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Abstract

Assessing the similarity among 3D shapes is a challengsegareh topic,
and effective shape descriptions have to be devised in dodgupport the
matching process. There is a growing consensus that shepescagnized
and coded mentally in terms of relevant parts and their apatnfiguration,
or structure.

The presentation will discuss the definition and use of stirat descrip-
tions for assessing shape similarity. The idea is to defif@mpesdescription
framework based on results of differential topology whigabwith the de-
scription of shapes by means of the properties of one, or meat-valued
functions defined over the shape. Studying these propestiesral topologi-
cal descriptions of the shape can be defined, which may atsmerdifferent
geometric and morphological attributes that globally axwlly describe the
shape. Examples and results will be discussed and ongoirigomtlined.

1 Introduction

Assessing the similarity among 3D shapes is a very compldxchallenging re-
search topic. While human perception have been widely etlueind produced
theories that received a large consensus [7, 21], the catipul aspects of 3D
shape retrieval and matching have been only recently asketie®ue to the recent
improvements to 3D object acquisition, visualization anoldeling technologies,
the number of 3D models available on the web is more and moreing, and there
is an increasing demand for tools supporting the automatcct for 3D objects
and their sub-parts in digital archives.

These considerations suggest that in the future a primajectye in computer
graphics will be how to find models having similar global awdbcal appearance.
The methods developed so far span from coarse filters saitecbtvse very large
3D repositories on the web, to domain-specific approachasgessing similarity
of part models containing semantic as well as structurarimétion.

The majority of the methods proposed in the literature nyafatus on the
geometry of shapes, in the sense of considering its spasiaibdition or extent in
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the 3D space [34, 23, 24, 18]. From a practical point of viéw, thain advantage
of these methods is that they do not make specific assumptidheotopology of
the digital models, usually triangle meshes or even treasgups. Moreover, these
methods are also computationally efficient.

Nevertheless, there is a growing consensus that shapega@rgnized and
coded mentally in terms of relevant parts and their spatiafiguration, or struc-
ture. Methods approaching the problem from a geometrictpiview do not
take into account the structure of the shape and generalgithilarity distance
between two objects depends on their spatial embedding. ei#amwall of them
could be necessary and useful in a multi-step approach wdunkiders a series
of filters to progressively refine the set of geometricallyifar candidates and/or
a multimodal query mechanism that could provide a comhnatif various mea-
sures of shape similarities, corresponding to functiompfand structure analysis
of 3D shapes.

The use of structural descriptions for shape similaritylyeen firstly addressed
by [14] where the Reeb graph is proposed in a multi-resaiuéshion to build a
graph and perform shape similarity by means of graph-madgctéchniques. The
importance of structural descriptions for measuring stsypdarity has been also
recently pointed out by [31] where a method for decomposisiyage into relevant
surface patches has been presented. The decompositicaliefihto the definition
of a structural description of the shape, which is coupletth &h error-correcting
subgraph isomorphism to provide in shape retrieval sysg#h [

The work herein presented is based on results of diffedetuelogy which
deal with the description of shapes by means of the progedfieone, or more,
real-valued functions defined over the shape. Studyingetpesperties, topologi-
cal descriptions of the shape can be defined, namely the Rapbgy which can be
embedded in the 3D space and augmented with different geiocraed morpho-
logical attributes that globally and locally describe thae [4].

We believe that by differentiating the geometric, struakland possibly the
semantic level of description of shapes, an automaticeretrisystem will be able
to provide results closer to the human intuition of simtlaf83]. Most importantly,
since there is neither a sindbest shape characterization nor a singést similarity
measure, we proposeflamework for working on shape retrieval where different
characterization methods can be plugged-in and testede \béping the same
computational setting.

Based on these structural descriptions, the sub-partspmrnelence between
two shapes is obtained by matching their correspondingtdideattributed graphs,
using a specialization of the method described in [20, 19brédver, the graph
matching framework makes it possible to plug in heuristizgdining the algorithm
to the specific application and for achieving different apomations to the optimal
solution.



2 The Shape Structural Descriptor

The use of structures for shape description has been widklyessed in Com-
puter Graphics and Vision. Probably the best-known stracisithe one related
to the medial axis transformation, that provides a decoitipnsof the shape in
protrusions detected by spheres of different radius ibedrin the shape, [8]. The
medial axis nicely simulates the human intuition and it idlgeited for shape
matching especially for 2D shapes, like for example done2if] using shock
graphs, and more recently proposed for 3D shapes throughirlgi approaches
[30, 29, 10, 36, 16]. Several geometric descriptors have pegposed for associ-
ating to the nodes of a skeletal graph the description ofdlaad model sub-parts.
A minimal solution consists in coding in a vector teevance of the skeletal edges
incident in a node (e.g. edge length, diameters and aveiegarnterence of the
skeleton loops) as proposed in [30, 16]. Another stratedy isse geometric de-
scriptors able to support global comparison of 3D shapks tfie mean curvature
histogram [36], or associating a weight (for example theina) to the centroids
of a shape segmentation, like proposed in [11].

