
Dagstuhl Seminar 06161

Context Dependent Analysis of BioAmbients

Henrik Pilegaard, Flemming Nielson, Hanne Riis Nielson 1

Informatics and Mathematical Modelling
Technical University of Denmark

Abstract

BioAmbients is a derivative of mobile ambients that has shown promise of describing
interesting features of the behaviour of biological systems. The technical contribu-
tion of this paper is to extend the Flow Logic approach to static analysis with a
couple of new techniques in order to give precise information about the behaviour of
systems written in BioAmbients. Applying the development to a simple model of a
cell releasing nutrients from food compunds we illustrate how the proposed analysis
does indeed improve on previous efforts.

Key words: Static analysis, abstract interpretation, BioAmbients

1 Introduction

In systems biology the subject of study is the systemic behaviour of networks
of molecular and cellular entities. For any group of such entities the networks
that arise and their properties depend entirely on the interaction capabilities
of the individual members; whether a cell is able to release nutrients from food
compounds depends entirely on the interactions that may go on between the
constituents of the food compounds and those of the cell.

Given the amount of information to be considered formal models are likely
required in order to make qualified statements about the possible outcome.
The BioAmbients calculus [17,18], described in Section 2, is a sibling to the
ambient calculus [2] designed to model such biological systems. This calculus
has been used successfully to model various systems [17,18,10], and in this
context some biological properties, such as nutrient release, correspond to
reachability properties of the model.

Program analysis technology [8] is generally able to provide interesting
information about such properties. Previous efforts that approximate the
spatial structure of BioAmbient processes [10,15] have shown that this is the
case for models of biological systems also.

1 Email:{hepi,nielson,riis}@imm.dtu.dk

Dagstuhl Seminar Proceedings 06161
Simulation and Verification of Dynamic Systems
http://drops.dagstuhl.de/opus/volltexte/2006/709

Pilegaard, Nielson, and Nielson

In this paper we describe an analysis that incorporates novel ingredients
that facilitate increased precision compared to the previous efforts. The analy-
sis keeps track of the contents of ambients and their abilities for participating
in various interactions and, thus, shares many characteristics with previous
analyses of mobile ambients [9,10,15,14,4].

First, the control flow analysis, described in Section 4, is context depen-

dent , i.e. it approximates the contexts of the ambients thereby being able to
differentiate between interactions that are possible in different settings. We
have found that recording the two enclosing ambients suffices for analysing
fixed-structure cellular models with simple intruders [16]. This strikes a bal-
ance between the classical approaches that completely ignore context [9,10]
and the more complex shape analysis of [13].

Second, auxiliary analyses, described in Section 3, capture important causal-

ity information for the capabilities; again this adds precision compared to
[9,10] while avoiding some of the complexities of [13]. There are three ingre-
dients in this:

• We follow [15] and keep track of the capabilities that may occur in paral-
lel processes and hence may interact with one another; this ensures that
parallelism and choice are analysed differently.

• For each capability we record the free variables that may occur in parallel
processes and hence may be simultaneously live; thus only relevant names
from the statically active name space are tracked when movement capabil-
ities execute.

• For each capability and ambient we account for the free variables that may
be in scope; this ensures that only relevant new names in the statically
active name space are tracked when communication capabilities execute.

The analysis has been implemented using the Succinct Solver [11,12]; hence
the figures reported in this paper have all been automatically produced.

2 BioAmbients

The BioAmbients [18,17,1] preserve the notion of ambients as bounded mobile
sites of activity from Mobile Ambients [2], thereby allowing the biological
concept of compartments to be modelled in an intuitive manner. Contrary to
mobile ambients, however, bioambients are cast as nameless entities - the roles
of which may be indicated by annotations. Both communication and ambient
interaction are facilitated by having capability/co-capability pairs react with
each other as in [5,14]. As a consequence all reactions are synchronous; the
process exposing the capability and the process exposing the corresponding
co-capability must agree on a reaction for it to happen. Such an agreement
can be reached only if the two parties expose compatible capabilities and share
the same name.

The set of control structures extends those traditionally studied for Mobile

2

Pilegaard, Nielson, and Nielson

P ::= (n)P binding box for the constant n

| [P]µ ambient P with the role µ

| P | P ′ parallel processes

|
∑

i∈I M ℓi

i .Pi labelled non-deterministic external choice

| rec X. P recursive process (X = P)

| X process identifier

M ::= enter n | accept n enter movement

| exit n | expel n exit movement

| merge– n | merge+ n merge movement

| n!{m} | n?{p} local communication binding the variable p

| n !{m} | n ?̂{p} parent to child communication binding the variable p

| n !̂{m} | n ?{p} child to parent communication binding the variable p

| n#!{m} | n#?{p} sibling communication binding the variable p

Fig. 1. Syntax of BioAmbients.

C ⊢ P
C ⊢ (n)P

if ⌊n⌋ ∈ C
C ⊢ P

C ⊢ [P]µ
if fpi(P) = ∅

C ⊢Γ∪{X} P

C ⊢ rec X.P
if X ∈ fpi(P)

C ⊢ P1 C ⊢ P2

C ⊢ P1|P2 C ⊢ X

∀i ∈ I : C ⊢ Pi

C ⊢
∑

i∈I M ℓi

i .Pi

if ∀i ∈ I : ⌊bn(Mi)⌋ ∩ C = ∅

Fig. 2. Well-formedness of processes C ⊢Γ P .

Ambients with non-deterministic (external) choice and a general recursion
construct in the manner of CCS [6].

2.1 Syntax

The full syntax of BioAmbients is defined in Fig. 1, where we write P ∈
Proc for processes and M for capabilities. We associate each ambient with
a role µ ∈ Role and annotate the ambient constructs accordingly. Roles
(or identities) have no semantic significance but are useful annotations when
modelling actual biosystems and will also prove valuable when we define our
analysis. Also we associate each capability with a label ℓ ∈ Lab; these have
no semantic significance either but are useful as pointers into the process.

We write n, m, p for names. Names are subject to α-renaming and not
sufficient for carrying the information recorded by the analysis. Therefore we
associate each name n with a corresponding canonical name ⌊n⌋ ∈ Name
that is invariant under α-renaming. We shall make a distinction between
names introduced by (n) P , which we consider to be constants (⌊n⌋ ∈ C),
and names introduced by communication capabilities, e.g. the p in n?{p},
which we consider to be variables (⌊p⌋ ∈ V). We require the sets of constants
and variables to be mutually disjoint so that we are dealing with a finite set
Name = C ⊎V of canonical names; we write ν for elements of this set.

