
Executive Summary
Dagstuhl Seminar "Atomicity: a Unifying Concept in Computer Science"

1 Goals of the Seminar

This seminar was based on and continued the interaction of different computer-science
communities that was begun in an earlier Dagstuhl seminar in April 2004. Both seminars have
aimed at a deeper understanding of the fundamental concept of atomic actions and their roles in
system design, execution, modeling, and correctness reasoning, and at fostering collaboration,
synergies, and a unified perspective across largely separated research communities. Each of the
two seminar brought together about 30 researchers and industrial practitioners from the four areas
of database and transaction processing systems, fault tolerance and dependable systems, formal
methods, and to smaller extent, hardware architecture and programming languages. The
interpretations and roles of the atomicity concept(s) vary substantially across these communities.
For example, the emphasis in database systems is on algorithms and implementation techniques
for atomic transactions, whereas in dependable systems and formal methods atomicity is viewed
as an intentionally imposed or postulated property of system components to simplify designs and
increase dependability. Nevertheless, all four communities share the hope that it will eventually
be possible to unify the different scientific viewpoints into more coherent foundations, system
development principles, design methodologies, and usage guidelines.

The 2004 seminar was very successful on connecting the communities. It raised first skepticism
and then curiosity about each other's viewpoints and methodologies. As a major achievement, it
led to a strategic position paper, entitled "The Atomic Manifesto: a Story in Four Quarks", which
appeared, in identical form, in widely read publication venues in the different communities: ACM
SIGMOD Record, ACM Operating Systems Review, the Journal of Universal Computer Science,
and also within the Dagstuhl Seminar Proceedings. In addition, the seminar produced a special
issue of the Journal of Universal Computer Science with 8 full papers that were presented in
preliminary form at the seminar and one full paper co-authored by two researchers who had not
met before the seminar. The Atomicity seminar in March 2006 was intended to intensify and
extend this barely blooming plant of cross-community collaboration, to revisit and refine the
technical challenges identified in 2004, and to discuss the progress made in the last two years.

The strategic and timely importance of the atomicity theme has been derived from the following
observations and major trends:

1) The world of network-centric computing is rapidly increasing in complexity, with Web
service composition, long-running workflows across system boundaries, large-scale peer-
to-peer data-sharing and collaboration, ad-hoc networks of mobile devices, large networks
of sensors and actuators, and ambient-intelligence environments; all of these critically
need support for handling concurrency and component failures but cannot easily use
traditional atomicity concepts.

2) There is a proliferation of open systems where applications are constructed from pre-
existing components on the fly; it is crucial that properties of components are composable
and lead to guarantees about the behavior of the entire system.

3) Application architects will be faced with options and critical choices regarding a wide
variety of models for relaxed and extended atomicity; there is a pressing need for an
autonomic approach that automatically chooses the most appropriate option and

Dagstuhl Seminar Proceedings 06121
Atomicity: A Unifying Concept in Computer Science
http://drops.dagstuhl.de/opus/volltexte/2006/835

reconfigures the system as the environment changes.
4) Modern applications and languages like Java lead millions of developers into concurrent

programming and advanced exception handling; this is a dramatic explosion in the
number of people, many with limited skills or experience, that need to cope with the
inherently complex issues of concurrency and failure handling.

2 Results of the Seminar

The presentations and discussions at the seminar reconfirmed that a unified foundation for
atomicity is a strategically important and pressing research avenue. Furthermore, the seminar was
again successful in spawning new collaborations among participants, some of which span
communities. It is planned to prepare another special issue for the Journal of Universal Computer
Science, with full papers that hopefully emerge from this ongoing work and the results presented
at the seminar.

In terms of specific research issues, the following topics led to intensive discussions and were
identified as key directions within the broad theme of atomicity:

1) the integration of open nested transactions into programming languages and their run-time
environment,

2) methods for providing strong guarantees about system behavior based on weaker
guarantees by the underlying components,

3) handling atomic actions in time-critical environments like operating system kernels.

