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Abstract. The extended abstract describes a method for recognizing
similar sub-parts of objects described by 3D polygonal meshes. The in-
novation of this method is the coupling of structure and geometry in the
matching process. First of all, the structure of the shape is coded in a
graph where each node is associated to a sub-part of the shape. Then,
the matching between two shapes is approached using a graph-matching
technique relying upon a geometric description of each sub-part.
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1 Introduction

Assessing the similarity among 3D shapes is a very complex and challenging
research topic. Whilst there are already techniques for rapidly extracting knowl-
edge from massive volumes of texts, there is an increasing demand for tools
supporting the automatic search for 3D objects and their subparts in digital
archives.

There is a growing consensus that shapes are recognized and coded mentally
in terms of relevant parts, or features, and their spatial configuration, or struc-
ture. Methods approaching the problem from a geometric point of view do not
take into account the structure of the shape and generally the similarity distance
between two objects depends on their spatial embedding.

The work herein presented is based on results of differential topology, which
deals with the description of shape by means of shape properties of one, or more,
real-valued functions defined over the shape. Studying these properties, topolog-
ical descriptions of the shape can be defined, namely the Reeb graphs, which
induce a decomposition of the shape into significant regions. Such a decompo-
sition defines a structural description of the shape, which is coupled with an
error-correcting subgraph isomorphism to provide a system for shape similarity
analysis. Moreover, the proposed framework makes it possible to plug in heuris-
tics for tuning the matching algorithm to the specific application, in particular
the 3D shape sub-parts correspondence and the partial matching.

Aim of this extended abstract is to describe a method for recognizing the
sub-parts of two objects the most similar both in geometry and structure. Main
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innovation of the method is the coupling of a structural descriptor, like the
Reeb graph proposed in [1], with a geometric descriptor and the inexact graph-
matching techniques [2,3,4,5].

Since the structural descriptor can be always coded as a directed graph,
the partial matching can be solved by finding the common sub-graphs of the
two objects. This is achieved through the construction of a common sub-graph
(maybe not connected) between the two input graphs, that highlights where
two shapes are similar or dissimilar. In figure 1, an example of partial matching
between two mechanical parts, explains the overall approach of the matching
process. The light-blue parts represent the sub-parts with similar geometry and
structure, while the grey ones denote the sub-parts whose shape significantly
differs. The reminder of the paper is organized as follows. First, a brief overview

(a) (b)

(c) (d)

Fig. 1. Partial matching between two mechanical parts (a). The structural de-
scriptor is extracted from the two objects (b); The two structural descriptors
are compared through a graph matching technique (c); The partial matching
obtained by comparing the two descriptors is represented on the two model
objects.

on existing techniques for shape retrieval and partial matching is given. Then,
the description of our approach is proposed; since solving the complete graph
matching is computationally expensive, a new heuristic method which speeds up
the process is proposed. Finally, results are presented and discussed. Conclusive
remarks and suggestions on future work end the paper.

2 Previous work

Concerning 3D shapes, there is a great number of techniques for shape matching.
Many methods for 3D object comparison return as output a positive real number
which measures how much an object resembles to another one [6,7,8,9,10]. Since
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no information on the sub-part correspondence of the compared objects is stored,
these approaches are not available for partial matching and mapping of objects.
On the contrary, such an information is essential in applications like object
modeling, registration and recognition.

The use of spin-images [11] for classifying sub-parts of 3D objects has been
recently proposed in [12] and [13]. Both methods represent the 3D objects as a
set of parts, which are compared to obtain an object sub-part mapping. Other
approaches like those described in [14,15] try to match global shapes with a
special emphasis on selected sub-parts. For example, in [14] the surface of an ob-
ject is described by segmenting it into patches; the complete surface description
separately represents each patch and their interrelationships. Complex surfaces
are segmented into simpler meaningful components (the patches) through shape
discontinuities, such as jump boundaries, limbs and creases. Therefore, such a
description can be viewed as an attributed graph whose nodes correspond to the
surface patches and the edges codify the relations between them.