Programs are processes P⋆ that satisfy the predicate PRGC(P⋆) defined as

3

Pilegaard, Nielson, and Nielson

the conjunction of the following conditions (explained further below):

• P⋆ has no free process identifiers: fpi(P⋆) = ∅.

• P⋆ has free names only from C: ⌊fn(P⋆)⌋ ⊆ C

• P⋆ is well-formed with respect to C: C ⊢∅ P⋆.

Here we write fn(P) for the free names of P and fpi(P) for the free process

identifiers of P . As for names we associate each process identifier X with
a corresponding canonical process identifier ⌊X⌋ that is invariant under α-
renaming. For convenience the canonicalisation operation ⌊·⌋ is extended in a
point-wise manner to capabilities, sets of names and sets of process identifiers.

The associated well-formedness predicate C ⊢ P , defined in Fig. 2, enforces
the implicit typing requirements imposed by the division of Name; here we
write bn(M) for the bound names of capability M , e.g. bn(n?{p}) = {p}
whereas bn(n!{m}) = {}. The predicate ensures that each process identifier is
actually used recursively in the process that it defines, but never inside a sub-
ambient as this has no biological interpretation; this simplifies the technical
development.

We shall write P [m/n] and P [Q/X] for substitution of names and process
identifiers respectively - both cases subject to α-renaming of bound names and
process identifiers. We require that α-renaming be disciplined such that canon-
ical identities are preserved when the syntactical representations changes.

Example 2.1 Our running example is the following program Peat; as we shall explain
later it models how food particles may either be ignored, digested, or secreted by the cell:

[rec Z. expel rjℓ1 . Z

| [rec Y. enter acℓ2 . Y + exit rjℓ3 . Y + reâ ?{rl}ℓ4 . expel rlℓ5 . Y

| [exit RLℓ6. 0]nutrient]food

| [rec S. accept acℓ7 . S + expel rjℓ8 . S + rea !{RL}ℓ9. S]cell]system

The well-formedness condition is obviously satisfied for C = {⌊rj⌋, ⌊ac⌋, ⌊rea⌋, ⌊RL⌋}.

2.2 Semantics

The semantics is a standard reaction semantics. The structural congruence
relation, ≡, is defined for processes in general. It is the least congruence
induced by the axioms of Fig. 3. The reaction relation, →, is defined only
for programs. It is shown in Fig. 4. Note that the semantics of the recursion
construct is given as a congruence.

In the sequel we shall write P −→⋆ P ′ → Q if P → P1 → · · · → Pk for
some P1, . . . , Pk satisfying Pk−1 = P ′ and Pk = Q.

Example 2.2 The semantics of the example program Peat is illustrated in Fig. 5. The
initial configuration in frame 1 is pointed out by the fat arrow and here the tree structure
reflects a scenario where cell and food are siblings inside system and nutrient is a sub-
ambient of food. In this configuration (ℓ3, ℓ1) can fire to move food out of system and
obtain the stuck configuration of frame 2. Alternatively, (ℓ2, ℓ7) can fire to move food into

4

Pilegaard, Nielson, and Nielson

Alpha-renaming of bound names and process identifiers:

P ≡ Q if P may be α-renamed to Q (preserving canonicity)

Reordering of parallel processes: Scope rules for name bindings:

P | P ′ ≡ P ′ | P

(P | P ′) | P ′′ ≡ P | (P ′ | P ′′)

P | 0 ≡ P

(n)0 ≡ 0

(n1)(n2)P ≡ (n2)(n1)P

(n)(P | P ′) ≡ ((n)P) | P ′ if n /∈ fn(P ′)

(n)([P]µ) ≡ [(n)P]µRecursion:

rec X. P ≡ P [rec X. P/X]

Reordering of sum processes:

P1 + . . . + Pi + Pi+1 + . . . + Pn ≡ P1 + . . . + Pi+1 + Pi + . . . + Pn if n > 1

Fig. 3. Axioms for structural congruence P ≡ Q.

Movement of ambients:

[(enter nℓ1 . P + P ′) | P ′′]µ1 | [(accept nℓ2 . Q + Q′) | Q′′]µ2 → [[P | P ′′]µ1 | Q | Q′′]µ2

[[(exit nℓ1 . P + P ′) | P ′′]µ1 | (expel nℓ2 . Q + Q′) | Q′′]µ2 → [P | P ′′]µ1 | [Q | Q′′]µ2

[(merge– nℓ1 . P + P ′) | P ′′]µ1 | [(merge+ nℓ2 . Q + Q′) | Q′′]µ2 → [P | P ′′ | Q | Q′′]µ2

Communication between ambients:

(n!{m}ℓ1 . P + P ′) | (n?{p}ℓ2. Q + Q′)→P | Q[m/p]

(n !{m}ℓ1. P + P ′) | [(n ?̂{p}ℓ2. Q + Q′) | Q′′]µ →P | [Q[m/p] | Q′′]µ

[(n !̂{m}ℓ1. P + P ′) | P ′′]µ | (n ?{p}ℓ2. Q + Q′)→ [P | P ′′]µ | Q[m/p]

[(n#!{m}ℓ1. P + P ′) | P ′′]µ1 | [(n#?{p}ℓ2 . Q + Q′) | Q′′]µ2 → [P | P ′′]µ1 | [Q[m/p] | Q′′]µ2

Execution in context:

P → Q

(n)P → (n)Q

P → Q

[P]µ → [Q]µ
P → Q

P | R → Q | R

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

Fig. 4. Transition relation: P → Q.

1

2

3

4

6

5

7

8

system

cell food

nutrient

system

cell

food

nutrient

system

cell

food

nutrient

system

cell

food

nutrient

system

cell

foodnutrient

system

cell food

nutrient

system

cell

food

nutrient

system

cell

foodnutrient

rl = RL

(ℓ6, ℓ5)

(ℓ3, ℓ8)

(ℓ3, ℓ8)

(ℓ2, ℓ7)

(ℓ2, ℓ7)

(ℓ3, ℓ1)

(ℓ3, ℓ1) (ℓ9, ℓ4)(ℓ9, ℓ4)

rl = RL

Fig. 5. The semantics of the example Peat.

cell (frame 3). Then (ℓ3, ℓ8) can fire to move food back out of cell (frame 1 again), or (ℓ1, ℓ4)
can fire to bind the variable rl to the constant RL (frame 4). After that only (ℓ6, ℓ5) can fire
to move nutrient out of food (frame 5). Then only (ℓ3, ℓ8) can fire to move food out of cell
(frame 6). From here (ℓ2, ℓ7) may fire to move food back into cell (frame 5). Alternatively,

5

Pilegaard, Nielson, and Nielson

capsΓ′(P)

parP⋆
︷ ︸︸ ︷

parΓ′,∆′(P)

nrelP⋆
︷ ︸︸ ︷

nparΓ,Γ′,∆(P) nfolΓ,∆(P)

fvΓ(P)

Fig. 6. Induced hierarchy of notions.

either (ℓ3, ℓ1) can move food out of system (frame 7) or (ℓ1, ℓ4) can fire to bind rl to RL
(frame 8). Both of the resulting configurations are stuck.

