
Pre-Routed FPGA Cores for Rapid System Construction in a Dynamic
Reconfigurable System

Timothy F. Oliver and Douglas L. Maskell
Centre for High Performance Embedded Systems (CHiPES)

School of Computer Engineering
Nanyang Technology University, Singapore

tim.oliver@computer.org, asdouglas@ntu.edu.sg

Abstract

This paper presents a method of constructing pre-routed
FPGA cores which lays the foundations for a rapid system
construction framework for dynamically reconfigurable
computing systems. There are two major challenges that
need to be considered by this framework. The first is how
to manage the wires crossing a core’s borders. The second
is how to maintain an acceptable level of flexibility for
system construction with only a minimum of overhead. The
perceived advantages of full independent core development
are weighed against the loss in placement flexibility and
elimination of the opportunities to optimise a system
across cores. Few existing methodologies allow the
independent compilation of FPGA cores through every
step of the design flow. In this paper we analyse the wire
detail of modern FPGA architectures to determine how the
interconnect architecture effects the shape of pre-routed
cores and the wire bandwidth available to interfaces. We
have adapted academic placement and routing algorithms
to our architectural model. The design flow has been
modified to include a wire policy and interface constraints
framework that tightly constrains the use of the wires that
cross a core’s boundaries. Using this tool set we
investigate the effect of pre-routing on overall system
optimality. A simple example using the pre-routed
approach shows only a 2% increase in total wire use over
the pre-placed approach. Place and route times are vastly
reduced for systems composed of regular modules. Being
able to break a system into independent cores reduces the
placement and routing time even for non-regular systems.

1 Introduction

Many FPGA-based systems are built up from cores
developed by multiple third parties. Each compilation step
that a developer performs before delivery adds value in
terms of a cores performance, predictability and readiness
for purpose. An example of this is delivering the value of
extra effort on placement optimisation using locking

constraints in existing FPGA design tools [13]. As the
placement and routing time does not scale well with circuit
size, breaking a system into modules and performing place
and route on each as separate smaller problems reduces
compilation time [13], [15]. The amount of optimisation
locked in at the component level could then be traded off
against the loss of flexibility and overall system optimality.
If end users are able to build applications requiring very
little expertise in FPGA EDA tools, then the barriers to
entry into using FPGA technology are lowered and the
potential user base increased. Further to this, better-
optimised cores that are easy to integrate should enjoy a
higher level of re-use. This is of course dependent on the
impact of pre-routing on performance and flexibility not
outweighing these benefits.
 Run-time routing, while being flexible, currently
requires a large amount of computing bandwidth in
comparison to the increase in performance provided
through circuit specialization. We investigate the perceived
advantages of independent core development for a run-
time system versus the loss in placement flexibility and the
elimination of the ability to optimise across cores. In the
following sections we briefly describe an experimental set
of FPGA compiler tools that integrate wire policies and
interface constraints to allow the independent compilation
of FPGA cores. These tools are used to ascertain the effect
that pre-routing has on a simple benchmark system.

2 Uniform routing architecture (URA) model

Modern commercial FPGA architectures use fully buffered
unidirectional wires [9], [17], [18]. Unidirectional routing
fabrics are superior to bi-directional wire fabrics [8]. With
regard to inter-circuit interference it is important to note
that a unidirectional routing fabric alleviates any
possibility of wire contention. Another important point to
note is that a fully buffered interconnect allows a
simplified timing model. Path delay is more closely related
to the number of wires used as opposed to the wire length
used [20]. FPGA interconnects constructed from a single

Dagstuhl Seminar Proceedings 06141
Dynamically Reconfigurable Architectures
http://drops.dagstuhl.de/opus/volltexte/2006/741

tile are both efficient and easy to develop [8]. This led us
to a key realisation:

In a single interconnect tile architecture the placement
flexibility of a post-routed core is maintained.

Wire patterns can be re-located by an offset of an integer
number of tiles. This led to a second key realisation:

Abutting the borders of two cores co-locates a set of
border edge wires that were independently represented
in both cores.

So it is possible in such an architecture to maintain the
placement flexibility of pre-routed cores and there is a
mechanism for inter-communication between cores.
Although the interconnect architecture does not affect
placement flexibility, the heterogeneous resource map on
modern FPGA devices presents a further challenge to
circuit placement flexibility [20]. A widely used FPGA
modelling tool is VPR [1]. Unfortunately, this model does
not capture the regularity that is required for our methods.
As a result, we have created a new architectural model that
is based around a single interconnect tile.

