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Abstract 

This paper presents a method of constructing pre-routed 
FPGA cores which lays the foundations for a rapid system 
construction framework for dynamically reconfigurable 
computing systems. There are two major challenges that 
need to be considered by this framework. The first is how 
to manage the wires crossing a core’s borders. The second 
is how to maintain an acceptable level of flexibility for 
system construction with only a minimum of overhead. The 
perceived advantages of full independent core development 
are weighed against the loss in placement flexibility and 
elimination of the opportunities to optimise a system 
across cores. Few existing methodologies allow the 
independent compilation of FPGA cores through every 
step of the design flow. In this paper we analyse the wire 
detail of modern FPGA architectures to determine how the 
interconnect architecture effects the shape of pre-routed 
cores and the wire bandwidth available to interfaces. We 
have adapted academic placement and routing algorithms 
to our architectural model. The design flow has been 
modified to include a wire policy and interface constraints 
framework that tightly constrains the use of the wires that 
cross a core’s boundaries. Using this tool set we 
investigate the effect of pre-routing on overall system 
optimality. A simple example using the pre-routed 
approach shows only a 2% increase in total wire use over 
the pre-placed approach. Place and route times are vastly 
reduced for systems composed of regular modules. Being 
able to break a system into independent cores reduces the 
placement and routing time even for non-regular systems. 

1 Introduction  

Many FPGA-based systems are built up from cores 
developed by multiple third parties. Each compilation step 
that a developer performs before delivery adds value in 
terms of a cores performance, predictability and readiness 
for purpose. An example of this is delivering the value of 
extra effort on placement optimisation using locking 

constraints in existing FPGA design tools [13]. As the 
placement and routing time does not scale well with circuit 
size, breaking a system into modules and performing place 
and route on each as separate smaller problems reduces 
compilation time [13], [15]. The amount of optimisation 
locked in at the component level could then be traded off 
against the loss of flexibility and overall system optimality. 
If end users are able to build applications requiring very 
little expertise in FPGA EDA tools, then the barriers to 
entry into using FPGA technology are lowered and the 
potential user base increased. Further to this, better-
optimised cores that are easy to integrate should enjoy a 
higher level of re-use. This is of course dependent on the 
impact of pre-routing on performance and flexibility not 
outweighing these benefits. 
 Run-time routing, while being flexible, currently 
requires a large amount of computing bandwidth in 
comparison to the increase in performance provided 
through circuit specialization. We investigate the perceived 
advantages of independent core development for a run-
time system versus the loss in placement flexibility and the 
elimination of the ability to optimise across cores. In the 
following sections we briefly describe an experimental set 
of FPGA compiler tools that integrate wire policies and 
interface constraints to allow the independent compilation 
of FPGA cores. These tools are used to ascertain the effect 
that pre-routing has on a simple benchmark system. 

2 Uniform routing architecture (URA) model 

Modern commercial FPGA architectures use fully buffered 
unidirectional wires [9], [17], [18]. Unidirectional routing 
fabrics are superior to bi-directional wire fabrics [8]. With 
regard to inter-circuit interference it is important to note 
that a unidirectional routing fabric alleviates any 
possibility of wire contention. Another important point to 
note is that a fully buffered interconnect allows a 
simplified timing model. Path delay is more closely related 
to the number of wires used as opposed to the wire length 
used [20]. FPGA interconnects constructed from a single 
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tile are both efficient and easy to develop [8]. This led us 
to a key realisation: 

In a single interconnect tile architecture the placement 
flexibility of a post-routed core is maintained.  

Wire patterns can be re-located by an offset of an integer 
number of tiles. This led to a second key realisation: 

Abutting the borders of two cores co-locates a set of 
border edge wires that were independently represented 
in both cores. 

So it is possible in such an architecture to maintain the 
placement flexibility of pre-routed cores and there is a 
mechanism for inter-communication between cores. 
Although the interconnect architecture does not affect 
placement flexibility, the heterogeneous resource map on 
modern FPGA devices presents a further challenge to 
circuit placement flexibility [20]. A widely used FPGA 
modelling tool is VPR [1]. Unfortunately, this model does 
not capture the regularity that is required for our methods. 
As a result, we have created a new architectural model that 
is based around a single interconnect tile. 

