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Abstract—For certain applications, custom computational hardware created using field 
programmable gate arrays (FPGAs) produces significant performance improvements over processors, 
leading some in academia and industry to call for the inclusion of FPGAs in supercomputing clusters. 
This paper presents a comparative analysis of FPGAs and traditional processors, focusing on floating-
point performance and procurement costs, revealing economic hurdles in the adoption of FPGAs for 
general High-Performance Computing (HPC).  
 

Index Terms— computational accelerator, digital arithmetic, Field programmable gate arrays, high-
performance computing, supercomputers. 
 

I. INTRODUCTION 

Supercomputers have experienced a recent resurgence, fueled by government research dollars and the 

development of low-cost supercomputing clusters.  Unlike the Massively Parallel Processor (MPP) designs 

found in Cray and CDC machines of the 70s and 80s, featuring proprietary processor architectures, many 

modern supercomputing clusters are constructed from commodity PC processors, significantly reducing 

procurement costs. 

 In an effort to improve performance, several companies offer machines that place one or more FPGAs in 

each node of the cluster.  Configurable logic devices, of which FPGAs are one example, permit the device’s 

hardware to be programmed multiple times after manufacture.  A wide body of research over two decades 

has repeatedly demonstrated significant performance improvements for certain classes of applications when 

implemented within an FPGA’s configurable logic [1].  

 Applications well suited to speed-up by FPGAs typically exhibit massive parallelism and small integer or 

fixed-point data types.  When implemented inside an FPGA, the Smith-Waterman gene sequencing algorithm 

can be accelerated two orders of magnitude over software implementations [2, 3].  Although an FPGA’s 

clock rate rarely exceeds one-tenth that of a PC, hardware implemented digital filters can process data at 

many times that of software implementations [4].  Additional performance gains have been described for 

cryptography [5], network packet filtering [6], target recognition [7] and pattern matching [8], among other 

applications. 

 Because of these successes, FPGAs have begun to appear in some supercomputing clusters.  SRC 

Computers [9], DRC Computer Corp. [10], Cray [11], Starbridge Systems [12], and SGI [13] all offer 
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clusters featuring programmable logic.  Cray’s XD1 architecture, characteristic of many of these systems, 

integrates 12 AMD Opteron processors in a chassis with six large Virtex 4 FPGAs.  The smallest 

configurable logic device found in these systems is a XC4VLX60, with many systems featuring some of the 

largest parts including the XC2VP100 and XC4VLX160.  The architecture of the Cray and the SGI machines 

are similar in that they feature a high-performance channel connecting the FPGA fabric with the core 

processors. 

 The addition of these high-end FPGAs to commodity processor-based clusters can significantly increase 

costs.  Ideally, this expense would be more than offset by the increased computational throughput provided 

by the FPGA. High-Performance Computing (HPC) applications, however, traditionally utilize double-

precision floating-point arithmetic, a domain for which FPGAs traditionally are not well suited.  Efforts have 

been made to automate the conversion of floating-point arithmetic to the fixed-point arithmetic more 

amenable to hardware implementations [14].  Even with an automated flow, however, user intervention is 

required to specify an error bound and cost function. 

  Modern FPGAs are heterogeneous in nature, mixing configurable logic cells with dedicated memories 

and fast, fixed logic for performing integer arithmetic such as multiplication and Multiply Accumulate 

(MAC).  The fine-grained programmability of the configurable fabric permits bit-wise hardware 

customization, enhancing performance for applications involving small data widths such as gene sequencing.  

The dedicated fixed-width multipliers improve performance for standard Digital Signal Processing (DSP) 

applications while improving computational density. 

 Dedicated floating-point arithmetic logic, however, does not currently exist in FPGAs, requiring that 

floating-point units be constructed out of the dedicated integer multipliers and configurable fabric.  The 

intent of this paper is to present a thorough comparison of FPGAs to commodity processors for traditional 

HPC tasks.  Three separate analyses are performed.  In Section II, a comparison of IEEE-standard floating-

point performance of FPGAs to processors is presented.  Section III considers performance enhancements 

gained by using custom floating-point formats in hardware.  For certain applications the flexibility of custom 

hardware permits alternative algorithms to be employed, better leveraging the strengths of FPGAs through 

all-integer implementations.  The performance for one representative application, Mersenne prime 

identification, is discussed in Section IV.  Based on the results of these analyses, Section V discusses the 

conclusions drawn. 

 

II.  IEEE STANDARD FLOATING-POINT COMPARISON 

Many common HPC tasks utilize double precision floating-point arithmetic for applications such as weather 

modeling, weapons simulation, and computational fluid dynamics.  Traditional processors, where the 

architecture has fixed the data path’s width at 32 or 64-bits, provide no incentive to explore reduced 

precision formats. 