2.1 Regular Tiled Architecture

In our URA model [12], a two-dimensional tile space is
defined. The positive X direction is to the right along the
horizontal axis, while the positive Y direction is down
along the vertical axis. Every tile has an identical signal
interconnect box, and an identical set of wires that connect
to the signal interconnect box. There are sets of wires that
cross the tile in the Y direction (The Y channel) and sets of
wires that cross the tile in the X direction (The X channel).
Additionally, there are sets of wires that connect the
resource inputs to the interconnect box (The I channel) and
sets of wires that connect resource outputs to the
interconnect box (The O channel). The last set of wires
connects to a set of global signal outputs (The G channel).
The conceptual tile layout is shown in Figure 1.

X Channel

Y Channel
Interconnect

BoxResource

Device
Pads

Global Channel

Figure 1. Conceptual Tile Layout

2.2 The Resource Map

Although the interconnect is uniform, each tile may have a
unique type of resource. A tile either contains one whole
computing resource or a portion of a computing resource.
A device will have a width of W tiles in the X dimension
and a height of H tiles in the Y dimension. Its tiles are
given X, Y coordinates. The top left tile is at 1,1 and the
bottom right tile is W, H.
 A set of resource types is defined. The number of tiles
a resource spans in both the X and Y directions is
specified. Each resource must define its configuration
fields with a name, bit width and depth. This information is
used in the configuration-mapping phase. A resource type
can optionally add a number of device IO pads. The device
resource map is built up by defining arrays of resource
types with an origin coordinate and the number of
resources in the X and Y dimension. The resource map
generator checks for overlapping arrays.

2.3 Interconnect Box Definition

The interconnect box facilitates the connection between the
five channels. Previous works have a separate connection
box to connect resource pins to channel wires and a switch
box to connect between X and Y channel wires [1].
Connection box flexibility is characterised by the number
of tracks to which logic block pins can connect. Switch
box flexibility is characterised by the number of choices
offered to each incident track by a switch block [22]. In
this framework we merge these boxes. This allows us to
define all the connection options in the same way. Each
input to a channel may be driven by one of several outputs
selected from any channel. Note that this is not the
physical structure that is being dictated here but the
conceptual URA model.
 Many previous works have investigated ways to
generate good patterns of input to output options [22]. It
has been shown that a switch box flexibility of 3 will yield
a good interconnect architecture [1]. However on
inspecting commercial architectures it was noted that they
exhibit a flexibility of up to 8. Certain interconnect
patterns inside the box have been shown to improve the
performance of an interconnect fabric [22].
 A set of MUX patterns is first defined, each made up of
a number of turns from the set straight, from left, from
right, u-turn, from resource and from global (Figure 2).
The directional turns are relative to the signal travelling
from an output and turning to an input. This allows the
same patterns to be re-used for inputs to all four directions.
The architecture generator attempts to find outputs to
populate the MUX inputs using a specified pattern.

2

2.4 The URA Wire Model

The URA wire model is based on X and Y channels built
from a number of wire sets [12]. Every channel has one or
more groups defined. Each group has one or more
members defined. The G, I and O channels have one wire
per channel member. A resource’s wire members in an I-
Channel group may be declared as equivalent. This is true
if the wires in a group are connected to the same LUT or
logic gate or if a MUX is used inside the resource to select
between group members. O-Channel groups may be
declared as having equivalent members. A wire set is
defined by three values:
 W: Wire set size, pins numbered 1 to W
 W is greater than 1
 IN: The input selection binary vector of length W,

Elements numbered 1 to W
 OUT: The output selection binary vector of length W,

Elements numbered 1 to W

From Global

From Resource

Destination Input

Straight

U-Turn

Right

Left

Figure 2. Pattern Turn Definitions

 A channel wire set of size W has W wires in each tile.
In each tile, one wire in a set will begin and one will end.
If not truncated by the edge of the device each wire in the
set will span W tiles. A wire has a pin in every tile it
passes through, numbered 1 to W.
 Wires do not need to have connections at every tile
they span. This is commonly referred to as internal
connection depopulation [1]. A wire pin may be connected
to a sink or source signal from the tiles' interconnect box.
The IN vector indicates the pins that have an input to the
wire from the tile interconnect box. The OUT vector
indicates the pins that have an output from the wire to the
tile interconnect box. If the sum of all elements of the IN
vector is greater than one (the wire set has more than one
input) then each input driver to the wire requires a tri-state
control. We assume a fully buffered interconnect. The
interconnect box specification adds further detail of what
resource or wire outputs can connect to other resource or
wire inputs.