2.1 Regular Tiled Architecture 

In our URA model [12], a two-dimensional tile space is 
defined. The positive X direction is to the right along the 
horizontal axis, while the positive Y direction is down 
along the vertical axis. Every tile has an identical signal 
interconnect box, and an identical set of wires that connect 
to the signal interconnect box. There are sets of wires that 
cross the tile in the Y direction (The Y channel) and sets of 
wires that cross the tile in the X direction (The X channel). 
Additionally, there are sets of wires that connect the 
resource inputs to the interconnect box (The I channel) and 
sets of wires that connect resource outputs to the 
interconnect box (The O channel). The last set of wires 
connects to a set of global signal outputs (The G channel). 
The conceptual tile layout is shown in Figure 1. 
 

X Channel

Y Channel
Interconnect 

BoxResource

Device 
Pads

Global Channel

 
Figure 1. Conceptual Tile Layout  

2.2 The Resource Map  

Although the interconnect is uniform, each tile may have a 
unique type of resource. A tile either contains one whole 
computing resource or a portion of a computing resource. 
A device will have a width of W tiles in the X dimension 
and a height of H tiles in the Y dimension. Its tiles are 
given X, Y coordinates. The top left tile is at 1,1 and the 
bottom right tile is W, H. 
 A set of resource types is defined. The number of tiles 
a resource spans in both the X and Y directions is 
specified. Each resource must define its configuration 
fields with a name, bit width and depth. This information is 
used in the configuration-mapping phase. A resource type 
can optionally add a number of device IO pads. The device 
resource map is built up by defining arrays of resource 
types with an origin coordinate and the number of 
resources in the X and Y dimension. The resource map 
generator checks for overlapping arrays. 

2.3 Interconnect Box Definition  

The interconnect box facilitates the connection between the 
five channels. Previous works have a separate connection 
box to connect resource pins to channel wires and a switch 
box to connect between X and Y channel wires [1]. 
Connection box flexibility is characterised by the number 
of tracks to which logic block pins can connect. Switch 
box flexibility is characterised by the number of choices 
offered to each incident track by a switch block [22]. In 
this framework we merge these boxes. This allows us to 
define all the connection options in the same way. Each 
input to a channel may be driven by one of several outputs 
selected from any channel. Note that this is not the 
physical structure that is being dictated here but the 
conceptual URA model. 
 Many previous works have investigated ways to 
generate good patterns of input to output options [22]. It 
has been shown that a switch box flexibility of 3 will yield 
a good interconnect architecture [1]. However on 
inspecting commercial architectures it was noted that they 
exhibit a flexibility of up to 8. Certain interconnect 
patterns inside the box have been shown to improve the 
performance of an interconnect fabric [22].  
 A set of MUX patterns is first defined, each made up of 
a number of turns from the set straight, from left, from 
right, u-turn, from resource and from global (Figure 2). 
The directional turns are relative to the signal travelling 
from an output and turning to an input. This allows the 
same patterns to be re-used for inputs to all four directions. 
The architecture generator attempts to find outputs to 
populate the MUX inputs using a specified pattern. 
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2.4 The URA Wire Model 

The URA wire model is based on X and Y channels built 
from a number of wire sets [12]. Every channel has one or 
more groups defined. Each group has one or more 
members defined. The G, I and O channels have one wire 
per channel member. A resource’s wire members in an I-
Channel group may be declared as equivalent. This is true 
if the wires in a group are connected to the same LUT or 
logic gate or if a MUX is used inside the resource to select 
between group members. O-Channel groups may be 
declared as having equivalent members. A wire set is 
defined by three values:  
 W: Wire set size, pins numbered 1 to W 
  W is greater than 1 
 IN: The input selection binary vector of length W, 