 Open nested transactions have been developed in the database system community; they allow the
composition of atomic operations on arbitrary objects with much higher concurrency than the
older notion of closed nested transactions would allow. The implementation techniques and the
correctness reasoning on run-time traces are reasonably well understood. However, it is unclear
how such an advanced notion of atomicity should be integrated with programming language
constructs, how to define program correctness, and how to statically analzye programs in terms of
behavioral guarantees. The seminar led to lively discussions on specific proposals on embedding
open nested transactions in Java, with a notion of atomic blocks that can be defined for methods
of arbitrary classes. The run-time environment could be based on an extended form of software
transactional memory. The discussion identified various open issues such as: What is the scope of
an atomic operation; should it include exception-handling code? What is the best framework for
defining the formal semantics of a program with atomic operations and open nesting? How can
we help programmers to write robust code with such a powerful construct; are there typical
design patterns?

A characteristic example for strong guarantees on top of weaker ones is the issue of providing
serializable schedules of transactions (i.e., schedules that are equivalent to sequential ones) even
if the underlying component ensures only snapshot isolation using a multiversion concurrency
control protocol. This is a practically very important question, as some of the most widely used
commercial database systems use snapshot isolation as their strongest or default model. Snapshot
isolation seems to work very well in real applications, but is has a small probability of creating
inconsistencies; this is unsatisfactory from a conceptual viewpoint and it may be intolerable for
very critical applications. The classes of serializable and snapshot-isolated schedules are
incomparable; neither of the two properties implies the other. To ensure serializability over a run-

2

time system with snapshot isolation, additional mechanisms are needed, the goal obviously being
that these mechanisms are as light-weight as possible. The seminar discussed a specific approach
that maintains, at run-time, an additional graph with transactions as nodes and captures various
kinds of interference edges. An elegant theorem characterizes when there are one or more
transactions that potentially violate serializability, and these transactiions can be forced to abort
in order to ensure the stronger guarantee. The seminar discussed how such specific solutions can
be generalized into fundamental methodologies and framework for dealing with relaxed notions
of atomicity. Furthermore, the issue of design patterns to ease system design and provide
guidelines to architects and programmers was identified as a crucial research topic.

Operating system kernels are highly concurrent and are vulnerable to all kinds of racing
conditions. Even mature systems such as certain Linux variants are known to have windows of
vulnerability; one particular pattern are TOCTTOU intervals: time-of-check to time-of-use. A
typical example of this kind is editing a file under the root user (e.g., as part of some
sophisticated scripting) and subsequently changing its ownership to a non-priviledged user. Here
the TOCTTOU pair of actions is an open call, to create the file under the root user, followed later
by a chown, to change ownership. If the file itself is a symbolic link to /etc/passwd, an attacker
that repeatedly issues chown calls has a high probability of obtaining ownership of the password
file. A seemingly straightforward solution would be to encapsulate the entire interval between the
first and the second action of the TOCTTOU pair into a single uninterruptable atomic unit.
However, using standard techniques for atomic transactions seems to incur unacceptable
overhead and is thus considered non-viable for the time-critical code in the OS kernel. The
solution presented at the seminar thus used a relaxed notion of atomicity with event-driven
guarding of invariants. This technique can be seen as introducing semantic locks for TOCTTOU-
pair-specific invariants, but it is implemented in very light-weight manner that incurs less than 3
percent run-time overhead. The broader questions that were discussed at the seminar and left as
challenges are: Can we generalize this approach of weaker-than-atomicity properties; can we
formally specify and prove these properties in a principled manner beyond the specific case of
TOCTTOU pairs? How can we efficiently implement these properties; for example, can we make
transactional semantic locking more light-weight, or can we apply predicate-oriented optimistic
concurrency control methods?

The above three specific topics are a good sample of the presentations and discussions at the
seminar; it should be emphasized, however, that this is not an exhaustive summary. As the result
of a wrap-up discussion, the seminar participants compiled a list of the 10 most interesting
research topics within the atomicity theme:

1) specifying, proving, and providing execution guarantees,
2) giving objects control over which other objects can observe which state, and providing means
for composability,
3) transactional guarantees for service composition,
4) defining different notions of relaxed or extended isolation and atomicity, and developing
design patterns for them,
5) automatically generating skeletons for compensation activities,
6) leveraging the log for fault containment and system-level debugging,
7) exception handling beyond atomic actions,

3

8) synchronization models for long-lived applications such as workflows,
9) embedding composable atomic transactions in programming languages,
10) correctness proofs for atomicity implementations.

4