 Figure 3 shows the detail of one wire in a set where
W=3 IN=101 and OUT=101. It also shows a unidirectional
wire set of W=2 IN=10 and OUT=01. The input MUXs are
shown with 4 inputs selected using 2 configuration bits for
each MUX. The W=3 wire has more than one driver so tri-
state buffers are required. For a wire set with more than
one input, the default state of the input driver on the pin
closest or equal to 1 is to drive the wire (At 1,1 for the
W=3 example wire). The default state of all other input
drivers is to be tri-stated. For a wire set to be valid a signal
has to be able to travel its full length from pin 1 to pin W
or pin W to pin 1.
 Figure 3 also shows a Y channel with 4 wire sets with
W=2 and 4 wires sets of W=3. The W=3 wires can be seen
spanning from tile 1,1 to 1,3. The W=2 wires can be seen
spanning from tile 1,1 to 1,2 and 1,2 to 1,3. Note that every
tile is identical. Wires in a wire set of size W occupy W-1
positions along their length in a staircase fashion. These
positions increment in the positive direction perpendicular
to the positive direction of the wire. The tile at the
minimum end, the wire begins in position 1. In the second
tile the wire will move from position 1 to position 2 and so
on until the maximum tile, where it has reached position
W-1. Thus wires in a set are stacked up on a single tile. A
device is laid out by tessellating this tile. The wires
connect by abutment.

1, 1

1, 2

1, 3

X Channel

Interconnect Box

Resource

Y Channel

Figure 3. Y-Channel wire set construction using tiles.

Overlay showing switch model

3

3 Rapid System Construction on FPGA

A good component-based methodology for system
construction on FPGA will encourage component sharing
and re-use. We have extracted some of the basic ideas from
the abstract tile methodology described in [7]. An abstract
tile represents a core before placement and routing has
been performed. Each core has a unique functional identity
and a number of signals visible externally. Each signal has
an associated direction. The signals are grouped into
abstract interfaces. Each abstract interface is assigned to
one of four border edges. We refer to an interface assigned
to a particular border edge as a port. Abutting the ports of
two communicating cores creates a link. Therefore an
interface cannot be split across more than one border edge.
A link only connects point-to-point between two ports. A
tile will only affect other tiles it is linked to through its
ports. Initially an abstract tile does not have any
dimensions. In the design flow presented here, the function
and signals of a core are defined by a net-list of
components. Each component is a piece of logic that may
be configured on the target FPGA. A core is first shaped.
Then its interfaces are assigned to absolute edge positions.
A major issue in the independent construction of cores on
an FPGA is wire contention [2]. In order to remove any
chance of wire contention between cores on the same
FPGA we have developed a wire policy framework. This
explicitly defines which wires are free for use by a core
constructor for interface signals and for internal
connections. Once the policy has been applied the
interfaces are assigned to specific wires on the border
edge. The core is then placed and routed within its borders.
 The system constructor must adhere to two rules:
 All cores use the same wire policy
 Core boundaries must not overlap
 This provides two valuable properties:
 No interference between cores
 Ports are connected by abutment
 Contention avoidance has been ensured at core compile
time by adhering to a wire policy. Thus the construction
process does not need to consider the detailed allocation of
signals to wires or detailed component placement within
cores, and so does not have to run any complex placement
or routing algorithm. Instead the process only needs to
place a core’s rectangle to match up connecting ports
without overlapping any core already placed. This rapid
system constructor is referred to as a “Placer-Connector”
as it performs placement and connection simultaneously.

3.1 Wires Crossing Core Borders

Consider a bounding box around all the tiles assigned to a
particular core. Signals either travel in a positive (P) or
negative (N) direction across this border, along either the
vertical (Y) or horizontal (X) axis. Consider two
independently constructed cores, using wires for P and N

directed signals, one on each side of the border. If one
constructor selects a wire without negotiating with the
other there is a high probability that the same wire is
selected for both the P direction on one side and the N
direction on the other. Furthermore it may be that a wire
that crosses a border is also used to connect two tiles on
one side of the border. When the two cores are abutted
destructive contention will occur.

Figure 4. Core border edge wire starvation effect.