Elements numbered 1 to W 
 OUT: The output selection binary vector of length W, 

Elements numbered 1 to W 
 

From Global

From Resource

Destination Input

Straight

U-Turn

Right

Left

 
Figure 2. Pattern Turn Definitions  

 
 A channel wire set of size W has W wires in each tile. 
In each tile, one wire in a set will begin and one will end. 
If not truncated by the edge of the device each wire in the 
set will span W tiles. A wire has a pin in every tile it 
passes through, numbered 1 to W.  
 Wires do not need to have connections at every tile 
they span. This is commonly referred to as internal 
connection depopulation [1]. A wire pin may be connected 
to a sink or source signal from the tiles' interconnect box. 
The IN vector indicates the pins that have an input to the 
wire from the tile interconnect box. The OUT vector 
indicates the pins that have an output from the wire to the 
tile interconnect box. If the sum of all elements of the IN 
vector is greater than one (the wire set has more than one 
input) then each input driver to the wire requires a tri-state 
control. We assume a fully buffered interconnect. The 
interconnect box specification adds further detail of what 
resource or wire outputs can connect to other resource or 
wire inputs. 

 Figure 3 shows the detail of one wire in a set where 
W=3 IN=101 and OUT=101. It also shows a unidirectional 
wire set of W=2 IN=10 and OUT=01. The input MUXs are 
shown with 4 inputs selected using 2 configuration bits for 
each MUX. The W=3 wire has more than one driver so tri-
state buffers are required. For a wire set with more than 
one input, the default state of the input driver on the pin 
closest or equal to 1 is to drive the wire (At 1,1 for the 
W=3 example wire). The default state of all other input 
drivers is to be tri-stated. For a wire set to be valid a signal 
has to be able to travel its full length from pin 1 to pin W 
or pin W to pin 1. 
 Figure 3 also shows a Y channel with 4 wire sets with 
W=2 and 4 wires sets of W=3. The W=3 wires can be seen 
spanning from tile 1,1 to 1,3. The W=2 wires can be seen 
spanning from tile 1,1 to 1,2 and 1,2 to 1,3. Note that every 
tile is identical. Wires in a wire set of size W occupy W-1 
positions along their length in a staircase fashion. These 
positions increment in the positive direction perpendicular 
to the positive direction of the wire. The tile at the 
minimum end, the wire begins in position 1. In the second 
tile the wire will move from position 1 to position 2 and so 
on until the maximum tile, where it has reached position 
W-1. Thus wires in a set are stacked up on a single tile. A 
device is laid out by tessellating this tile. The wires 
connect by abutment. 
 
 

1, 1

1, 2

1, 3

X Channel

Interconnect Box

Resource

Y Channel

 
Figure 3. Y-Channel wire set construction using tiles. 

Overlay showing switch model  
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3 Rapid System Construction on FPGA 

A good component-based methodology for system 
construction on FPGA will encourage component sharing 
and re-use. We have extracted some of the basic ideas from 
the abstract tile methodology described in [7]. An abstract 
tile represents a core before placement and routing has 
been performed. Each core has a unique functional identity 
and a number of signals visible externally. Each signal has 
an associated direction. The signals are grouped into 
abstract interfaces. Each abstract interface is assigned to 
one of four border edges. We refer to an interface assigned 
to a particular border edge as a port. Abutting the ports of 
two communicating cores creates a link. Therefore an 
interface cannot be split across more than one border edge. 
A link only connects point-to-point between two ports. A 
tile will only affect other tiles it is linked to through its 
ports. Initially an abstract tile does not have any 
dimensions. In the design flow presented here, the function 
and signals of a core are defined by a net-list of 
components. Each component is a piece of logic that may 
be configured on the target FPGA. A core is first shaped. 
Then its interfaces are assigned to absolute edge positions. 
A major issue in the independent construction of cores on 
an FPGA is wire contention [2]. In order to remove any 
chance of wire contention between cores on the same 
FPGA we have developed a wire policy framework. This 
explicitly defines which wires are free for use by a core 
constructor for interface signals and for internal 
connections. Once the policy has been applied the 
interfaces are assigned to specific wires on the border 
edge. The core is then placed and routed within its borders.   
 The system constructor must adhere to two rules: 
  All cores use the same wire policy 
  Core boundaries must not overlap  
 This provides two valuable properties: 
  No interference between cores 
  Ports are connected by abutment 
 Contention avoidance has been ensured at core compile 
time by adhering to a wire policy. Thus the construction 
process does not need to consider the detailed allocation of 
signals to wires or detailed component placement within 
cores, and so does not have to run any complex placement 
or routing algorithm. Instead the process only needs to 
place a core’s rectangle to match up connecting ports 
without overlapping any core already placed.  This rapid 
system constructor is referred to as a “Placer-Connector” 
as it performs placement and connection simultaneously.  