While FPGAs permit data path width customization, some in the HPC community are loath to utilize a 
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nonstandard format owing to verification and portability difficulties.  By standardizing data formats across 

different platforms, applications can be verified against known, golden results by a simple comparison of the 

numerical results.  Many applications also require the full dynamic range of the double precision format to 

ensure numeric stability.  Furthermore, standard formats ease portability of software across different 

architectures.  This principle is at the heart of the Top500 List of fastest supercomputers [15], where ranked 

machines must exactly reproduce valid results when running the LINPACK benchmarks.  

 

A. Present Day Cost-Performance Comparison 

 Owing to the prevalence of IEEE standard floating-point in a wide range of applications, several 

researchers have designed IEEE 754 compliant floating-point accelerator cores constructed out of the Xilinx 

Virtex-II Pro FPGA’s configurable logic and dedicated integer multipliers [16-18].  Dou et al published one 

of the highest performance benchmarks of 15.6 GFLOPS by placing 39 floating-point processing elements 

on a theoretical Xilinx XC2VP125 FPGA [19].  Interpolating their results for the largest production Xilinx 

Virtex-II Pro device, the XC2VP100, produces 12.4 GFLOPS, compared to the peak 6.4 GFLOPS achievable 

for a 3.2 GHz Intel Pentium processor.  Assuming that the Pentium can sustain 50% of its peak, the FPGA 

outperforms the processor by a factor of four for matrix multiplication.  

 Dou et al’s design is comprised of a linear array of MAC elements, linked to a host processor providing 

memory access.  This architecture enables high computational density by simplifying routing and control, at 

the requirement of a host controller.  Since the results of Dou et al are superior to other published results, and 

even Xilinx’s floating-point cores, they are taken as a conservative upper limit on FPGA’s double precision 

floating-point performance.  Performance in any deployed system would be lower owing the addition of 

interface logic and the reduced frequency caused by routing densely packed designs.  

 Table I below extrapolates Dou et al’s performance results for other FPGA device families.  Given the 

similar configurable logic architectures between the different Xilinx families, it has been assumed that Dou 

et al’s requirements of 1,419 logic slices and nine dedicated multipliers holds for all families.  While the slice 

requirements may be less for the Virtex 4 family, owing to the inclusion of a MAC function with the 

dedicated multipliers, as all considered Virtex 4 implementations were multiplier limited the over estimate in 

required slices do not affect the results.  The clock frequency has been scaled by a factor obtained by 

averaging the performance differential of Xilinx’s double precision floating-point multiplier and adder cores 

[20] across the different families. 

 For comparison purposes several commercial processors have been included in the list. Sony’s Cell 

processor powers the PlayStation 3 but was designed as a broadband media engine.  The Cell features a PPC 

processing core along with eight independent processing cores sharing the same die.  Intel’s Pentium D 920 

is a high-performance dual-core design.  As the presented prices are merely for device cost, ignoring all 

required peripherals, data for the System X supercomputing cluster [21] has been included.  The peak 

performance for each processor was reduced by 50%, taking into account compiler and system inefficiencies, 
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permitting a more fair comparison as FPGAs designs typically sustain a much higher percentage of their 

peak performance than processors.  This 50% performance penalty is in line with the sustained performance 

seen in the Top500 List’s LINPACK benchmark. In the table FPGAs are assumed to sustain their peak 

performance.   

 
 

 Table I. Double Precision Floating-Point Multiply Accumulate Cost-Performance 
Device Speed 

(MHz) 
GFLOPS Device Cost $ / GFLOPS 

Virtex 4 FPGA     

XC4VLX200-11 280 5.6 $7,010 $1,250 

XC4VSX35-11 280 5.6 $542 $97 

Virtex-II Pro FPGA     

XC2VP100-7 200 12.4 $9,610 $775 

XC2VP100-6 180 11.2 $6,860 $613 

XC2VP70-6 180 8.3 $2,780 $334 

XC2VP30-6 180 3.2 $781 $244 

Spartan 3 FPGA     

XC3S5000-5 140 3.1 $242 $78 

XC3S4000-5 140 2.8 $164 $59 

Processors  50% peak   

Pentium 630 3000 3 $167 $56 

Pentium D 920 2800 x 2 5.6 $203 $36 

Cell Processor 3200 x 9 10 [22] $230 [23] $23 

HPC  Rmax System Cost  

System X 2300 x 2200 12250  $5.8 M [24] $473 

 
 As can be seen from the table, FPGA double precision floating-point performance is noticeably higher 

than for traditional Intel processors; however, when considering the cost of this performance processors fair 

better, with the worst processor beating the best FPGA.  In particular, Sony’s Cell processor is more than two 

times cheaper per GFLOPS than the best FPGA.  The results indicate that the current generation of larger 

FPGAs, such the XC2VP100 and XC4VLX200 found on many FPGA-augmented HPC clusters, are far from 

cost competitive with the current generation of processors for double precision floating-point tasks typical of 

supercomputing applications. 