Contended wires highlighted

 Routing exclusion zones have been proposed to avoid
this type of contention. These zones have to be as wide as
3 to 6 tiles in commercial architectures. Resources in the
exclusion zone cannot be used [4], [6]. If we do not use the
wires that cross a border the core area will experience wire
starvation. Figure 4 illustrates this effect where tiles in the
corners have half their wires excluded. This effect is more
pronounced when longer wires are used and for wires with
a high degree of internal connection depopulation.
 We propose constraining the use of border-crossing
wires and using them to carry signals between abutting
cores. Commercially available CAD tools provide a
limited facility to assign signals to wires [19]. An
improved solution for commercial architectures has been
reported [13]. Previous investigations suggested that 50%
more routing resource is required for such a scheme of
locking signals to wires [15].
 We define the number of wires crossing the border
between two tiles as the maximum tile edge bandwidth
WFPGA. The WFPGA of an interconnect architecture is equal
to the sum of Wi-1 for all i wire sets in a channel. This is
the theoretical maximum number of signals that can
propagate across the tile segment of a core’s boundary
edge. The estimated available WFPGA in the routing channel
of commercial reconfigurable architectures is:

Virtex 84 Spartan-3 138
Virtex-II 168 Virtex-4 168

These figures exclude global, long and tri-state lines. Also
note that any one core cannot use the entire WFPGA

4

bandwidth of a border. It must be divided between cores on
both sides of a border, based on the wire constraints
framework, which is explained in the next section.

4 Wire Constraints Framework

The wire constraint framework has two layers. The first
layer is the wire use policy, which ensures contention free
inter-operability of independently constructed cores on the
same FPGA device. The second layer is the interface layer
that allows designers to develop pre-routed cores with
compatible interfaces. The policy layer provides an
appropriate wire bandwidth to the interface layer. It is
envisaged that policies will be developed and optimised to
an FPGA architecture by device experts. The interface
definitions are then developed and shared between
designers of compatible cores.

4.1 Wire-use Policy Layer

It is possible to use wire constraints with cores constrained
to any polyomino. For simplicity we assume that each core
is constrained to a rectangular region. Four border edges
define a core’s boundary namely: Positive X, Negative X,
Positive Y, and Negative Y (PX, NX, PY, and NY). The
wire policy defines how every wire that crosses these
borders may be used. The combination of wire set
direction and the border that the policy is being applied to
determines whether a wire set is incoming or outgoing. All
wires belonging to a reserved set, including those that do
not cross a border are considered external.
A wire policy specifies the following:

The direction of each wire set
The wires in a set that carry interface signals
Whether a wire set is reserved

For wires on a border belonging to an:
Incoming wire set
 Interface wires are only used for core inputs
 Non-interface wires are considered external
Outgoing wire set
 Interface wires are only used for core outputs
 Non-interface wires are available for internal use

 The policy is applied uniformly to every channel in a
given direction. This maintains placement flexibility
between abutting cores along the axis parallel to their
abutting surfaces in increments of whole tiles. All wires in
a set are forced to follow the same direction. Any wire that
has both its end points outside of a core’s boundary is
external to that core. If such a wire were driven within the
core the direction set by the policy would be violated.
Enforcing the same direction within a wire set maintains
placement flexibility along the axis of a wire channel.
 As an example of a policy formulation, consider the
wire set W=3, IN=100 and OUT=011. This set potentially
provides two signal paths across the border. However the
first wire in this set crossing the border is also useful for

making internal connections. The decision on whether to
provide extra bandwidth or to keep this wire for internal
use is captured in a wire policy. The policy is also used to
share bandwidth between directions across a border. The
channel in Figure 3 has a WFPGA of 12. There are two
negative going sets of W=2 IN=10 and OUT=01, two
positive going sets of W=2 IN=01 and OUT=10 and four
bi-directional sets of W=3 IN=101 OUT=101. Now
consider how many signals are available in a given
direction. The bi-directional sets can provide 8 signals in
either direction. The policy layer seeks to fix the direction
before interface design time. As cores in a system will
probably have the same average number interface signals
in each of the two directions, it is sensible to share the bi-
directional wires between positive and negative. Then the
WFPGA is split into a WPFPGA of 6 and a WNFPGA of 6. As
the pins on the W=3 wires are bi-directional they provide
routing flexibility through dogleg opportunities. Therefore
we allow only one wire in a W=3 set to be a signal carrier.
This reduces the WFPGA in each direction to 4.