3.1 Wires Crossing Core Borders 

Consider a bounding box around all the tiles assigned to a 
particular core. Signals either travel in a positive (P) or 
negative (N) direction across this border, along either the 
vertical (Y) or horizontal (X) axis. Consider two 
independently constructed cores, using wires for P and N 

directed signals, one on each side of the border. If one 
constructor selects a wire without negotiating with the 
other there is a high probability that the same wire is 
selected for both the P direction on one side and the N 
direction on the other. Furthermore it may be that a wire 
that crosses a border is also used to connect two tiles on 
one side of the border. When the two cores are abutted 
destructive contention will occur. 
  

 
Figure 4. Core border edge wire starvation effect. 

Contended wires highlighted 
 
 Routing exclusion zones have been proposed to avoid 
this type of contention. These zones have to be as wide as 
3 to 6 tiles in commercial architectures. Resources in the 
exclusion zone cannot be used [4], [6]. If we do not use the 
wires that cross a border the core area will experience wire 
starvation. Figure 4 illustrates this effect where tiles in the 
corners have half their wires excluded. This effect is more 
pronounced when longer wires are used and for wires with 
a high degree of internal connection depopulation. 
 We propose constraining the use of border-crossing 
wires and using them to carry signals between abutting 
cores. Commercially available CAD tools provide a 
limited facility to assign signals to wires [19]. An 
improved solution for commercial architectures has been 
reported [13]. Previous investigations suggested that 50% 
more routing resource is required for such a scheme of 
locking signals to wires [15].  
 We define the number of wires crossing the border 
between two tiles as the maximum tile edge bandwidth 
WFPGA. The WFPGA of an interconnect architecture is equal 
to the sum of Wi-1 for all i wire sets in a channel. This is 
the theoretical maximum number of signals that can 
propagate across the tile segment of a core’s boundary 
edge. The estimated available WFPGA in the routing channel 
of commercial reconfigurable architectures is: 

Virtex 84  Spartan-3 138  
Virtex-II 168   Virtex-4  168  

These figures exclude global, long and tri-state lines. Also 
note that any one core cannot use the entire WFPGA 
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bandwidth of a border. It must be divided between cores on 
both sides of a border, based on the wire constraints 
framework, which is explained in the next section. 

4 Wire Constraints Framework 

The wire constraint framework has two layers. The first 
layer is the wire use policy, which ensures contention free 
inter-operability of independently constructed cores on the 
same FPGA device. The second layer is the interface layer 
that allows designers to develop pre-routed cores with 
compatible interfaces. The policy layer provides an 
appropriate wire bandwidth to the interface layer. It is 
envisaged that policies will be developed and optimised to 
an FPGA architecture by device experts. The interface 
definitions are then developed and shared between 
designers of compatible cores. 

4.1 Wire-use Policy Layer 

It is possible to use wire constraints with cores constrained 
to any polyomino. For simplicity we assume that each core 
is constrained to a rectangular region. Four border edges 
define a core’s boundary namely: Positive X, Negative X, 
Positive Y, and Negative Y (PX, NX, PY, and NY). The 
wire policy defines how every wire that crosses these 
borders may be used. The combination of wire set 
direction and the border that the policy is being applied to 
determines whether a wire set is incoming or outgoing. All 
wires belonging to a reserved set, including those that do 
not cross a border are considered external. 
A wire policy specifies the following: 

The direction of each wire set 
The wires in a set that carry interface signals 
Whether a wire set is reserved  