 With one exception, all costs in Table I only cover the price of the device and do not include other 

components (motherboard, memory, network, etc.) that are necessary to produce a functioning 

supercomputer.  These additional costs are non-negligible and, while the FPGA accelerators would also incur 

additional costs for circuit board and components, it is likely that the cost of components to create a 

functioning HPC node from a processor, even factoring in economies of scale, would be larger than for 

creating an accelerator plug-in from an FPGA.  To place these additional costs in perspective the cost-

performance for Virginia Tech’s System X supercomputing cluster has been included.  Constructed from 

1,100 dual core Apple XServe nodes, the supercomputer, including the cost of all components, cost $473 per 

GFLOPS.  Several of the larger FPGAs cost more per GFLOPS even without the memory, boards, and 
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assembly required to create a functional accelerator. 

 As the dedicated integer multipliers included by Xilinx, the largest configurable logic manufacturer, are 

only 18-bits wide, several multipliers must be combined to produce the 52-bit multiplication needed for 

double-precision floating-point multiplication.  For Xilinx’s double precision floating-point core 16 of these 

18-bit multipliers are required [20] for each multiplier, while for the Dou et al design only nine are needed.  

For many FPGA device families the high multiplier requirement limits the number of floating-point 

multipliers that may be placed on the device.  For example, while 31 of Dou’s MAC units may be placed on 

an XC2VP100, the largest Virtex-II Pro device, the lack of sufficient dedicated multipliers permits only 10 to 

be placed on the largest Xilinx FPGA, an XC4VLX200.  If this device was solely used as a matrix 

multiplication accelerator, as in Dou’s work, over 80% of the device would be unused.  Of course this idle 

configurable logic could be used to implement additional multipliers, at a significant performance penalty.  

And while the device could implement many more floating-point adders, most HPC-related tasks, such as 

matrix multiplication, dot product, and Fast Fourier Transforms (FFTs), make heavy use of multiplication 

and would not benefit from a sea of adders. 

 

B. Extrapolated Cost-Performance Comparison 

While the larger FPGA devices that are prevalent in computational accelerators do not provide a cost 

benefit for the double precision floating-point calculations required by the HPC community, historical trends 

[25] suggest that FPGA performance is improving at a rate faster than that of processors.  The question is 

then asked, when, if ever, will FPGAs overtake processors in cost-performance? 

Several assumptions are made in the following analysis.  As has been noted by some, the cost of the largest 

cutting-edge FPGA remains roughly constant over time, while performance and size improves.  A first-order 

estimate of $8,000 has been made for the cost of the largest and newest FPGA – an estimate supported by the 

cost of the largest Virtex-II Pro and Virtex 4 devices.  Furthermore, it is assumed that the cost of a processor 

remains constant at $500 over time as well.  While these estimates are somewhat misleading, as these costs 

certainly do vary over time, the variability in the cost of computing devices between generations is much less 

than the increase in performance.  The comparison further assumes, as before, that processors can sustain 

50% of their peak floating-point performance while FPGAs sustain 100%.  Whenever possible, estimates 

were rounded to favor FPGAs. 

Two sources of data were used for performance extrapolation to increase the validity of the results.  The 

work of Dou et al [19], representing the fastest double precision floating-point MAC design, was 

extrapolated to the largest parts in several Xilinx device families.  Additional data was obtained by 

extrapolating the results of Underwood’s historical analysis [25] to include the Virtex 4 family. The initial 

results are shown below in Figure 1(a) for the Underwood data and Figure 1(b) for Dou et al.  
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Figure 1: Extrapolated double precision floating-point MAC cost-performance for: (a) Underwood 
design and (b) Dou et al design. 
 

As apparent from the graphs, there are significant differences between the results of Dou and Underwood.  