4.2 The Interface Layer

The policy provides wire bandwidth to interfaces. An
abstract interface definition is simply an ordered list of
identified signals and their direction. Links are always
point-to-point so distribution of data has to be handled
within modules. A link requires two compatible mirror
image interfaces. An output signal from one side implies
an input to the other side and vice versa. Bi-directional
interface signals are not allowed. An abstract interface is
firstly declared in its original sense. It is either interpreted
in its original sense or in the inverse sense depending on
the direction of the signals defined in a core’s net-list.
When an abstract interface is applied to one of the four
directions then each signal in the interface is assigned a
wire. An assigned interface is specific to a direction and
defines the tile offset, wire set and wire index for every
signal in the interface. An assigned interface is suitable for
export to multiple core developers. An assigned interface is
assumed to be in its original sense. The design tools will
interpret it in accordance with the applied policy in a
consistent way. For any given signal in a compatible
interface, the actual wire selected on each side of a border
is the same wire when the two border edges are co-located.

4.3 Core Shape and Wire Relationship

It is important to note how wires affect the choice of a
cores shape. And in turn how a core’s shape affects the
availability of wires. An assigned interface has a fixed
width and its wires will have a fixed depth reaching in to a
core from the border. The interfaces used dictate a
minimum core size.

5

 For example, the depth of a core along a wire channel
has an effect on the wire bandwidth available. Consider a
core of depth D=4 on an architecture with the bi-
directional wire set W=7, IN=1001001, OUT=1001001.
Without a policy, two wires in this set are able to make
connections internal to the core. Two wires in this set pass
right through this core. If one of these is driven from its
mid-point it will drive signals in both directions. Once a
direction is enforced by a policy only one wire is available
for internal connection. The two through wires may only
be used as inputs. A further four wires may be used as
inputs and three wires are available as outputs
In order to illustrate some of the bandwidth issues consider
a simple registered adder core. This core will use two
instances of a dual integer interface. A dual 8-bit integer
interface has two 8-bit buses and two valid flags, requiring
18 wires. All signals in the original abstract interface are
declared as outputs. An inverse instance placed on the NX
edge creates an input interface. An original instance placed
on the PX edge creates an output interface. Assuming that
each tile resource in the example architecture in Figure 3
can accommodate one registered full adder. A further
resource is required to perform an AND operation on the
two input valid signals and register it before output. Thus 9
tiles are required for the 8-bit adder. This would fit neatly
into a 3 by 3 box, but would require a WFPGA of 6. Fitting a
16-bit adder into a near square 4 by 5 box with the same
port locations requires a WFPGA of 7. A 32-bit adder in a 6
by 6 box requires a WFPGA of 11.
 Clearly this is getting impossible. The module area
needs to be expanded just to accommodate the required
WFPGA. The extra resources in the expanded area would go
unused. In this case simply fixing the X dimension to 2
forces the interface edges to lengthen. The 8-bit adder fits
in a 2 by 5 box and has a WFPGA within the fictitious 4
wires per tile constraint. Both the 16-bit adder in a 2 by 9
box and 32-bit adder in a 2 by 17 box meet the WFPGA
constraint too. Although this example was applied to a
very constrained architecture, similar issues will arise in
larger architectures with higher logic density and more
complex cores. These issues are exacerbated further if
there are ports on both X and Y-axis edges.

5 Experimental Tools

In order to investigate the impact of pre-routed cores we
have put together a set of core compiler tools. The design
flow is as follows:

The Core is described in Verilog HDL
Interface signals are annotated in a HDL wrapper
The core is synthesised to an EDIF net-list
The Core’s shape and wire policy selection is defined
The Net-list is mapped to architectural primitives
Pre-assigned interface positions are elaborated
Combined placement and packing is performed
The Interconnect graph is created

The wire policy constraints are extended to the graph
Routing is performed respecting the wire constraints
The circuit is packed into a core ready for construction
The system constructor places and connects the cores

 We use Verilog HDL to describe a core’s function. The
Verilog module is placed in a wrapper module that
includes the interface type and port location in each signal
name. The Verilog code is compiled into an EDIF net-list
which is annotated with a reference to the policy and the
module shape. The synthesis target is the Xilinx Virtex
architecture, with the EDIF primitives mapped to our basic
logic cell (BLC) which contains a 4-input LUT, MUX, FF
and Carry logic similar to half of a Virtex CLB slice.
 Before placement an area of resource is allocated to the
core. Shaping this area is a complex process that has to
take into account the different types of resource required
(e.g. IO, RAM or special purpose logic) and what is
available in the desired location of the core. It is further
complicated by the constraints placed on a core’s shape
due to the interface width and depth. Cores are currently
shaped manually. We hope to develop a better
understanding of the interrelationship between the factors
involved and then develop effective ways to automate the
core shaping process.
 The next step is to pack the BLCs created in the
mapping phase into a minimum number of resource sites
while accounting for the connectivity between them. This
packing problem is complicated by the fact that some
BLCs connect to interface wires. The simulated annealing
placement algorithm from VPR [1] has been adapted to
perform packing and placement in a single step. Previous
work has shown that this is more optimal [3]. We then only
need to handle the interface wire placement in the placer.
 The PathFinder negotiating based congestion driven
algorithm [10] has been modified to take advantage of the
uniformity inherent in the URA model and to handle the
wire constraint framework. Since the device is constructed
from a single uniform interconnect tile we only need to
represent the connectivity graph for this single tile. We
reduce the memory required by only constructing an
interconnect graph for the area covered by the core being
routed, as opposed to the whole device. Due to the discrete
interconnect structure of modern commercial devices, the
delay difference is nearly equal for different length wire
sets. For example the Xilinx Virtex-II architecture hex
lines have only a slightly longer delay than the delay of the
double or direct lines [20]. We therefore assume that a
minimum delay trace will use a minimum number of wire
lines. Thus we use a router cost function that is based on
the number of wire hops used in a trace.