For wires on a border belonging to an: 
Incoming wire set 
 Interface wires are only used for core inputs 
 Non-interface wires are considered external 
Outgoing wire set 
 Interface wires are only used for core outputs 
 Non-interface wires are available for internal use 

 The policy is applied uniformly to every channel in a 
given direction. This maintains placement flexibility 
between abutting cores along the axis parallel to their 
abutting surfaces in increments of whole tiles. All wires in 
a set are forced to follow the same direction. Any wire that 
has both its end points outside of a core’s boundary is 
external to that core. If such a wire were driven within the 
core the direction set by the policy would be violated. 
Enforcing the same direction within a wire set maintains 
placement flexibility along the axis of a wire channel. 
 As an example of a policy formulation, consider the 
wire set W=3, IN=100 and OUT=011. This set potentially 
provides two signal paths across the border. However the 
first wire in this set crossing the border is also useful for 

making internal connections. The decision on whether to 
provide extra bandwidth or to keep this wire for internal 
use is captured in a wire policy. The policy is also used to 
share bandwidth between directions across a border. The 
channel in Figure 3 has a WFPGA of 12. There are two 
negative going sets of W=2 IN=10 and OUT=01, two 
positive going sets of W=2 IN=01 and OUT=10 and four 
bi-directional sets of W=3 IN=101 OUT=101. Now 
consider how many signals are available in a given 
direction. The bi-directional sets can provide 8 signals in 
either direction. The policy layer seeks to fix the direction 
before interface design time. As cores in a system will 
probably have the same average number interface signals 
in each of the two directions, it is sensible to share the bi-
directional wires between positive and negative. Then the 
WFPGA is split into a WPFPGA of 6 and a WNFPGA of 6. As 
the pins on the W=3 wires are bi-directional they provide 
routing flexibility through dogleg opportunities. Therefore 
we allow only one wire in a W=3 set to be a signal carrier. 
This reduces the WFPGA in each direction to 4. 

4.2 The Interface Layer 

The policy provides wire bandwidth to interfaces. An 
abstract interface definition is simply an ordered list of 
identified signals and their direction. Links are always 
point-to-point so distribution of data has to be handled 
within modules. A link requires two compatible mirror 
image interfaces. An output signal from one side implies 
an input to the other side and vice versa. Bi-directional 
interface signals are not allowed. An abstract interface is 
firstly declared in its original sense. It is either interpreted 
in its original sense or in the inverse sense depending on 
the direction of the signals defined in a core’s net-list. 
When an abstract interface is applied to one of the four 
directions then each signal in the interface is assigned a 
wire. An assigned interface is specific to a direction and 
defines the tile offset, wire set and wire index for every 
signal in the interface. An assigned interface is suitable for 
export to multiple core developers. An assigned interface is 
assumed to be in its original sense. The design tools will 
interpret it in accordance with the applied policy in a 
consistent way. For any given signal in a compatible 
interface, the actual wire selected on each side of a border 
is the same wire when the two border edges are co-located. 