3 Establishing Causality Information

The context dependent analysis to be defined in Section 4 gains much precis-
sion using the information from three auxiliary analyses.

We use a hierarchy of notions, illustrated in Fig. 6, to define these analyses.
When defining the functions of this hierarchy (as well as the remainder of the
analysis) we take the approach that is inherent in Flow Logic based program
analysis [7]: In order to study properties of a process P we analyse the static
snapshot given by the direct syntactical representation of P . However, we
carefully define the analyses such that the properties are “⊇-preserved” under
reduction and “=-preserved” under congruence and use this to establish the
semantical soundness. This ensures that the information learned from study-
ing P in P⋆ −→

⋆ P → Q is also valid for Q. Generally the subject of analysis
is a top-level program P⋆. The approach outlined then ensures that the infor-
mation learned from studying P⋆ is valid for any process P or Q related to P⋆

through a reduction path as shown above.

The indices Γ, Γ′, ∆ of the functions are then necessary because for the
purposes of the analysis our focus no longer is on a given process P , but
rather on all processes congruent to it; in particular, all processes obtained
from P by unfolding one or more recursions. Because some of the sub-processes
that we analyse will contain free process identifiers it is essential that only
appropriately indexed functions are applied to sub-expressions.

3.1 Parallel Capabilities Analysis

Given a process P the aim of the parallel capabilities analysis is to identify
the pairs of labelled capabilities that, from a syntactic point of view, may have
the possibility of engaging in a reaction. As in [15,3] we take advantage of the
fact that two capabilities only have the potential of engaging in reactions if
they occur in parallel processes.

The analysis will ignore the actual names occurring in the capabilities
(because even the canonical names are not preserved under reduction) and to

6

Pilegaard, Nielson, and Nielson

capsΓ′((n)P) = capsΓ′(P)

capsΓ′([P]µ) = capsΓ′(P)

capsΓ′(P1 | P2) = capsΓ′(P1) ∪ capsΓ′(P2)

capsΓ′(
∑

i∈I M ℓi

i .Pi) =
⋃

i∈I({⌈Mi⌉ℓi} ∪ capsΓ′(Pi))

capsΓ′(rec X.P) = capsΓ′[X 7→∅](P)

capsΓ′(X) = Γ′(X)

Fig. 7. Capabilities capsΓ′(P) of processes P .

parΓ′,∆′((n)P) = parΓ′,∆′(P)

parΓ′,∆′([P]µ) = parΓ′,∆′(P)

parΓ′,∆′(P1 | P2) = parΓ′,∆′(P1) ∪ parΓ′,∆′(P2) ∪ crossΓ′(P1, P2)

parΓ′,∆′(
∑

i∈I M ℓi

i .Pi) =
⋃

i∈I parΓ′,∆′(Pi)

parΓ′,∆′(rec X.P) = parΓ′[X 7→capsΓ′[X 7→∅](P)],∆′[X 7→∅](P)

parΓ′,∆′(X) = ∆′(X)

crossΓ′(P, P ′) = (capsΓ′(P) × capsΓ′(P ′)) ∪ (capsΓ′(P ′) × capsΓ′(P))

Fig. 8. Definition of parΓ′,∆′(P).

reflect this we shall introduce the notion of a skeleton capability : ⌈M⌉ ∈ SCap
is obtained from M simply by replacing all names in M with the token “·”.

To obtain the parallel capabilities information we extract the set of labelled

skeleton capabilities occurring within a process. For this we use the function

capsΓ′ : Proc → P(SCap × Lab)

defined in Fig. 7. The index Γ′ constitutes a mapping that associates each
process identifier with a set of labelled skeleton capabilities.

The set of parallel capabilities can now be obtained using the function

parΓ′,∆′ : Proc → P((SCap × Lab) × (SCap × Lab))

defined in Fig. 8, which establishes a safe estimate of the set of pairs of labelled
skeleton capabilities that may have a chance of being active at the same time.
Here the index Γ′ is as above and the index ∆′ is a mapping that associates
each process identifier with a set of pairs of labelled skeleton capabilities. We
explain the interesting cases:

• For parallel composition the auxiliary operation cross is employed to record
as interaction candidates all members of the direct product of the sets of
capabilities from the two branches (obtained using caps).

• For non-deterministic choice no interaction candidates are recorded.

• For recursion constructs Γ′ is updated to associate the process identifier
used with the set of labelled capabilities of the process that it defines.

Lemma 3.1 (Correctness of the parallel capabilities analysis)

• If P ≡ P ′ then parΓ′,∆′(P) = parΓ′,∆′(P ′)

• If PRGC(P) and P →⋆ P ′ then par[],[](P) ⊇ par[],[](P
′)

7

Pilegaard, Nielson, and Nielson

⌈M⌉ℓ {⌈M ′⌉ℓ′ | parPeat
(⌈M⌉ℓ, ⌈M ′⌉ℓ′)}

·̂ ?{·}ℓ4 expel ·ℓ1 , accept ·ℓ7 , · !{·}ℓ9 , exit ·ℓ6 , expel ·ℓ8

expel ·ℓ5 expel ·ℓ1 , accept ·ℓ7 , · !{·}ℓ9 , exit ·ℓ6 , expel ·ℓ8

exit ·ℓ3 expel ·ℓ1 , accept ·ℓ7 , · !{·}ℓ9 , exit ·ℓ6 , expel ·ℓ8

enter ·ℓ2 expel ·ℓ1 , accept ·ℓ7 , · !{·}ℓ9 , exit ·ℓ6 , expel ·ℓ8

exit ·ℓ6 expel ·ℓ1 , accept ·ℓ7 , · !{·}ℓ9 , ·̂ ?{·}ℓ4 , expel ·ℓ5 , exit ·ℓ3 , enter ·ℓ2 , expel ·ℓ8

expel ·ℓ1 exit ·ℓ6 , enter ·ℓ2 , exit ·ℓ3 , expel ·ℓ5 , ·̂ ?{·}ℓ4 , expel ·ℓ8 , accept ·ℓ7 , · !{·}ℓ9

accept ·ℓ7 exit ·ℓ6 , enter ·ℓ2 , exit ·ℓ3 , expel ·ℓ5 , ·̂ ?{·}ℓ4 , expel ·ℓ1

· !{·}ℓ9 exit ·ℓ6 , enter ·ℓ2 , exit ·ℓ3 , expel ·ℓ5 , ·̂ ?{·}ℓ4 , expel ·ℓ1

expel ·ℓ8 exit ·ℓ6 , enter ·ℓ2 , exit ·ℓ3 , expel ·ℓ5 , ·̂ ?{·}ℓ4 , expel ·ℓ1

Fig. 9. The relation parPeat
.

