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Abstract

Assessing the similarity among 3D shapes is a challenging research topic,
and effective shape descriptions have to be devised in orderto support the
matching process. There is a growing consensus that shapes are recognized
and coded mentally in terms of relevant parts and their spatial configuration,
or structure.

The presentation will discuss the definition and use of structural descrip-
tions for assessing shape similarity. The idea is to define a shape description
framework based on results of differential topology which deal with the de-
scription of shapes by means of the properties of one, or more, real-valued
functions defined over the shape. Studying these properties, several topologi-
cal descriptions of the shape can be defined, which may also encode different
geometric and morphological attributes that globally and locally describe the
shape. Examples and results will be discussed and ongoing work outlined.

1 Introduction

Assessing the similarity among 3D shapes is a very complex and challenging re-
search topic. While human perception have been widely studied and produced
theories that received a large consensus [7, 21], the computational aspects of 3D
shape retrieval and matching have been only recently addressed. Due to the recent
improvements to 3D object acquisition, visualization and modeling technologies,
the number of 3D models available on the web is more and more growing, and there
is an increasing demand for tools supporting the automatic search for 3D objects
and their sub-parts in digital archives.

These considerations suggest that in the future a primary challenge in computer
graphics will be how to find models having similar global and/or local appearance.
The methods developed so far span from coarse filters suited to browse very large
3D repositories on the web, to domain-specific approaches toassessing similarity
of part models containing semantic as well as structural information.

The majority of the methods proposed in the literature mainly focus on the
geometry of shapes, in the sense of considering its spatial distribution or extent in
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the 3D space [34, 23, 24, 18]. From a practical point of view, the main advantage
of these methods is that they do not make specific assumption on the topology of
the digital models, usually triangle meshes or even triangle soups. Moreover, these
methods are also computationally efficient.

Nevertheless, there is a growing consensus that shapes are recognized and
coded mentally in terms of relevant parts and their spatial configuration, or struc-
ture. Methods approaching the problem from a geometric point of view do not
take into account the structure of the shape and generally the similarity distance
between two objects depends on their spatial embedding. However all of them
could be necessary and useful in a multi-step approach whichconsiders a series
of filters to progressively refine the set of geometrically similar candidates and/or
a multimodal query mechanism that could provide a combination of various mea-
sures of shape similarities, corresponding to function, form and structure analysis
of 3D shapes.

The use of structural descriptions for shape similarity hasbeen firstly addressed
by [14] where the Reeb graph is proposed in a multi-resolution fashion to build a
graph and perform shape similarity by means of graph-matching techniques. The
importance of structural descriptions for measuring shapesimilarity has been also
recently pointed out by [31] where a method for decomposing ashape into relevant
surface patches has been presented. The decomposition is finalized to the definition
of a structural description of the shape, which is coupled with an error-correcting
subgraph isomorphism to provide in shape retrieval system [22].

The work herein presented is based on results of differential topology which
deal with the description of shapes by means of the properties of one, or more,
real-valued functions defined over the shape. Studying these properties, topologi-
cal descriptions of the shape can be defined, namely the Reeb graphs, which can be
embedded in the 3D space and augmented with different geometric and morpho-
logical attributes that globally and locally describe the shape [4].

We believe that by differentiating the geometric, structural and possibly the
semantic level of description of shapes, an automatic retrieval system will be able
to provide results closer to the human intuition of similarity [33]. Most importantly,
since there is neither a singlebest shape characterization nor a singlebest similarity
measure, we propose aframework for working on shape retrieval where different
characterization methods can be plugged-in and tested, while keeping the same
computational setting.

Based on these structural descriptions, the sub-part correspondence between
two shapes is obtained by matching their corresponding directed attributed graphs,
using a specialization of the method described in [20, 19]. Moreover, the graph
matching framework makes it possible to plug in heuristics for tuning the algorithm
to the specific application and for achieving different approximations to the optimal
solution.
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2 The Shape Structural Descriptor

The use of structures for shape description has been widely addressed in Com-
puter Graphics and Vision. Probably the best-known structure is the one related
to the medial axis transformation, that provides a decomposition of the shape in
protrusions detected by spheres of different radius inscribed in the shape, [8]. The
medial axis nicely simulates the human intuition and it is well-suited for shape
matching especially for 2D shapes, like for example done in [27] using shock
graphs, and more recently proposed for 3D shapes through thinning approaches
[30, 29, 10, 36, 16]. Several geometric descriptors have been proposed for associ-
ating to the nodes of a skeletal graph the description of the related model sub-parts.
A minimal solution consists in coding in a vector therelevance of the skeletal edges
incident in a node (e.g. edge length, diameters and average circumference of the
skeleton loops) as proposed in [30, 16]. Another strategy isto use geometric de-
scriptors able to support global comparison of 3D shapes, like the mean curvature
histogram [36], or associating a weight (for example the volume) to the centroids
of a shape segmentation, like proposed in [11].