4.3 Core Shape and Wire Relationship 

It is important to note how wires affect the choice of a 
cores shape. And in turn how a core’s shape affects the 
availability of wires. An assigned interface has a fixed 
width and its wires will have a fixed depth reaching in to a 
core from the border. The interfaces used dictate a 
minimum core size. 
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 For example, the depth of a core along a wire channel 
has an effect on the wire bandwidth available. Consider a 
core of depth D=4 on an architecture with the bi-
directional wire set W=7, IN=1001001, OUT=1001001. 
Without a policy, two wires in this set are able to make 
connections internal to the core. Two wires in this set pass 
right through this core. If one of these is driven from its 
mid-point it will drive signals in both directions. Once a 
direction is enforced by a policy only one wire is available 
for internal connection. The two through wires may only 
be used as inputs. A further four wires may be used as 
inputs and three wires are available as outputs 
In order to illustrate some of the bandwidth issues consider 
a simple registered adder core. This core will use two 
instances of a dual integer interface. A dual 8-bit integer 
interface has two 8-bit buses and two valid flags, requiring 
18 wires. All signals in the original abstract interface are 
declared as outputs. An inverse instance placed on the NX 
edge creates an input interface. An original instance placed 
on the PX edge creates an output interface. Assuming that 
each tile resource in the example architecture in Figure 3 
can accommodate one registered full adder. A further 
resource is required to perform an AND operation on the 
two input valid signals and register it before output. Thus 9 
tiles are required for the 8-bit adder. This would fit neatly 
into a 3 by 3 box, but would require a WFPGA of 6. Fitting a 
16-bit adder into a near square 4 by 5 box with the same 
port locations requires a WFPGA of 7. A 32-bit adder in a 6 
by 6 box requires a WFPGA of 11.  
 Clearly this is getting impossible. The module area 
needs to be expanded just to accommodate the required 
WFPGA. The extra resources in the expanded area would go 
unused. In this case simply fixing the X dimension to 2 
forces the interface edges to lengthen. The 8-bit adder fits 
in a 2 by 5 box and has a WFPGA within the fictitious 4 
wires per tile constraint. Both the 16-bit adder in a 2 by 9 
box and 32-bit adder in a 2 by 17 box meet the WFPGA 
constraint too. Although this example was applied to a 
very constrained architecture, similar issues will arise in 
larger architectures with higher logic density and more 
complex cores. These issues are exacerbated further if 
there are ports on both X and Y-axis edges. 

5 Experimental Tools 

In order to investigate the impact of pre-routed cores we 
have put together a set of core compiler tools. The design 
flow is as follows: 

The Core is described in Verilog HDL 
Interface signals are annotated in a HDL wrapper 
The core is synthesised to an EDIF net-list 
The Core’s shape and wire policy selection is defined 
The Net-list is mapped to architectural primitives 
Pre-assigned interface positions are elaborated 
Combined placement and packing is performed 
The Interconnect graph is created  

The wire policy constraints are extended to the graph 
Routing is performed respecting the wire constraints 
The circuit is packed into a core ready for construction 
The system constructor places and connects the cores 

 We use Verilog HDL to describe a core’s function. The 
Verilog module is placed in a wrapper module that 
includes the interface type and port location in each signal 
name. The Verilog code is compiled into an EDIF net-list 
which is annotated with a reference to the policy and the 
module shape. The synthesis target is the Xilinx Virtex 
architecture, with the EDIF primitives mapped to our basic 
logic cell (BLC) which contains a 4-input LUT, MUX, FF 
and Carry logic similar to half of a Virtex CLB slice. 
 Before placement an area of resource is allocated to the 
core. Shaping this area is a complex process that has to 
take into account the different types of resource required 
(e.g. IO, RAM or special purpose logic) and what is 
available in the desired location of the core. It is further 
complicated by the constraints placed on a core’s shape 
due to the interface width and depth. Cores are currently 
shaped manually. We hope to develop a better 
understanding of the interrelationship between the factors 
involved and then develop effective ways to automate the 
core shaping process.  
 The next step is to pack the BLCs created in the 
mapping phase into a minimum number of resource sites 
while accounting for the connectivity between them. This 
packing problem is complicated by the fact that some 
BLCs connect to interface wires. The simulated annealing 
placement algorithm from VPR [1] has been adapted to 
perform packing and placement in a single step. Previous 
work has shown that this is more optimal [3]. We then only 
need to handle the interface wire placement in the placer.  
 The PathFinder negotiating based congestion driven 
algorithm [10] has been modified to take advantage of the 
uniformity inherent in the URA model and to handle the 
wire constraint framework. Since the device is constructed 
from a single uniform interconnect tile we only need to 
represent the connectivity graph for this single tile. We 
reduce the memory required by only constructing an 
interconnect graph for the area covered by the core being 
routed, as opposed to the whole device. Due to the discrete 
interconnect structure of modern commercial devices, the 
delay difference is nearly equal for different length wire 
sets. For example the Xilinx Virtex-II architecture hex 
lines have only a slightly longer delay than the delay of the 
double or direct lines [20]. We therefore assume that a 
minimum delay trace will use a minimum number of wire 
lines. Thus we use a router cost function that is based on 
the number of wire hops used in a trace.  