fvΓ((n)P) = fvΓ(P)

fvΓ([P]µ) = fvΓ(P)

fvΓ(P1 | P2) = fvΓ(P1) ∪ fvΓ(P2)

fvΓ(
∑

i∈I M ℓi

i .Pi) =
⋃

i∈I((⌊fn(M ℓi

i)⌋ \ C) ∪ (⌊fvΓ(Pi)⌋\⌊bn(M ℓi

i)⌋))

fvΓ(rec X.P) = fvΓ[X 7→∅](P)

fvΓ(X) = Γ(X)

Fig. 10. Free variables fvΓ(P) of process P .

As we always analyse a program P⋆ we will define the abbreviation parP⋆
,

par[],[](P⋆), to denote the result of the parallel capabilities analysis. The re-
sult then shows the required “⊇-preservation” property in the sense that if
PRGC(P⋆) and P⋆ −→⋆ P then parP⋆

⊇ par[],[](P) meaning that the relation
parP⋆

correctly contains all potential redex-pairs occurring in P .

Example 3.2 For the running example Peat we obtain the relation parPeat
shown in Fig.

9. As must be expected, this constitutes a crude over-approximation of the interactions
that may take place.

3.2 Relevant Variables and Scope Analyses

Given a process, P , the aim of the relevant variables and scope analyses is
to establish a safe estimate of the variables whose binding contexts must be
updated when movement capabilities are executed and of the variable bindings
that must be propagated across the boundaries of ambients.

Rather than the simple free names function fn employed by the semantics to
determine when to apply the scope rules we shall use an appropriately indexed
function fvΓ, defined in Fig. 10, that collects free (canonical) variables rather
than free names 2 . The index Γ is a mapping that to each process identifier
associates a set of (free) canonical variables.

2 The latter is essential for Lemmas 5 and 6 to hold; actually it will be the case that
fv[](P) = ⌊fn(P)⌋ ∩ V.

8

Pilegaard, Nielson, and Nielson

nparΓ,Γ′,∆((n)P) = nparΓ,Γ′,∆(P) nparΓ,Γ′,∆([P]µ) = nparΓ,Γ′,∆(P)

nparΓ,Γ′,∆(X) = ∆(X) nparΓ,Γ′,∆(
∑

i∈I M ℓi

i .Pi) =
⋃

i∈I nparΓ,Γ′,∆(Pi)

nparΓ,Γ′,∆(rec X.P) = nparΓ[X 7→fvΓ[X 7→∅](P)],Γ′[X 7→capsΓ′[X 7→∅](P)],∆[X 7→∅](P)

nparΓ,Γ′,∆(P1 | P2) = nparΓ,Γ′,∆(P1) ∪ nparΓ,Γ′,∆(P2) ∪

{(⌈M⌉ℓ, ν) | (⌈M⌉ℓ ∈ capsΓ′(P1) ∧ ν ∈ ⌊fvΓ(P2)⌋)∨

(⌈M⌉ℓ ∈ capsΓ′(P2) ∧ ν ∈ ⌊fvΓ(P1)⌋)}

Fig. 11. Definition of nparΓ,Γ′,∆(P).

We then define the required information as the combination of two analyses
- one dealing with variables occurring in branches parallel to capabilities and
one dealing with variables whose scope extends over capabilities or ambients.

The relevant variables analysis is motivated by the observation that vari-
ables bound in a branch parallel to the execution of a particular movement
capability M remain active when M executes as e.g. p does when enter mℓ′

executes in [n#?{p}ℓ.Q | enter mℓ′ .P]µ . This requires us to extract informa-
tion that relates each of the occurring labelled skeleton capabilities to the set
of free variables occurring in parallel with it. This is done using the function

nparΓ,Γ′,∆ : Proc → P((SCap × Lab) × V)

that extracts the required information as shown in Fig. 11. Here Γ is the
index used in fv, Γ′ is that used in caps, and ∆ is a mapping that associates
each process identifier with a set of pairs of labelled skeleton capabilities and
canonical variables. We explain the interesting cases:

• For parallel composition the union of two direct products is recorded; the set
of all capabilities from the first sub-process (obtained using caps) paired with
the set of all free canonical variables from the second sub-process (obtained
using fv) and vice versa.

• Nothing is recorded for non-deterministic choice.

• For recursion constructs Γ′ and Γ are updated in order to correctly associate
the used process identifier with, respectively, the set of labelled capabilities
and the set of free variables of the process that it defines.

Lemma 3.3 (Correctness of the relevant variables analysis)

• If P ≡ P ′ then nparΓ,Γ′,∆(P) = nparΓ,Γ′,∆(P ′)

• If PRGC(P) and P →⋆ P ′ then npar[],[],[](P) ⊇ npar[],[],[](P
′)

The scope analysis is motivated by the observation that variables, whose
scope extend over a movement capability, may be required for the correct ex-
ecution of the continuation remaining once the movement capability has been
executed as e.g. p is when enter mℓ′ executes in [n#?{p}ℓ.enter mℓ′ .enter pℓ′′ .P]µ.
As the variables are of course only required if they are actually used we can
restrict our attention to the set of variables that occur free in the continuation
itself. So to account for this we extract information that relates the skeleton

9

Pilegaard, Nielson, and Nielson

nfolΓ,∆((n)P) = nfolΓ,∆(P)

nfolΓ,∆([P]µ) = ({µ} × ⌊fvΓ(P)⌋) ∪ nfolΓ,∆(P)

nfolΓ,∆(P1|P2) = nfolΓ,∆(P1) ∪ nfolΓ,∆(P2)

nfolΓ,∆(
∑

i∈I M ℓi

i .Pi) =
⋃

i∈I(({⌈Mi⌉ℓi} × ⌊fvΓ(Pi)⌋) ∪ nfolΓ,∆(Pi))

nfolΓ,∆(rec X.P) = nfolΓ[X 7→fvΓ[X 7→∅](P)],∆[X 7→∅](P)

nfolΓ,∆(X) = ∆(X)

Fig. 12. Definition of nfolΓ,∆(P).

of each occurring labelled capability to the set of free variables that occur
sequentially after it.