5.1 Run-time constructor

Port compatibility is ensured at core compile time so the
construction process only has to place a core’s rectangle to
correctly match connecting ports without overlapping any

6

core already placed. This “Placer-Connector” method of
rapid system construction is shown in Fig. 5. A set of pre-
routed cores are shown in Fig. 5(a). The IF core connects
to external signals so has to be placed in a specific location
on the FPGA as shown in Fig. 5(b). The PE and IF cores
use two instances of a single interface type constrained to
port regions indicated by the thin lined boxes. Arrows
indicate the interface sense, not the signal direction. Each
PE core performs the same function but has a different
interface-edge combination. Fig. 5(c) shows the system
created from abutted cores. Links are created by the co-
location of port wires, as shown by the co-located arrows.
 The IF core connects to the FIFO core which uses
memory in the centre of the device. The ports between IF
and FIFO are mapped onto tunnelling wires. The FIFO and
IF are connected using two tunnelling-link cores
overlaying the PE cores. The PE cores were constructed
for an area of CLBs. The position of the right most PEs is
displaced by the memory resource. Wire extension cores
are used to connect the PEs across this region.

PEPE

PE PE

(b).

FIFOIF

(a).

(c).

PE PE PE

PE
FIFO

PEPE
IF

Figure 5. (a). Pre-routed cores (b). Target FPGA

device (c). Cores placed and connected on device.

6 Experimental Results

In order to judge the impact of pre-routing cores we
compare three methods of system construction. First every
core in the system is synthesised into a net-list. Two
directives are used to build a system. The “Instance”
directive places cores and the “Link” directive specifies
which ports are to be connected. Each system is
constructed using the following three methods:

 Normal: Merge all the cores, then Place and Route
the system

 Pre-placed: Place each core, merge all cores, then
route the system

 Pre-routed: Place and route each core then merge the
system

 The performance of each method is measured and
compared in terms of construction time and the number of
wire hops used across the system. For systems with
multiple instances of the same core we expect to see a
reduction in construction time for the pre-routed core
method. For systems with entirely unique instances there
should still be a reduction in construction time for the pre-
routed core method. We expect this as the placement and
routing problems are being broken into smaller sub-
problems. The anticipated counter effect of this is an
increased number of wires required to connect the system.

6.1 A Simple Benchmark

The benchmark system used is a simplified version of an
FPGA accelerator for the Smith-Waterman algorithm used
for pair-wise alignment of DNA sequences with a linear
gap penalty [11]. The system is constructed from a number
of identical processing elements (PE). A PE has one input
interface and one output interface. They are connected up
into a linear array that is terminated at either end by a host
interface. A subject sequence is first loaded into the array.
Then any number of sequences may be passed through. As
they exit the array they will be annotated with the
alignment score. This system has two abstract core tiles;
the host interface (HI) and the PE. The size of each of
these cores is shown in Table 1.

Table 1. Core parameters
Core Blocks Nets Sinks
PSA HI 85 63 86
PSA PE 205 221 382

 In order to be able to create the system from pre-routed
tiles several versions of the PE are required. Each version
has a different interface-edge combination. The cores
required for a simple case are shown in Figure 6. With 4
PE interface-edge combinations the linear array is able to
extend to the right, loop around and return to the host
interface. In order to extend in more directions, more
interface-edge combinations are required.
 The target FPGA architecture has a wire channel
composed of 16 W=2, IN=01, OUT=10 unidirectional wire
sets and 16 W=3, IN=101, OUT=101 bidirectional wires
sets. Each tile in the FPGA either has 4 pads or 4 logic
blocks. The layout of a system of four PEs and the HI is
shown as a schematic in Figure 6(b) and as pre-routed
cores mapped to the FPGA architecture shown in Figure 7.