5.1 Run-time constructor 

Port compatibility is ensured at core compile time so the 
construction process only has to place a core’s rectangle to 
correctly match connecting ports without overlapping any 
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core already placed. This “Placer-Connector” method of 
rapid system construction is shown in Fig. 5. A set of pre-
routed cores are shown in Fig. 5(a). The IF core connects 
to external signals so has to be placed in a specific location 
on the FPGA as shown in Fig. 5(b). The PE and IF cores 
use two instances of a single interface type constrained to 
port regions indicated by the thin lined boxes. Arrows 
indicate the interface sense, not the signal direction. Each 
PE core performs the same function but has a different 
interface-edge combination. Fig. 5(c) shows the system 
created from abutted cores. Links are created by the co-
location of port wires, as shown by the co-located arrows. 
 The IF core connects to the FIFO core which uses 
memory in the centre of the device. The ports between IF 
and FIFO are mapped onto tunnelling wires. The FIFO and 
IF are connected using two tunnelling-link cores 
overlaying the PE cores. The PE cores were constructed 
for an area of CLBs. The position of the right most PEs is 
displaced by the memory resource. Wire extension cores 
are used to connect the PEs across this region. 
 

PEPE

PE PE

(b).

FIFOIF

(a).

(c).

PE PE PE

PE
FIFO

PEPE
IF

 
Figure 5.  (a). Pre-routed cores (b). Target FPGA 

device (c). Cores placed and connected on device. 

6 Experimental Results 

In order to judge the impact of pre-routing cores we 
compare three methods of system construction. First every 
core in the system is synthesised into a net-list. Two 
directives are used to build a system. The “Instance” 
directive places cores and the “Link” directive specifies 
which ports are to be connected. Each system is 
constructed using the following three methods: 
 

 Normal: Merge all the cores, then Place and Route 
the system 

 Pre-placed: Place each core, merge all cores, then 
route the system 

 Pre-routed: Place and route each core then merge the 
system 

 The performance of each method is measured and 
compared in terms of construction time and the number of 
wire hops used across the system. For systems with 
multiple instances of the same core we expect to see a 
reduction in construction time for the pre-routed core 
method. For systems with entirely unique instances there 
should still be a reduction in construction time for the pre-
routed core method. We expect this as the placement and 
routing problems are being broken into smaller sub-
problems. The anticipated counter effect of this is an 
increased number of wires required to connect the system. 

6.1 A Simple Benchmark 

The benchmark system used is a simplified version of an 
FPGA accelerator for the Smith-Waterman algorithm used 
for pair-wise alignment of DNA sequences with a linear 
gap penalty [11]. The system is constructed from a number 
of identical processing elements (PE). A PE has one input 
interface and one output interface. They are connected up 
into a linear array that is terminated at either end by a host 
interface. A subject sequence is first loaded into the array. 
Then any number of sequences may be passed through. As 
they exit the array they will be annotated with the 
alignment score. This system has two abstract core tiles; 
the host interface (HI) and the PE.  The size of each of 
these cores is shown in Table 1. 
 
Table 1. Core parameters 
Core Blocks Nets Sinks 
PSA HI 85 63 86 
PSA PE 205 221 382 

 
 In order to be able to create the system from pre-routed 
tiles several versions of the PE are required. Each version 
has a different interface-edge combination. The cores 
required for a simple case are shown in Figure 6. With 4 
PE interface-edge combinations the linear array is able to 
extend to the right, loop around and return to the host 
interface. In order to extend in more directions, more 
interface-edge combinations are required.  
 The target FPGA architecture has a wire channel 
composed of 16 W=2, IN=01, OUT=10 unidirectional wire 
sets and 16 W=3, IN=101, OUT=101 bidirectional wires 
sets. Each tile in the FPGA either has 4 pads or 4 logic 
blocks. The layout of a system of four PEs and the HI is 
shown as a schematic in Figure 6(b) and as pre-routed 
cores mapped to the FPGA architecture shown in Figure 7. 
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Figure 6. (a) Pre-routed cores with different edge 
combinations (b) 4 PE system construction  