An additional data point exists for the Underwood graph as his work included results for the Virtex E 

FPGAs.  The design of Dou et al could not be extrapolated to this device as the Virtex E has no dedicated 
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multipliers and their design requires nine.  The Dou et al design is higher performance and smaller, in terms 

of slices, than Underwood’s design.  In both graphs the latest data point, representing the largest Virtex 4 

device, displays worse cost-performance than the previous generation of devices.  This is due to the shortage 

of dedicated multipliers on the larger Virtex 4 devices.  The Virtex 4 architecture is comprised of three sub-

families: the LX, SX, and FX.  The Virtex 4 sub-family with the largest devices, by far, is the LX and it is 

these devices that are found in FPGA-augmented HPC nodes.  However, the LX sub-family is focused on 

logic density, trading most of the dedicated multipliers found in the smaller SX sub-family for configurable 

logic.  This significantly reduces the floating-point multiplication performance of the larger Virtex 4 devices.   

As the graphs demonstrate, if this trend towards logic-centric large FPGAs continues, it is unlikely that the 

largest FPGAs will be cost effective compared to processors anytime soon, if ever.  The largest announced 

next-generation Virtex 5 device, the XC5VLX330, includes 192 dedicated multipliers, compared with only 

96 that are present in the largest Virtex 4 device.  Furthermore, the Virtex 5 multipliers are 25-bits by 18-bits 

wide, better supporting floating-point calculations.  This multiplier design should reduce the number of 

dedicated multipliers required to construct a double precision floating-point multiplier from the present nine 

multipliers to four, eliminating the multiplier bottleneck that harms performance in the Virtex 4s. 

As preliminary Virtex 5 data suggests that the relatively poor floating-point performance of the Virtex 4 is 

an aberration and not indicative of a trend in FPGA architectures, it seems reasonable to reconsider the 

results excluding the Virtex 4 data points.  Figure 2, below, excludes these potential misleading data points 

and reconstructs the trend lines. 

When the Virtex 4 data is ignored, the cost-performance of FPGAs for double precision floating-point 

matrix multiplication improves at a rate greater than that for processors.  While there is always a danger from 

drawing conclusions from a small data set, both the Dou et al and Underwood design results point to a 

crossover point sometime around 2009 to 2012.  At this point in time the largest FPGA devices, like those 

typically found in commercial FPGA-augmented HPC clusters, will be cost effective, compared to 

processors, for double precision floating-point calculations. 
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Figure 2: Extrapolated double precision floating-point MAC cost-performance excluding Virtex 4 

data for: (a) Underwood design and (b) Dou et al design. 
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III.  NONSTANDARD FLOATING-POINT COMPARISON 

The use of IEEE standard floating-point data formats in hardware implementations prevents the user from 

leveraging an FPGA’s fine-grained configurability, effectively reducing an FPGA to a collection of floating-

point units with configurable interconnect.  Seeing the advantages of customizing the data format to fit the 

problem, several authors have constructed nonstandard floating-point units. 

One of the earlier projects demonstrated a 23x speedup on a 2-D FFT through the use of a custom 18-bit 

floating-point format [26].  More recent work has focused on parameterizible libraries of floating-point units 

that can be tailored to the task at hand [27-29].  By using a custom floating-point format sized to match the 

width’s of the FPGA’s internal integer multipliers, a speedup of 44 was achieved for a hydrodynamics 

simulation [30] using  four large FPGAs. 

Nakasato and Hamada’s 38 GFLOPS of performance is impressive, even from a cost-performance 

standpoint. For the cost of their PROGRAPE-3 board, estimated at $15,000, it is likely that a 15-node 

processor cluster could be constructed producing 196 single precision peak GFLOPS. Even in the unlikely 

scenario that this cluster could sustain the same 10% of peak performance obtained by Nakasato and 

Hamada’s for their software implementation, the PROGRAPE-3 design would still achieve a 2x speedup. 

As in many FPGA to CPU comparisons, it is likely that the analysis unfairly favors the FPGA solution. 

Hardware implementations require specialized skills in digital design and vendor-specific tool flows. 

Development time and costs are significantly higher than for software.  Many comparisons in literature spend 

significantly more time optimizing the hardware implementations than they do optimizing their software 

implementations.  Previous research has demonstrated significant compiler inefficiency for common HPC 

functions [31].  For the DGEMM matrix multiplication function, a hand-coded version outperformed the 

compiler by greater than eight times.  It appears that likely that Nakasato and Hamada’s speedup would be 

significantly reduced, and perhaps eliminated on a cost-performance basis, if equal effort was applied to 

optimizing the software at the assembly level.  To permit their design to be more cost-competitive, even 

against efficient software implementations, smaller FPGAs could be used.  As evident from Table I, FPGA 

cost declines sharply as the size of the device decreases. 