Methods based on the Reeb graph theory, [25] are an effectivealternative to
skeletal methods: intuitively, the Reeb graph describes the shape by storing the
evolution of level sets of a given real-valued function associated to the shape. The
shape can be represented by a graph which stores slices of theshape, possibly with
some geometric attributes. [14] have used the Reeb graph in amulti-resolution
fashion for shape matching, and have associated to each node, i.e. shape slice, the
ratio of the area and the length of the model sub-part in the whole model. Similar
criteria have been successively used in [2] and further enriched by [32], where for
each slice the geometric attributes considered are the volume, a statistical measure
of the extent and the orientation of the triangles, an estimation of the Koenderink
shape index and a statistic of the texture.

2.1 Extended Reeb Graph

Given a surfaceS and a real, continuous functionf defined on it, the Reeb graph
of S with respect to the mapping functionf is the quotient space ofS with respect
to the equivalence relationship that collapses each contour level of f into a single
point. See [25, 28] for further references.

Our Extended Reeb Graph (ERG) representation generalizes the definition of
Reeb graph to a surface on which a finite set of contour levelsC(S) is defined.

Since contours are supposed to be non degenerate (i.e. points or open lines),
they subdivideS into a set of regions bordered by elements ofC(S). Then, we
define two pointsP,Q ∈ S as Reeb-equivalent in an extended sense if they belong
to the same region or the same contour, see [3] for details. The quotient space
obtained from this relation is a discrete space, which we call Extended Reeb (ER)
quotient space. In figure 1, an example of the ER with respect to the distance from
the center of mass is shown for a linkage model. Figure 1(a) highlights how the

3



(a) (b) (c) (d)

Figure 1: A model (a), graph nodes that correspond to the regions generated from
the contour levels (b), the ERG before (c) and after (d) the simplification of nodes.

functionf varies on the model: blue regions correspond to minima whilered ones
represent maxima.

This quotient space is coded in the Extended Reeb Graph as follows: first of all,
each region is coded into a node of the graph; then, if two regions share a contour,
the nodes corresponding to these regions are connected by anedge. In general, a
node will be linked to as many nodes as the number of components of the border of
the associated region. In figure 1(b-c) it is highlighted howthe sequence of points
of the quotient spaceER represents the arcs and nodes of theERG.

The edges of the ERG may be oriented according to the monotonicity of the
functionf , which implies that the ERG is directed and acyclic. Furthermore, each
node of the graph identifies a sub-graph which is empty only incase of leaf nodes,
that are nodes with out-degree zero.

Finally, the ERG is further simplified by collapsing all nodes whose number of
incoming and outgoing edges is 1, without altering the topological correctness of
the coding. After this merging step, the ERG simply consistsof nodes represent-
ing the regions where the topology of the contour levels varies and the associated
connecting edges, see figure 1(d).

The ERG naturally provides a graph representation of the shape that reflects
into its coding the invariance properties of the mapping function [5]. In particular,
when it is necessary that the shape description is invariantunder some transfor-
mation, like rigid motions or affine transformations, it is sufficient to choose a
mapping function which is invariant under those transformations. Therefore, the
dependence of the graph on the mapping function provides a flexible shape charac-
terization that can easily be tuned according to the user needs. Moreover, the Reeb
graph is able to correctly code the topology of a closed surface [9].
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2.2 The shape descriptor: coupling the ERG with geometric attributes

The functions used to validate the matching framework proposed in this paper are
the distance from the center of mass of the object and the integral geodesic distance
f(v) =

∫
p∈M g(v, p)dS, whereg(v, p) represents the geodesic distance betweenv

andp, whenp varies onM . The latter function was originally proposed in [14],
while variations may be found in [35, 17]. To be suitable for sub-part correspon-
dence issues any other suitablef could be used, provided that it is invariant with
respect to object rotation, translation and scaling [5, 6].

The most important aspect to evaluate when choosing the mapping function
is the kind of features that we want to highlight in the description and the type of
matching we would like to get. In our example, the distance from the center of mass
(barycentre) naturally highlights the distribution of theobject with respect to its
barycentre, like shown in figure 1. Therefore this function is rotation invariant, but
sensitive to pose variations. On the contrary, the functionin [14] is pose invariant
because it depends on the shape distribution with respect tothe geodesic center
of the surface. In both cases, the shape will be described as aconfiguration of
protrusions and hollows, but the geodesic will not discriminate between objects in
different poses while the distance from the center of mass will do. Therefore, the
geodesic is best suited for retrieving articulated objectsdisregarding the pose, while
the distance from the center of mass will allow to distinguish among articulated
models in different poses.