 

 
Figure 7. A system of four PEs constructed from pre-

routed cores on an FPGA model 
 
 Systems of 2, 4, 6, 8 and 10 PEs where defined and 
then constructed using each of the three methods. The 2 PE 
system uses 3 unique module instances. The rest use 5 
unique module instances. A comparison of each 
construction method is shown in the graphs of Figure 8. 
 As expected Figure 8(a) shows that routing each unique 
module once vastly reduces the number of router iterations 
required as compared to routing the system as a whole. For 
the 2 and 4 PE systems we see a reduction in router 
iterations even when every module is unique. This 
suggests that being able to break up the routing problem 
into isolated modules is a valid technique for improving 
router run-times. 
 

 The basic simulated annealing placement algorithm we 
used does not scale well with the system size. In Figure 
8(b) the total wire length of the normal approach is 
increasing faster than the pre-placed approach. Comparing 
pre-placed and pre-routed wire usage in Figure 8(b) shows 
the overhead of pre-routing to be around 2%. The nets in 
this system have a natural locality so the pre-placed 
approach works well.  
 Figure 8(c) compares the longest path across each 
system generated by each of the different approaches. The 
benchmark system, as in most practical systems, does not 
have any nets that lengthen with the number of modules 
added. Thus we see the longest path is predictable for any 
number of pre-routed cores. 
 While the linear array benchmark presented here is 
admittedly relatively simple and highly conducive to using 
pre-routed cores, it is intended to provide a simple 
illustration of the ‘placer-connector” concept. Where 
communications cannot be established by abutting two 
interfaces, we suggest the use of tunnelling-link cores 
which use a reserved set of wires as defined by the 
framework. Alternatively, it is feasible to use a fast run-
time router, which has access to these reserved wire sets to 
connect modules. Our framework has been designed with 
this in mind, but its implementation has been left as “work 
in progress”. 

7 Conclusion 

Modern FPGA wire fabrics are homogeneous allowing 
pre-routed patterns to be relocated. We have presented a 
wire constraint framework that effectively utilises the full 
bandwidth of a device’s interconnect. This has been built 
into a method of creating pre-routed FPGA cores for rapid 
system construction. Pre-routing doesn’t affect placement 
flexibility directly. However, pre-routing requires that a 
core’s interfaces be locked to a certain edge. This reduces 
placement flexibility between connected cores. In order to 
regain lost placement flexibility we use several versions of 
the same function core each with a different interface-edge 
combination. Pre-routing small systems causes an increase 
in the number of wires used in connecting the system. This 
may result in an increase in wire delay and a reduction in 
system performance. The performance of a pre-routed 
system starts to increase over the normal and the pre-
placed versions as the size of the system increases. We 
define rapid construction as the ability to build a system by 
just placing pre-routed cores without having to perform 
complex place and route steps. We see that being able to 
break a system into cores and independently optimise them 
accelerates the core construction process as well. The 
improvement in system performance and reduction in both 
CAD run-time and system construction time make core 
pre-routing an interesting avenue for further research. 
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Figure 8. Comparison of system on FPGA 
construction techniques (a). Router iterations (b). 
Total wires used and (c). Longest path 

7.1 Future work 

The aim of our work is to reduce the overheads of the 
system constructor to the point that it is possible to use it at 
run-time in a resource constrained embedded system. 
Issues such as a run-time router for connecting those 
blocks that cannot be connected by abutment and the 
distribution of global signals at run-time still need to be 
investigated. It is recommended that the number of 
interface types be kept to a minimum in order to reduce the 
number of interface-edge combinations required to build a 
system. There is a large amount of wire bandwidth in 
commercial FPGA devices. We are investigating ways to 
use this more effectively. One use is to reserve wire sets 
and use them to connect non-neighbouring cores, IO pads 
or special resources across pre-routed regions. The 
methodology presented here is not path timing driven. It is, 
however, possible to modify the tool set used to be timing 
driven. 
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