7

Figure 6. (a) Pre-routed cores with different edge
combinations (b) 4 PE system construction

Figure 7. A system of four PEs constructed from pre-

routed cores on an FPGA model

 Systems of 2, 4, 6, 8 and 10 PEs where defined and
then constructed using each of the three methods. The 2 PE
system uses 3 unique module instances. The rest use 5
unique module instances. A comparison of each
construction method is shown in the graphs of Figure 8.
 As expected Figure 8(a) shows that routing each unique
module once vastly reduces the number of router iterations
required as compared to routing the system as a whole. For
the 2 and 4 PE systems we see a reduction in router
iterations even when every module is unique. This
suggests that being able to break up the routing problem
into isolated modules is a valid technique for improving
router run-times.

 The basic simulated annealing placement algorithm we
used does not scale well with the system size. In Figure
8(b) the total wire length of the normal approach is
increasing faster than the pre-placed approach. Comparing
pre-placed and pre-routed wire usage in Figure 8(b) shows
the overhead of pre-routing to be around 2%. The nets in
this system have a natural locality so the pre-placed
approach works well.
 Figure 8(c) compares the longest path across each
system generated by each of the different approaches. The
benchmark system, as in most practical systems, does not
have any nets that lengthen with the number of modules
added. Thus we see the longest path is predictable for any
number of pre-routed cores.
 While the linear array benchmark presented here is
admittedly relatively simple and highly conducive to using
pre-routed cores, it is intended to provide a simple
illustration of the ‘placer-connector” concept. Where
communications cannot be established by abutting two
interfaces, we suggest the use of tunnelling-link cores
which use a reserved set of wires as defined by the
framework. Alternatively, it is feasible to use a fast run-
time router, which has access to these reserved wire sets to
connect modules. Our framework has been designed with
this in mind, but its implementation has been left as “work
in progress”.

7 Conclusion

Modern FPGA wire fabrics are homogeneous allowing
pre-routed patterns to be relocated. We have presented a
wire constraint framework that effectively utilises the full
bandwidth of a device’s interconnect. This has been built
into a method of creating pre-routed FPGA cores for rapid
system construction. Pre-routing doesn’t affect placement
flexibility directly. However, pre-routing requires that a
core’s interfaces be locked to a certain edge. This reduces
placement flexibility between connected cores. In order to
regain lost placement flexibility we use several versions of
the same function core each with a different interface-edge
combination. Pre-routing small systems causes an increase
in the number of wires used in connecting the system. This
may result in an increase in wire delay and a reduction in
system performance. The performance of a pre-routed
system starts to increase over the normal and the pre-
placed versions as the size of the system increases. We
define rapid construction as the ability to build a system by
just placing pre-routed cores without having to perform
complex place and route steps. We see that being able to
break a system into cores and independently optimise them
accelerates the core construction process as well. The
improvement in system performance and reduction in both
CAD run-time and system construction time make core
pre-routing an interesting avenue for further research.

HI

PE

PE

PE

PE

HI

PE

PE

PE

PE

(a)

(b)

8

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07
To

ta
l r

ou
te

r i
te

ra
tio

ns

Normal 3798458 7741664 12758614 17356796 27056912

Pre-placed 3862814 7086287 10054818 13056499 16023838

Pre-routed 2499750 4787490 4787490 4787490 4787490

2 PEs 4 PEs 6 PEs 8 PEs 10 PEs

(a).

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l w
ire

s
us

ed

Normal 1252 2415 3777 5089 6533

Pre-placed 1253 2362 3371 4422 5464

Pre-routed 1331 2397 3463 4529 5595

2 PEs 4 PEs 6 PEs 8 PEs 10 PEs

(b).

0

5

10

15

20

25

30

35

40

45

P
at

h
le

ng
th

 (w
ire

 h
op

s)

Normal 27 25 31 40 41

Pre-placed 30 34 32 36 37

Pre-routed 29 33 35 35 35

2 PEs 4 PEs 6 PEs 8 PEs 10 PEs

(c).