Methods based on the Reeb graph theory, [25] are an effealtemative to
skeletal methods: intuitively, the Reeb graph describessttape by storing the
evolution of level sets of a given real-valued function a&sed to the shape. The
shape can be represented by a graph which stores slicesgbfape, possibly with
some geometric attributes. [14] have used the Reeb graphminli&resolution
fashion for shape matching, and have associated to eachirmdghape slice, the
ratio of the area and the length of the model sub-part in thelevimodel. Similar
criteria have been successively used in [2] and furtheckead by [32], where for
each slice the geometric attributes considered are thenla statistical measure
of the extent and the orientation of the triangles, an esitmaf the Koenderink
shape index and a statistic of the texture.

2.1 Extended Reeb Graph

Given a surfaces and a real, continuous functigfidefined on it, the Reeb graph
of S with respect to the mapping functighis the quotient space ¢f with respect
to the equivalence relationship that collapses each coigwgel of f into a single
point. See [25, 28] for further references.

Our Extended Reeb Graph (ERG) representation generalizes the definition of
Reeb graph to a surface on which a finite set of contour levefs) is defined.

Since contours are supposed to be non degenerate (i.es jpoiopen lines),
they subdivideS into a set of regions bordered by elements4fS). Then, we
define two points?, ) € S as Reeb-equivalent in an extended sense if they belong
to the same region or the same contour, see [3] for detail® qliotient space
obtained from this relation is a discrete space, which wekdended Reeb (ER)
quotient space. In figure 1, an example of the ER with respeitiet distance from
the center of mass is shown for a linkage model. Figure 1@)lights how the
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Figure 1: A model (a), graph nodes that correspond to themsgjenerated from
the contour levels (b), the ERG before (c) and after (d) theokfication of nodes.

function f varies on the model: blue regions correspond to minima whileones
represent maxima.

This quotient space is coded in the Extended Reeb Graphlaw$offirst of all,
each region is coded into a node of the graph; then, if twamregshare a contour,
the nodes corresponding to these regions are connected diygen In general, a
node will be linked to as many nodes as the number of compsméithe border of
the associated region. In figure 1(b-c) it is highlighted hbessequence of points
of the quotient spacé& R represents the arcs and nodes of HeG.

The edges of the ERG may be oriented according to the mornitonif the
function 1, which implies that the ERG is directed and acyclic. Funtiane, each
node of the graph identifies a sub-graph which is empty ongase of leaf nodes,
that are nodes with out-degree zero.

Finally, the ERG is further simplified by collapsing all n@dehose number of
incoming and outgoing edges is 1, without altering the togiglal correctness of
the coding. After this merging step, the ERG simply consi$tsodes represent-
ing the regions where the topology of the contour levelsegand the associated
connecting edges, see figure 1(d).

The ERG naturally provides a graph representation of thpeskizat reflects
into its coding the invariance properties of the mappingfiom [5]. In particular,
when it is necessary that the shape description is invauader some transfor-
mation, like rigid motions or affine transformations, it isfficient to choose a
mapping function which is invariant under those transfdaroms. Therefore, the
dependence of the graph on the mapping function providegiblfeshape charac-
terization that can easily be tuned according to the usatsi@doreover, the Reeb
graph is able to correctly code the topology of a closed sarfq].



2.2 Theshapedescriptor: couplingthe ERG with geometric attributes

The functions used to validate the matching framework psedadn this paper are
the distance from the center of mass of the object and thgradtgeodesic distance
flv) = j;oeM g(v,p)dS, whereg(v, p) represents the geodesic distance between
andp, whenp varies onM. The latter function was originally proposed in [14],
while variations may be found in [35, 17]. To be suitable fobart correspon-
dence issues any other suitalfleould be used, provided that it is invariant with
respect to object rotation, translation and scaling [5, 6].

The most important aspect to evaluate when choosing the ingjgnction
is the kind of features that we want to highlight in the dgstash and the type of
matching we would like to get. In our example, the distanoaifthe center of mass
(barycentre) naturally highlights the distribution of tbkject with respect to its
barycentre, like shown in figure 1. Therefore this functisnatation invariant, but
sensitive to pose variations. On the contrary, the funatdd4] is pose invariant
because it depends on the shape distribution with respdbietgeodesic center
of the surface. In both cases, the shape will be describedcasfeguration of
protrusions and hollows, but the geodesic will not discniaté between objects in
different poses while the distance from the center of ma#isiai Therefore, the
geodesic is best suited for retrieving articulated objdistsegarding the pose, while
the distance from the center of mass will allow to distingugsnong articulated
models in different poses.