If the occurrence of such a free variable is nested inside an ambient then
the ambient is in the scope of the variable. In order to correctly treat variable
bindings it is necessary to take these hierarchical scopes into account. Fortu-
nately, as variables have static scope, this can be done simply by extracting
information that relates each ambient to the set of variables in scope. We do
all of this using the function

nfolΓ,∆ : Proc → P(((SCap × Lab) ∪ Role)× V)

that given a process extracts the required information as shown in Fig. 12.
Here Γ is the index used in fv and ∆ is a mapping that associates each process
identifier with a set of pairs of either labelled skeleton capabilities or ambient
roles and canonical names.

Lemma 3.4 (Correctness of the scope analysis)

• If P ≡ P ′ then nfolΓ,∆(P) = nfolΓ,∆(P ′)

• If PRGC(P) and P →⋆ P ′ then nfol[],[](P) ⊇ nfol[],[](P
′)

As we always analyse a program P⋆ we will define the abbreviation nrelP⋆
,

npar[],[],[](P⋆)∪nfol[],[](P⋆), to denote the combined result of the relevant names
and scope analyses. The two lemmas then show the “⊇-preservation” property
for the relevant variables and scope analysis as a whole. Thus, if PRGC(P⋆)
and P⋆ −→⋆ P then nrelP⋆

⊇ npar[],[],[](P) ∪ nfol[],[](P) meaning that the
relation nrelP⋆

(i) correctly relates each capability occurring in P to all names in P that
may be relevant to it, i.e. names that do not disappear because of non-
deterministic choice, and

(ii) correctly relates each ambient occurring in P to all names in scope.

Example 3.5 For the running example Peat we get

nrelPeat
= {(·̂ ?{·}ℓ4, ⌊rl⌋)}

which in fact indicates that no names are relevant to any ambient movement.

10

Pilegaard, Nielson, and Nielson

(I,R) |=µgpµpµ (n)P iff (I,R) |=µgpµpµ P

(I,R) |=µgpµpµ [P]µc iff µc ∈ I(µgp, µp, µ) ∧ (I,R) |=µpµµc P ∧ closurescp

(I,R) |=µgpµpµ P | P ′ iff (I,R) |=µgpµpµ P ∧ (I,R) |=µgpµpµ P ′

(I,R) |=µgpµpµ
∑

i∈I M ℓi

i .Pi iff ∀i ∈ I : (⌊Mi⌋ℓi ∈ I(µgp, µp, µ) ∧ (I,R) |=µgpµpµ Pi ∧ closure⌈M⌉i
)

(I,R) |=µgpµpµ rec X. P iff (I,R) |=µgpµpµ P

(I,R) |=µgpµpµ X iff true

Fig. 13. Analysis of processes: (I,R) |=µgpµpµ P .

4 Control Flow Analysis

Given the auxiliary analysis information we are now ready to define the actual
context dependent spatial analysis. The aim of this analysis is to determine
which ambients may turn up inside which other ambients during the execution
of a program P⋆.

In order to specify the required information the analysis establishes an
over-approximation of the potential ambient containments. Two types of in-
formation are extracted:

• A localised approximation of the contents of ambients:

I ⊆ Role× Role× Role× (Role ∪ (Cap × Lab))

Here u ∈ I(µgp, µp, µ) (standing for (µgp, µp, µ, u) ∈ I) means that µ may
contain u in the context of µgpµp.

• A localised approximation of the relevant name bindings:

R ⊆ Role× Role× Role× V × C

Here ν ′ ∈ R(µgp, µp, µ, ν) (i.e. (µgp, µp, µ, ν, ν ′) ∈ R) means that the canon-
ical variable ν may bind the canonical constant ν ′ in the context µgpµpµ.

4.1 Judgements

The judgements of the analysis take the form

(I,R) |=µgpµpµ P

where µgpµpµ denotes the initial context in which the syntactic construct P
occurs. These judgements express that when a sub-process P of P⋆ is enclosed
within an ambient identified by µ ∈ Role in the context µgpµp ∈ Role×Role
then I and R correctly capture the behaviour of P .

The Flow Logic specification of the analysis is given in Fig. 13. The spec-
ification refers to Figs. 14 and 16 for the specification of closure conditions
closure⌈M⌉ that mimics the semantics by modelling, within the limited pre-
cision of the analysis, the actual semantic prerequisites and consequences of
communication and ambient movement respectively, and finally to Fig. 17 for
the closure condition closurescp that propagates variable scopes into ambients
as appropriate. The clauses of the analysis specify a simple syntax directed
traversal of processes. Below we comment on these clauses.

11

Pilegaard, Nielson, and Nielson

The clause for name binding (n)P simply ensures that the sub-expression
P is traversed while ignoring n. Constants matter for the analysis only when
bound and are therefore handled only in the closure conditions.

The clause for ambient expressions [P]µc checks that whenever a child
ambient µc is encountered during the traversal the I component records the
hierarchy position of µc appropriately (µc ∈ I(µgp, µp, µ)). The clause also
ensures that sub-expressions of µc are traversed in the updated context µpµµc

((I,R) |=µpµµc P). Finally, in order to take appropriate care of the variables
in scope, the clause introduces the closure condition closurescp.

The clauses for parallel P1|P2 composition ensures the traversal of the sub-
expressions P1 and P2. Issues regarding scopes etc. matter only for the closure
conditions and are handled there using information from parP⋆

and nrelP⋆
.

The clause for non-deterministic choice
∑

i∈I M ℓi

i .Pi ensures that the hi-

erarchy position of all labelled capabilities M ℓi

i encountered during traversal
are recorded with a canonical entry in I (⌊Mi⌋

ℓi ∈ I(µgp, µp, µ)). Also, the
clause introduces a closure condition closure⌈Mi⌉ corresponding to the skeleton
of each capability Mi. Finally, traversal of all sub-expressions Pi is ensured.

The clause for recursion constructs rec X. P only ensures traversal of the
subexpression P . Due to the well-formedness condition it is safe to assume
that it suffices to analyse P in the context where it is first defined. For the
same reason we can ignore process identifiers X.

4.2 Closure Conditions

The closure conditions (Figs. 14, 16, 17) mimic the semantics to ensure that
I and R reflect the dynamic behaviour of the analysed program, P⋆. There is
one closure condition for each type of capability, but the ones corresponding
to co-capabilities are trivial and included only for completeness.