 

IV.  ALL-INTEGER IMPLEMENTATIONS 

The strength of configurable logic stems from the ability to customize a hardware solution to a specific 

problem at the bit level.  The previously presented works all implemented coarse-grained floating-point units 

inside an FPGA for a wide range of HPC applications.  For certain applications the full flexibility of 

configurable logic can be leveraged to create a custom solution to a specific problem, utilizing data types that 

play to the FPGA’s strengths – integer arithmetic. 

One such application can be found in the Great Internet Mersenne Prime Search (GIMPS) [32].  The 

software used by GIMPS relies heavily on double precision floating-point FFTs.  Through a careful analysis 

of the problem, an all-integer solution is possible that improves FPGA performance by a factor of two. 
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The largest known prime numbers are Mersenne primes – prime numbers of the form 2q-1, where q is also 

prime.  The distributed computing project GIMPS has been created to identify large Mersenne primes and a 

reward of $100,000 has been issued for the first person to identify a prime number with greater than 10 

million digits.  The algorithm used by GIMPS, the Lucas-Lehmer test, is iterative, repeatedly performing 

modular squaring.  As the numbers being squared are quite large (tens of millions of bits), specialized 

multiplication techniques are used. 

One of the most efficient multiplication algorithms for large integers utilizes the FFT, treating the number 

being squared as a long sequence of smaller numbers.  Instead of one, 24 million bit number, the algorithm 

may, for example, create a 3 million element sequence of 8-bit numbers.  The linear convolution of this 

sequence with itself performs the squaring. As linear convolution in the time domain is equivalent to 

multiplication in the frequency domain, the FFT of the sequence is taken and the resulting frequency domain 

sequence is squared element-wise before being brought back into the time domain.  Floating-point arithmetic 

is used to meet the strict precision requirements across the time and frequency domains.  The software used 

by GIMPS has been optimized at the assembly level for maximum performance on Pentium processors, 

making this application an effective benchmark of relative processor floating-point performance.  

Previous work focused on an FPGA hardware implementation of the GIMPS algorithm to compare FPGA 

and processor floating-point performance [33].  To leverage the advantages of a configurable architecture, 

multiple FFT implementations were considered, including floating-point and all-integer designs.  The results 

of this comparison indicated that an all-integer FFT, specifically an irrational base discrete weighted 

transform, could outperform a floating-point implementation by a factor of two.  

The final GIMPS accelerator, designed for the largest Virtex-II Pro FPGA, consisted of two 8-point FFT 

units fed by reorder caches constructed from the internal memories.  To prevent a memory bottleneck, the 

design assumed four independent banks of DDR SDRAM.  The final design could be clocked at 80 MHz and 

used 86% of the dedicated multipliers and 70% of the configurable logic. 

In spite of the unique all-integer algorithmic approach, the customized FPGA implementation only 

achieved a speed-up of 1.76 compared to a 3.4 GHz Pentium 4 processor.  Amdahl’s Law limited the 

FPGA’s performance due to the serial nature of certain steps in the algorithm.  A slightly reworked 

implementation, designed as an FFT accelerator with all serial functions implemented on an attached 

processor, could achieve a speed-up of 2.6 compared to a processor alone under the reasonable assumption 

that communication could be overlapped with computation on the FPGA. 

 

V.   CONCLUSION 

When comparing HPC architectures, many factors must be weighed, including memory and I/O 

bandwidth, communication latencies, and peak and sustained performance.  However, as the recent 

focus on power consumption and commodity processor clusters demonstrates, cost-performance is 

of paramount importance.  In order for FPGAs to gain acceptance within the general HPC community they 
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must be cost-competitive with traditional processors for the floating-point arithmetic typical in 

supercomputing applications.  The analysis of the cost-performance of various current generation FPGAs 

revealed that only the lower end devices were cost-competitive with processors for double precision floating-

point matrix multiplications.  The limited capabilities of these lower end parts make them unattractive for 

inclusion in HPC nodes, with industry favoring the largest FPGA devices.  An extrapolation of the double 

precision floating-point cost-performance of these larger devices using two different floating-point designs 

suggests that the largest FPGAs will not be cost-competitive with processors until the 2009-2012 timeframe.  

However, FPGA floating-point performance is very sensitive to the mix of dedicated arithmetic units in the 

architecture and for this cost-performance cross point to be achieved in the suggested timeframe requires 

architectures with significant dedicated multipliers.  For non-IEEE standard floating-point formats, current 

generation FPGAs fair much better, making FPGAs cost-competitive with processors.  While completely 

integer implementations of floating-point applications permit the FPGA to fully leverage its strengths, for at 

least one such application the cost-performance of an all-integer implementation was significantly worse than 

a processor.  This suggests that, as with traditional integer applications, only certain classes of problems will 

experience significant performance improvements with hardware implementation. 
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