Also computational aspects have to be taken into accounhwheosing a
mapping function. For example, the center of mass may be atadpn linear
time with respect to the number of vertices and, since it ddpeon all surface
vertices, it is robust to noise. On the contrary, the exaotmdation of the in-
tegral geodesic function may be performed only win?log(n)) operations,
wheren is the number of vertices df; however, its approximation [14] runs in
O(knlog(n)) operations, wheré is a constant that represent a number of basis
for the function evaluation. The approximation of the gesiclelistance using the
Dijkstra algorithm makes this function sensitive to theterdistribution. To avoid
this problem a uniform remeshing is needed.

Moreover, the underlying slicing mechanisms has to be leahdith care: for
example, if only a too small number of contour levels is cdeséd, holes com-
pletely contained in the interior of a single region are @ks

This problem is related to the slicing frequency, and alldvesuser to get rid of
little features that are considered irrelevant. Nevee$s| if topological accuracy
is required, the problems can be easily overcome with thextios of an additional
number of contours into regions having holes (these regiande always detected
locally in each slice using the Euler Characteristics, 4¢&f details). Therefore,
even if the contours may be non uniformly distributed on twndin of f, the ERG
will correctly represent the topology of the surface.

The value off and a geometric descriptor are associated to each node in the
simplified ERG. The attributes used in the literature maasgociate a set of local
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Figure 2: The ERG representation of the model in figure 1 antesof the model
sub-parts associated to graph nodes.

geometric attributes to each shape slice. In our approacmee from a local
description of the surface slice to a more general reprasentof the model sub-
parts, based on the assumption that the larger the mod&mpadsociated to a node
is, the more relevant the node should be. Since the ERG istéiteeach node is
associated to a sub-graph, and this sub-graph defines aagubfphe shape. For
the nodes whose out-degree is zero (leaf nodes), whoseraph-g empty, we
consider only the slice of the shape that correspond to tl@émee sub-parts have
been associated to each node, we use the spherical harnmahysia of the sub-
part to describe its geometry. Spherical harmonic anahgsseen defined in [18],
and this descriptor is rotation and scale invariant ancesttite shape distribution
of each shape sub-part. Therefore, each node is indexed asimatrix, whose
values depend on the spherical harmonic values of the detate-part.

In figure 2, we show the shape description with respect toiftartte from the
barycentre of the linkage model (see figure 1). The ERG streds$ represented by
the graph, and each node is depicted with the sub-part irgtse Since the holes
in the model are not symmetric with respect to the center cfsntne sub-parts
associated to the two leaf nodes slightly differ.

In addition, mainly for visualization purposes, we alsaatine coordinates of
the centroid of the region corresponding to the node andytie ¢f the node (i.e.
maximum, minimum or saddle). Finally, the number of regior@ssed during the
edge construction is also associated to each edge of the &Ri@Eis value reflects
the length of the edge before the simplification step.

The structural representation provided by our shape gesciinay differ from
the intuitive notion of shape structure but, since it is telato the mathematical
properties of the mapping function, it objectively refletttese properties and dis-
card the other ones acting as a filter for the following matgtiperations.

The flexibility of the structural descriptor with respecthe choice of the map-
ping function is a characteristic quality that, in this serdiffers from the skeletal



decomposition obtained from flow discretization [11] ontiing methods [10, 36]
and may become an advantage when the sub-parts to be roetdghibugh the
matching have well defined mathematical properties. Amatliginctive feature
of our descriptor is the use of a descriptor for each nodegsaph (the spherical
harmonic transform, [18]) more complex that the usual ones.

3 Conclusions

In this paper we have presented a general and flexible frankefiwo computing
structural and geometrical shape descriptions.

The flexibility related to the choice gf may be regarded as an advantage over
previous methods: the approach described in [15] works @arlgitrary object seg-
mentation (the model is always split into three parts) iraelently of the shape
object complexity; the method proposed in [12] produceswaraatic and struc-
tural subdivision of the object surface but it works only am@le surfaces where
shape discontinuities are present and easily recognizediject segmentation in
[26, 13] is obtained by user interaction. Although enricbédeometric attributes,
the ERG is not a "medial” structure in the usual sense (likamhén [30, 10, 36]).
In fact, those skeletons are expected to lie on the middldhefshape and pa-
rameters are used to make them the most unique as possibléheQontrary,
the edges of the ERG may connect regions that are geomigtrigabut that are
(topologically) close with respect to the mapping functi®movided that the shape
characterization is consistent with the user’'s needs, inctiple, it is not yet nec-
essary that the geometric embedding of the graph is intuitiherefore, the same
framework may be used to highlight different features attiin the future we are
willing to investigate how to automatically combine di#eit measuring functions
on the same process.

The structural descriptor is particularly suitable for-s#st correspondence, as
fully demonstrated in [19]. To define a complete frameworle alf automatically
recognize sub-parts, a larger number of measuring furgtiost are independent
of affine shape transforms must be still investigated.

In conclusion, the graph representation proposed is a feptfer defining a
tool able to select a set of shape characteristics that termay combine with
other information and vary according to his desiderata. uthér development,
we foresee to couple our approach with other methods, i dodmntribute to the
design of multistep, multimodal search engines for 3D madel
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