We shall define and explain the closure conditions in the following. Before
we go on to do this, however, another useful relation

〈R〉 ⊆ Role× Role× Role× Name× C

needs to be defined:

∀µgp, µp, µ : R(µgp, µp, µ) ⊆ 〈R〉(µgp, µp, µ) ∧

∀µgp, µp, µ, µc, ν : (µgp, µp, µ, µc) ∈ I ∧ ν ∈ C ⇒ 〈R〉(µp, µ, µc, ν, ν)

It binds constants to themselves in all realisable contexts but binds variables
to values only in the contexts where the bindings may actually be in scope.

The closure conditions for communication govern the dynamics of vari-
able bindings. These conditions are very similar; hence we shall explain only
the one for local communication and define the the others in Fig. 14

The essence of the closure condition is shown in Fig. 15a where the shape
of the tree corresponds directly to the requirements that have to be matched
by the preconditions of the clause. The dotted arrow, which signifies that all

12

Pilegaard, Nielson, and Nielson

closure·!{·} = ∀µgp, µp, µ, νm, νp, ν1, ν2, ℓ1, ℓ2 :

ν1!{νm}ℓ1 ∈ I(µgp, µp, µ) ∧ ν2?{νp}ℓ2 ∈ I(µgp, µp, µ) ∧ parP⋆
(·!{·}ℓ1 , ·?{·}ℓ2) ∧

〈R〉(µgp, µp, µ, ν1) ∩ 〈R〉(µgp, µp, µ, ν2) 6= ∅ ⇒ 〈R〉(µgp, µp, µ, νm) ⊆ R(µgp, µp, µ, νp)

closure·?{·} = true

closure· !{·} = ∀µgp, µp, µ, µ1, νm, νp, ν1, ν2, ℓ1, ℓ2 :

ν1 !{νm}ℓ1 ∈ I(µgp, µp, µ) ∧ ν2 ?̂{νp}ℓ2 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ) ∧

parP⋆
(· !{·}ℓ1, ·̂ ?{·}ℓ2) ∧ 〈R〉(µgp, µp, µ, ν1) ∩ 〈R〉(µp, µ, µ1, ν2) 6= ∅ ⇒

〈R〉(µgp, µp, µ, νm) ⊆ R(µp, µ, µ1, νp)

closure·̂ ?{·} = true

closure·̂ !{·} = ∀µgp, µp, µ, µ1, νm, νp, ν1, ν2, ℓ1, ℓ2 :

ν1 !̂{νm}ℓ1 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ) ∧ ν2 ?{νp}
ℓ2 ∈ I(µgp, µp, µ) ∧

parP⋆
(·̂ !{·}ℓ1 , · ?{·}ℓ2) ∧ 〈R〉(µgp, µp, µ, ν2) ∩ 〈R〉(µp, µ, µ1, ν1) 6= ∅ ⇒

〈R〉(µp, µ, µ1, νm) ⊆ R(µgp, µp, µ, νp)

closure· ?{·} = true

closure·#!{·} = ∀µgp, µp, µ, µ1, µ2, νm, νp, ν1, ν2, ℓ1, ℓ2 :

ν1#!{νm}ℓ1 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ) ∧

ν2#?{νp}ℓ2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ) ∧ parP⋆
(·#!{·}ℓ1 , ·#?{·}ℓ2) ∧

〈R〉(µp, µ, µ1, ν1) ∩ 〈R〉(µp, µ, µ2, ν2) 6= ∅ ⇒ 〈R〉(µp, µ, µ1, νm) ⊆ R(µp, µ, µ2, νp)

closure·#?{·} = true

Fig. 14. Closure conditions for communication capabilities.

names that may possibly be bound to νm may also bind to νp, corresponds
to the conclusion of the closure condition. In the following we describe this
modelling in more detail.

The preconditions make the following requirements:

• The output and input capabilities (redexes) must be in the same location:

ν1!{νm}ℓ1 ∈ I(µgp, µp, µ) ∧ ν2?{νp}ℓ2 ∈ I(µgp, µp, µ)

• The redexes must have the possibility of occurring in parallel:

parP⋆
(·!{·}ℓ1 , ·?{·}ℓ2)

• The redexes must agree on a shared name:

〈R〉(µgp, µp, µ, ν1) ∩ 〈R〉(µgp, µp, µ, ν2) 6= ∅

The capabilities may reference the shared name directly, by using a constant,
or indirectly, by using a variable. We allow both by expressing the condition
as a requirement of non-empty intersection in the 〈R〉 relation.

With the preconditions satisfied the conclusion of the clause expresses the
consequence of completing the communication. Any value denoted by the
output name might be communicated, which the rule reflects by updating R
to record that the input variable in context µgpµpµ may be bound to any of
the values possibly bound to the output name in context µgpµpµ:

〈R〉(µgp, µp, µ, νm) ⊆ R(µgp, µp, µ, νp)

13

Pilegaard, Nielson, and Nielson

a. Local Communication. b. Enter Movement.

Fig. 15. Capability actions.

Because a name sent over a channel may be referenced through either a con-
stant or a variable we obtain the set of candidates from the 〈R〉 relation.
A name received, however, is always referenced through a variable and we
therefore update the R relation.

These closure conditions are our only means of populating the R relation;
this ensures that only bindings of variables to constants are tracked dynami-
cally by R.

The closure conditions for movement govern the dynamics of the con-
tainment hierarchy. We shall describe only the closure condition of the enter

kind and defer the definition of the others to Fig. 16. Again, the essence of
the closure condition is shown in Fig. 15b.

The preconditions make the following requirements:

• The enter and accept capabilities (redexes) must be in sibling ambients:

enter νℓ1
1 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ)∧

accept νℓ2
2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ)

• The redexes must have the possibility of occurring in parallel:

parP⋆
(enter ·ℓ1 , accept ·ℓ2)

• The redexes must agree on a shared name:

〈R〉(µp, µ, µ1, ν1) ∩ 〈R〉(µp, µ, µ2, ν2) 6= ∅

Similar to before, we impose the condition as non-empty intersection in the
〈R〉 relation.

