ≤ F (0, 1, 0, . . . , 1),

Case 2: g = ∧ and i 6= n, say, i = 2. Then

1 = F (1, 0, 1, 0 . . . , 0) = F (0, 0, 1, 0, . . . , 0) ≤ F (0, 0, 1, 0, . . . , 1),
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Case 3: g = ∨ and i = n. Then

1 = F (1, 1, 0, . . . , 0) ≤ F (1, 1, 0, . . . , 1) = F (0, 1, 0, . . . , 1),

Case 4: g = ∨ and i 6= n, say, i = 2. Then

1 = F (1, 1, 0, . . . , 0) = F (0, 1, 0, . . . , 0) ≤ F (0, 1, 0, . . . , 1),

8 Structure of optimal formulas for graphs

A length |F | of a formula is the number of input literals in it. Fix a minimal
monotone formula representing an n-vertex graph G = ([n], E), and let mi be
the number of occurences of the variable xi in this formula; hence, the formula
has length

∑n
i=1 mi. Let di be the degree of vertex i in G. The representation∨

ij∈E xixj implies that
∑n

i=1 mi ≤ 2|E| =
∑n

i=1 di. In the representation

fG(X) =
∨
u∈V

xu ∧

( ∨
v:uv∈E

xv

)

by a single level formula we have that mi ≤ di + 1 for all i = 1, . . . , n. Interest-
ingly, this last property is shared by any minimal formula.

Proposition 8.1. Let G = ([n], E) be a graph without complete stars. If
F (x1, . . . , xn) is a minimal monotone formula representing G, then mi ≤ di +1
for all i = 1, . . . , n.

Proof. Suppose that mi > di +1 for some i. Let Fxi=0 be the formula obtained
from F by setting to 0 all occurences of the variable xi. We claim that the
formula

F ′ = Fxi=0 ∨ Fi with Fi = xi ∧ (
∨

j:ij∈E

xj)

represents G. Let a ∈ {0, 1}n be an input with precisely two 1’s. Hence,
F (a) = 1 iff the two positions of these 1’s are adjacent in G. We consider two
cases.

If ai = 0 then Fi(a) = 0 and Fxi=0(a) = F (a), implying that in this case
F ′(a) = F (a). Assume therefore that ai = 1, and let j be the second position for
which aj = 1. Then Fi(a) = 1 iff ij ∈ E iff F (a) = 1. Moreover, Fxi:=0(a) = 0
because otherwise, F would accept a single vertex {j}, a contradiction with
star-freeness of G. Hence, also in this case we have that F ′(a) = F (a).

Thus, the new formula F ′ represents the graph G and has length

|F ′| ≤ |Fxi=0|+ (d + 1) ≤ |F | −mi + (d + 1) < |F |,

a contradiction with the minimality of F .
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Proposition 8.1 could wake an impression that, in the context of graphs, the
single level for formulas could be true. Unfortunately, this is not the case. Let
K ⊆ U × V be a bipartite Kneser n × n graph. In this case U and W consist
of all n = 2r subsets u of {1, . . . , r}, and uv ∈ K iff u ∩ v = ∅. It is easy to see
that the formula

F (X) =
r∧

i=1

∨
w∈Si

xw (4)

with Si = {w : i 6∈ w} represents the graph K. This formula has length at most
nr = n log n. On the other hand, it is shown in [6] that any monotone single
level formula representing K must have length at least n1+c for a constant c > 0.
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