Figure 8. Comparison of system on FPGA
construction techniques (a). Router iterations (b).
Total wires used and (c). Longest path

7.1 Future work

The aim of our work is to reduce the overheads of the
system constructor to the point that it is possible to use it at
run-time in a resource constrained embedded system.
Issues such as a run-time router for connecting those
blocks that cannot be connected by abutment and the
distribution of global signals at run-time still need to be
investigated. It is recommended that the number of
interface types be kept to a minimum in order to reduce the
number of interface-edge combinations required to build a
system. There is a large amount of wire bandwidth in
commercial FPGA devices. We are investigating ways to
use this more effectively. One use is to reserve wire sets
and use them to connect non-neighbouring cores, IO pads
or special resources across pre-routed regions. The
methodology presented here is not path timing driven. It is,
however, possible to modify the tool set used to be timing
driven.

8 References

[1] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD
for Deep-Submicron FPGAs”, Kluwer Academic Publishers,
February 1999.

[2] S. M. Charlwood and S. F. Quigley, "The Impact of Routing
Architecture on Reconfiguration Overheads", Proc. of the
International Conference on Engineering of Reconfigurable
Systems and Algorithms, USA, 2003, pp. 102-110.

[3] G. Chen, J. Cong, “Simultaneous Timing Driven Clustering
and Placement for FPGAs”, Proc. Of 14th International
Conference on Field Programmable Logic and Application,
Belgium, 2004, pp. 158-167.

[4] M. Dyer, C. Plessl , M. Platzner, “Partially Reconfigurable
Cores for Xilinx Virtex”, Proc. of 12th International
Conference on Field-Programmable Logic and Applications,
2002, pp. 292-301.

[5] K. Eguro, S. Hauck, A. Sharma, “Architecture-adaptive range
limit windowing for simulated annealing FPGA placement”,
Proc. of 42nd Design Automation Conference, USA, 2005,
pp. 439-444.

[6] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour,
"Dynamic hardware plugins in an FPGA with partial run-
time reconfiguration," Proc. of 39th Design Automation
Conference, USA, 2002, pp. 343-348.

[7] G. Lee and G. Milne, “Building Run-Time Reconfigurable
Systems From Tiles”, Proc. Of 13th International
Conference on Field Programmable Logic and Application,
Portugal, 2003, pp. 252-261.

[8] G. Lemieux, E. Lee, M. Tom and A. Yu, “Directional and
Single-Driver Wires in FPGA Interconnect”, Proc. of the
IEEE International Conference on Field-Programmable
Technology, Australia, 2004, pp. 41-48.

[9] D. Lewis, et. al. “The Stratix-II logic and routing
architecture”, In ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, USA, 2005, pp. 14-20.

9

[10] L. McMurchie and C. Ebeling, “PathFinder: a negotiation-
based performance-driven router for FPGAs” In
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, USA, 1995, pp. 111-117.

[11] T. Oliver, B. Schmidt, D. Maskell, “Reconfigurable
Architectures for Bio-sequence Database Scanning on
FPGAs”, IEEE TCASII Vol. 52, No. 12, 2005, pp. 851-855.

[12] T. Oliver, D. Maskell, “An FPGA Model for Developing
Dynamic Circuit Computing”, IEEE Field-Programmable
Technology, Singapore, 2005.

[13] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght, T. Becker,
“Modular Partial Reconfiguration in Virtex FPGAs”,
International Conference on Field Programmable Logic and
Applications, 2005, pp. 211-216.

[14] S. Singh, “Death of the RLOC?” Proc. Of 8th IEEE
Symposium on Field-Programmable Custom Computing
Machines, USA, 2000, pp. 145-152.

[15] R. Tessier, “Fast Place and Route Approaches for FPGAs”,
PhD Thesis, Massachusetts Institute of Technology, 1999.

[16] “Virtex™ 2.5 V Field Programmable Gate Arrays Product
Specification” DS003 Xilinx Inc, Version 2.5, April 2001.

[17] “Virtex-II™ Platform FPGA User Guide UG002, Xilinx Inc,
Version 1.9, December 2002.

[18] “Virtex-4 Family Overview”, DS112 Xilinx Inc, Version 1.3
March, 2005.

[19] “Application Notes 290. Two Flows for Partial
Reconfiguration: Module Based or Small Bit
Manipulations”, Xilinx Inc, Version 1.2, September, 2004.

[20] M. Wang, A. Ranjan, S. Raje, "Multi-Million Gate FPGA
Physical Design Challenges", ICCAD, 2004, pp. 891-898.

[21] S. Williams, “Icarus Verilog”, Available online at
http://www.icarus.com/eda/verilog/, Last accessed January
2006.

[22] S. Wilton, “Architectures and Algorithms for Field-
Programmable Gate Arrays with Embedded Memories,”
Ph.D. Dissertation, University of Toronto, 1997.

10