With the preconditions satisfied the conclusions of the clause express the con-
sequences of completing the movement:

• The I relation must be updated to reflect that µ1 may be inside µ2 and
that the contents of µ1 is also inside µ1 in this new context of µ2:

µ1 ∈ I(µp, µ, µ2) ∧ I(µp, µ, µ1) ⊆ I(µ, µ2, µ1) ∧ I(µ, µ1) ⊆ I(µ2, µ1)

Note that we have three contributions depending on whether we consider

14

Pilegaard, Nielson, and Nielson

closureenter · = ∀µgp, µp, µ, µ1, µ2, ν1, ν2, ℓ1, ℓ2 :

enter νℓ1
1 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ) ∧ accept νℓ2

2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ) ∧

parP⋆
(enter ·ℓ1 , accept ·ℓ2) ∧ 〈R〉(µp, µ, µ1, ν1) ∩ 〈R〉(µp, µ, µ2, ν2) 6= ∅ ⇒

µ1 ∈ I(µp, µ, µ2) ∧ I(µp, µ, µ1) ⊆ I(µ, µ2, µ1) ∧ I(µ, µ1) ⊆ I(µ2, µ1) ∧

(∀ν : nrelP⋆
(enter ·ℓ1 , ν) ⇒ R(µp, µ, µ1, ν) ⊆ R(µ, µ2, µ1, ν)) ∧

(∀ν, µ′ : nrelP⋆
(enter ·ℓ1 , ν) ⇒ R(µ, µ1, µ

′, ν) ⊆ R(µ2, µ1, µ
′, ν))

closureaccept · = true

closureexit · = ∀µgp, µp, µ, µ1, µ2, ν1, ν2, ℓ1, ℓ2 :

exit νℓ1
1 ∈ I(µ, µ2, µ1) ∧ µ1 ∈ I(µp, µ, µ2) ∧ expel νℓ2

2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ) ∧

parP⋆
(exit ·ℓ1 , expel ·ℓ2) ∧ 〈R〉(µ, µ2, µ1, ν1) ∩ 〈R〉(µp, µ, µ2, ν2) 6= ∅ ⇒

µ1 ∈ I(µgp, µp, µ) ∧ I(µ, µ2, µ1) ⊆ I(µp, µ, µ1) ∧ I(µ2, µ1) ⊆ I(µ, µ1) ∧

(∀ν : nrelP⋆
(exit ·ℓ1 , ν) ⇒ R(µ, µ2, µ1, ν) ⊆ R(µp, µ, µ1, ν)) ∧

(∀ν, µ′ : nrelP⋆
(exit ·ℓ1 , ν) ⇒ R(µ2, µ1, µ

′, ν) ⊆ R(µ, µ1, µ
′, ν))

closureexpel · = true

closuremerge– · = ∀µgp, µp, µ, µ1, µ2, ν1, ν2, ℓ1, ℓ2 :

merge– νℓ1
1 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ) ∧ merge+ νℓ2

2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ) ∧

parP⋆
(merge– ·ℓ1 , merge+ ·ℓ2) ∧ 〈R〉(µp, µ, µ1, ν1) ∩ 〈R〉(µp, µ, µ2, ν2) 6= ∅ ⇒

I(µp, µ, µ1) ⊆ I(µp, µ, µ2) ∧ I(µ, µ1) ⊆ I(µ, µ2) ∧ I(µ1) ⊆ I(µ2) ∧

(∀ν : nrelP⋆
(merge– ·ℓ1 , ν) ⇒ R(µp, µ, µ1, ν) ⊆ R(µp, µ, µ2, ν)) ∧

(∀ν, µ′ : nrelP⋆
(merge– ·ℓ1 , ν) ⇒ R(µ, µ1, µ

′, ν) ⊆ R(µ, µ2, µ
′, ν)) ∧

(∀ν, µ′, µ′′ : nrelP⋆
(merge– ·ℓ1 , ν) ⇒ R(µ1, µ

′, µ′′, ν) ⊆ R(µ2, µ
′, µ′′, ν))

closuremerge+ · = true

Fig. 16. Closure conditions for movement capabilities.

µ1 itself, the children of µ1, or the grandchildren of µ1.

• The R relation must be updated to reflect that the relevant variables known
in µ1 are also known in µ1 in the new context of µ2. Note that the relevant
variables are those in µ1 that occur free either in parallel with the enter
capability or sequentially after it. In other words we only exclude variables
in threads that “die” due to non-deterministic choices. A similar update is
needed for the relevant variables in a child µ′ of µ1:

(∀ν : nrelP⋆
(enter ·ℓ1 , ν) ⇒ R(µp, µ, µ1, ν) ⊆ R(µ, µ2, µ1, ν)) ∧

(∀ν, µ′ : nrelP⋆
(enter ·ℓ1 , ν) ⇒ R(µ, µ1, µ

′, ν) ⊆ R(µ2, µ1, µ
′, ν))

As only the ambient hosting the enter capability moves, the corresponding
accept capability does not cause similar updates.

Note that by copying name bindings only for the R relation and not for 〈R〉
we achieve an elegant restriction such that only variable bindings are copied;
in the preconditions, however, we duly take all names into account.

The closure condition for static scope ensures that all variable bindings
are recorded throughout scope, i.e. the binding information is propagated to
all contexts where the variable is in scope - as recorded by nrelP⋆

.

The structure of the clause is similar to that of the previous closure con-

15

Pilegaard, Nielson, and Nielson

closurescp= ∀µgp, µp, µ, µc : I(µgp, µp, µ, µc) ⇒
∀ν : ν ∈ nrelP⋆

(µc) ⇒ R(µgp, µp, µ, ν) ⊆ R(µp, µ, µc, ν)

Fig. 17. Closure condition for the propagation of name scopes.

µgp µp µ I(µgp, µp, µ)

⊤ ⊤ ⊤ food , system

⊤ ⊤ system cell, food , expel rjℓ1

⊤ ⊤ food enter acℓ2 , exit rjℓ3 , reâ ?{rl}ℓ4 , expel rlℓ5 , nutrient

⊤ system food nutrient, expel rlℓ5 , reâ ?{rl}ℓ4 , exit rjℓ3 , enter acℓ2

⊤ system cell nutrient, food , rea !{RL}ℓ9 , expel rjℓ8 , accept acℓ7

⊤ food nutrient exit RLℓ6

system food nutrient exit RLℓ6

system cell food enter acℓ2 , exit rjℓ3 , reâ ?{rl}ℓ4 , expel rlℓ5 , nutrient

system cell nutrient exit RLℓ6

cell food nutrient exit RLℓ6

µgp µp µ ν R(µgp , µp, µ, ν)

system cell food rl RL

Fig. 18. Analysis result.

ditions but is much simpler:

• The first precondition is used to fix ambients µc and their containment
contexts µgp, µp, µ:

I(µgp, µp, µ, µc)

• The second precondition is used to fix the variables ν whose scopes extend
over the ambients:

ν ∈ nrelP⋆
(µc)

• As scoping is static this information is sufficiently precise for determining
a correct propagation of the localised environment from ‘outside µc’ into
‘inside µc’:

R(µgp, µp, µ, ν) ⊆ R(µp, µ, µc, ν)

Note that both the I relation and the nrelP⋆
relation may mistakenly pro-

vide labelled capabilities in place of the expected µc ambient - potentially
polluting the R relation. This is not a problem in practice as I provides
canonical capabilities whereas nrelP⋆

provides skeleton capabilities, i.e. the
two relations cannot agree on a capability to use instead of an ambient.