Also computational aspects have to be taken into account when choosing a
mapping function. For example, the center of mass may be computed in linear
time with respect to the number of vertices and, since it depends on all surface
vertices, it is robust to noise. On the contrary, the exact computation of the in-
tegral geodesic function may be performed only withO(n2 log(n)) operations,
wheren is the number of vertices ofS; however, its approximation [14] runs in
O(kn log(n)) operations, wherek is a constant that represent a number of basis
for the function evaluation. The approximation of the geodesic distance using the
Dijkstra algorithm makes this function sensitive to the vertex distribution. To avoid
this problem a uniform remeshing is needed.

Moreover, the underlying slicing mechanisms has to be handled with care: for
example, if only a too small number of contour levels is considered, holes com-
pletely contained in the interior of a single region are missed.

This problem is related to the slicing frequency, and allowsthe user to get rid of
little features that are considered irrelevant. Nevertheless, if topological accuracy
is required, the problems can be easily overcome with the insertion of an additional
number of contours into regions having holes (these regionscan be always detected
locally in each slice using the Euler Characteristics, see [1] for details). Therefore,
even if the contours may be non uniformly distributed on the domain off , the ERG
will correctly represent the topology of the surface.

The value off and a geometric descriptor are associated to each node in the
simplified ERG. The attributes used in the literature mainlyassociate a set of local
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Figure 2: The ERG representation of the model in figure 1 and some of the model
sub-parts associated to graph nodes.

geometric attributes to each shape slice. In our approach wemove from a local
description of the surface slice to a more general representation of the model sub-
parts, based on the assumption that the larger the model portion associated to a node
is, the more relevant the node should be. Since the ERG is directed, each node is
associated to a sub-graph, and this sub-graph defines a sub-part of the shape. For
the nodes whose out-degree is zero (leaf nodes), whose sub-graph is empty, we
consider only the slice of the shape that correspond to them.Once sub-parts have
been associated to each node, we use the spherical harmonic analysis of the sub-
part to describe its geometry. Spherical harmonic analysishas been defined in [18],
and this descriptor is rotation and scale invariant and stores the shape distribution
of each shape sub-part. Therefore, each node is indexed using a matrix, whose
values depend on the spherical harmonic values of the related sub-part.

In figure 2, we show the shape description with respect to the distance from the
barycentre of the linkage model (see figure 1). The ERG structure is represented by
the graph, and each node is depicted with the sub-part it generates. Since the holes
in the model are not symmetric with respect to the center of mass, the sub-parts
associated to the two leaf nodes slightly differ.

In addition, mainly for visualization purposes, we also store the coordinates of
the centroid of the region corresponding to the node and the type of the node (i.e.
maximum, minimum or saddle). Finally, the number of regionscrossed during the
edge construction is also associated to each edge of the ERG,and this value reflects
the length of the edge before the simplification step.

The structural representation provided by our shape descriptor may differ from
the intuitive notion of shape structure but, since it is related to the mathematical
properties of the mapping function, it objectively reflectsthese properties and dis-
card the other ones acting as a filter for the following matching operations.

The flexibility of the structural descriptor with respect tothe choice of the map-
ping function is a characteristic quality that, in this sense, differs from the skeletal
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decomposition obtained from flow discretization [11] or thinning methods [10, 36]
and may become an advantage when the sub-parts to be rocognized through the
matching have well defined mathematical properties. Another distinctive feature
of our descriptor is the use of a descriptor for each node sub-graph (the spherical
harmonic transform, [18]) more complex that the usual ones.

3 Conclusions

In this paper we have presented a general and flexible framework for computing
structural and geometrical shape descriptions.

The flexibility related to the choice off may be regarded as an advantage over
previous methods: the approach described in [15] works on anarbitrary object seg-
mentation (the model is always split into three parts) independently of the shape
object complexity; the method proposed in [12] produces an automatic and struc-
tural subdivision of the object surface but it works only on simple surfaces where
shape discontinuities are present and easily recognized; the object segmentation in
[26, 13] is obtained by user interaction. Although enrichedof geometric attributes,
the ERG is not a ”medial” structure in the usual sense (like meant in [30, 10, 36]).
In fact, those skeletons are expected to lie on the middle of the shape and pa-
rameters are used to make them the most unique as possible. Onthe contrary,
the edges of the ERG may connect regions that are geometrically far but that are
(topologically) close with respect to the mapping function. Provided that the shape
characterization is consistent with the user’s needs, in principle, it is not yet nec-
essary that the geometric embedding of the graph is intuitive. Therefore, the same
framework may be used to highlight different features at time: in the future we are
willing to investigate how to automatically combine different measuring functions
on the same process.

The structural descriptor is particularly suitable for sub-part correspondence, as
fully demonstrated in [19]. To define a complete framework able of automatically
recognize sub-parts, a larger number of measuring functions that are independent
of affine shape transforms must be still investigated.

In conclusion, the graph representation proposed is a first step for defining a
tool able to select a set of shape characteristics that the user may combine with
other information and vary according to his desiderata. As further development,
we foresee to couple our approach with other methods, in order to contribute to the
design of multistep, multimodal search engines for 3D models.
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