Example 4.1 The least fixed point analysis of the running example Peat gives rise to
the I and R components shown in Fig. 18. Fig. 19 gives a graphical relation of the
ambient part of the containment relation I. The triple bordered node represents the super-
environment, the double bordered nodes connected by bold lines represent the initial con-
figuration (Fig. 13), and the remaining nodes represent the system dynamics (Figs. 14, 16,
and 17). The trees of the individual frames of Fig. 5 are all sub-trees of this figure. Note,

16

Pilegaard, Nielson, and Nielson

T

system food nutrient

food cell nutrient

nutrient food nutrient

nutrient

nutrient

T

system food

food cell

nutrient food nutrient

nutrient

nutrient

Fig. 19. Spatial Analysis of Peat. Left: Previous 0CFA. Right: Present 2CFA.

that although the analysis is formally an over-approximation the result is rather precise.

4.3 Correctness

The correctness of the analysis is established by a number of invariance results.
First of all we have:

Lemma 4.2 (Invariance under congruence)

If P ≡ P ′ and C ⊢ P then (I,R) |=µgpµpµ P iff (I,R) |=µgpµpµ P ′

To further express the correctness of the analysis result under reduction
we shall first introduce an operation that expands the I component to take
the variable bindings specified by the R component into account. Thus if
enter νℓ ∈ I(µgp, µp, µ) then ν may be the canonical name of a variable and
we shall construct the relation I@R such that enter ν ′ℓ ∈ I@R(µgp, µp, µ) for
all possible constants ν ′ that can be bound to ν in the context µgpµpµ, i.e. for
all ν ′ ∈ 〈R〉(µgp, µp, µ, ν). Generally we define (I@R) as follows:

If ⌊M⌋ℓ ∈ I(µgp, µp, µ), ν ∈ ⌊fn(M)⌋ and ν′ ∈ 〈R〉(µgp, µp, µ, ν)

then ⌊M⌋ℓ[ν′/ν] ∈ (I@R)(µgp, µp, µ)

The correctness of the analysis then follows from:

Theorem 4.3 (Invariance under reduction)

If PRGC(P), (I,R) |=µgpµpµ P, par[],[](P) ⊆ parP⋆
, (npar[],[],[](P) ∪ nfol[],[](P)) ⊆

nrelP⋆
, and P →⋆ P ′ then (I@R,R) |=µgpµpµ P ′

5 Conclusion

We have adapted the Flow Logic approach to static analysis to apply to Bio-
Ambients performing several extensions on the way. In particular the treat-
ment of non-deterministic choice and general recursion have posed some chal-
lenges. Precision has been increased by using three syntactic auxiliary analy-
ses and by incorporating context in the manner of 2CFA. Our Succinct Solver
implementation strategy favours sparse relations and we achieve this by us-

17

Pilegaard, Nielson, and Nielson

ing representatives only in the containment relation; for formulating semantic
correctness it then needs to be “closed” using the environment (i.e. I@R).

Applying the development to an overly simplistic model of nutrient ex-
traction we have illustrated how the analysis provides interesting information
about biological systems and shown (Fig. 19) that it is more precise than
previous contributions. The more elaborate example reported in [16] further
illustrates the usefulness of the analysis.

Acknowledgements. This work has been supported by the Danish Natural
Science Research Council project LoST (21-02-0507).

References

[1] Cardelli, L., Bioware languages, in: Computer Systems - Papers for Roger
Needham, Springer, pp. 59–65, 2003.

[2] Cardelli, L. and A. D. Gordon, Mobile ambients, Theoretical Computer Science
240 (2000), pp. 177–213.

[3] Bodei, C. et al, An enhanced CFA for security policies., in: Proc. of WITS’03,
pp. 131–145, 2003.

[4] Levi, F. and S. Maffeis, An abstract interpretation framework for analysing
Mobile Ambients, in: Proc. of SAS’2001, LNCS 2126 (2001), pp. 395–411.

[5] Levi, F. and D. Sangiorgi, Controlling interference in ambients, in: Proc. of
POPL’2000 (2000), pp. 352–364.

[6] Milner, R., “Communicating and Mobile Systems: The π-Calculus,” Cambridge
University Press, 1999.

[7] Nielson, F. and H. R. Nielson, Flow Logic: a multi-paradigmatic approach
to static analysis, in: The Essense of Computation: Complexity, Analysis,
Transformation, LNCS 2566 (2002), pp. 223–244.

[8] Nielson, F., H. R. Nielson and C. Hankin, “Principles of Program Analysis,”
Springer, 1999.

[9] Nielson, F., H. R. Nielson and R. R. Hansen, Validating firewalls using Flow
Logics, Theoretical Computer Science 283 (2002), pp. 381–418.

[10] Nielson, F. et al, Control flow analysis for BioAmbients, in: Proc. of
BioConcur’03, 2003.

[11] Nielson, F., H. R. Nielson and H. Seidl, A succinct solver for ALFP, Nordic
Journal of Computing 9 (2002), pp. 335–372.

[12] Nielson, F. et al, The succinct solver suite, in: Proc. of TACAS’04, LNCS 2988
(2004), pp. 251–265.

[13] Nielson, H. R. and F. Nielson, Shape analysis for mobile ambients, in: Proc. of
POPL’00 (2000), pp. 142–154.

[14] Nielson, H. R., F. Nielson and M. Buchholtz, Security for mobility, in: FOSAD
2001/2002 Tutorial Lecture Notes, LNCS 2946 (2004), pp. 207–265.

[15] Nielson, H. R., F. Nielson, H. Pilegaard, Spatial Analysis of BioAmbients, Proc.
of SAS’04, LNCS 3148 (2004), pp. 69–83.

[16] Pilegaard, H., F. Nielson and H. R. Nielson, Static analysis of a model of the
LDL degradation pathway, in: G. Plotkin, editor, Proc. of CMSB’05, 2005.

[17] Regev, A., “Computational Systems Biology: A Calculus for Biomolecular
Knowledge,” Ph.D. thesis, Tel Aviv University (2003).

[18] Regev, A. et al, BioAmbients: An abstraction for biological compartments,
Theoretical Computer Science 325 (2004), pp. 141–167.

18

	Introduction
	BioAmbients
	Syntax
	Semantics

	Establishing Causality Information
	Parallel Capabilities Analysis
	Relevant Variables and Scope Analyses

	Control Flow Analysis
	Judgements
	Closure Conditions
	Correctness

	Conclusion
	References