Finally, the methods proposed in [16] represent the shape object as binary
tree obtained by recursively subdividing the object into two parts. The similar-
ity measure between two objects is obtained by matching the two trees, where
the sub-part correspondence is induced by the node mapping provided by the
matching algorithm.

All these methods provide only one and arbitrary description of the object
shape, while the framework proposed in this paper is based on the consolidated
Reeb graph theory that allows the use of different functions to analyze the shape,
each one able to identify different relevant sub-parts of the object. In particu-
lar, methods based on the spin-images provide a point-to-point correspondence
between the object surfaces and do not store any kind of structural and topo-
logical information. On the contrary, the structural information represented in
[14,16,15] either does not guarantee the identification of the most meaningful
sub-parts or is not able to modularly incorporate different heuristics capable
of adapting the matching to specific application contexts (e.g. global matching,
sub-part correspondence, partial matching) or is not fully automatic [15].

The use of structural descriptions for shape similarity has been firstly ad-
dressed in [17], where the Reeb graph is proposed in a multi-resolution fashion
to build a graph and perform shape similarity by means of graph matching tech-
niques. Similar criteria have been successively used in [18] and further enriched
by [19], where for each slice the geometric attributes considered are the volume, a
statistic measure of the extent and the orientation of the triangles, an estimation
of the Koenderink shape index and a statistic of the texture. Other geometric de-
scriptors have been proposed for associating to the nodes of a skeletal graph the
description of the related model sub-parts. In particular, methods based on the
medial axis [20] like [21,22,23] code in a vector the relevance of the skeletal edges
incident in a node (e.g. edge length, diameters and average circumference of the
skeleton loops) or use geometric descriptors, like the mean curvature histogram
[22].
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3 Sub-Part Correspondence

In our idea, the partial matching problem may be grouped in three main issues
[4,5]:

1. recognizing similar sub-parts in objects that are both structurally and geo-
metrically similar (that is, having similar overall shape);

2. recognizing analogous sub-parts in objects having different overall shape;
3. distinguishing if an object shape is itself a sub-part of another.

In particular, we observe that the third problem is a particular case of the second
one. In the first case similar sub-parts of the two objects should be automatically
recognized and mapped. The method proposed in this paper is able to approach
all facets of the sub-part shape correspondence problem with major emphasis on
the first one (due to the properties of the structural descriptor we have adopted).

The second kind of correspondence deals with objects having different overall
shape but similar sub-parts. The partial correspondence should recognize similar
sub-parts of the two objects and produce the correspondent mapping.

3.1 Shape descriptors

Our implementation of the matching process involves both structure and geome-
try of the two objects. At the moment, the structural information of the object is
captured by the Reeb graph computed with respect to a position invariant func-
tion [24], see figure 2.a). The functions used to validate the matching framework
proposed in this paper are the distance from the center of mass of the object
and the integral geodesic distance in [17]. As shown in [1], the shape charac-
terization and the Reeb graph construction naturally induce a decomposition
of the shape in topologically significant regions, see figure 2.(a). The region de-
composition obtained from our contouring approach does not admit slices with
internal holes and each border component of the surface patches is shared by
only two distinct patches. Since each border component is completely shared
by two patches, cutting and pasting operations along such a contour may be
performed independently from other contours. Moreover, this segmentation pro-
duces a directed graph [24], in which each node corresponds to an object patch
and each edge connects two nodes, see figure 2.(b).

characterization, see figure 2.c). The value of f and a geometric descriptor
are associated to each node in the simplified ERG. In our approach we move
from a local description of the surface slice to a more general representation of
the model sub-parts, based on the assumption that the larger the model portion
associated to a node is, the more relevant the node should be.

Since our graph is directed, each node identifies a subgraph and the geomet-
ric attribute associated to the node is obtained from the surface related to its
subgraph, see figure 2.d). For leaf nodes, whose sub-graph is empty, we consider
only the slice of the shape that correspond to them. Once sub-parts have been
associated to each node, we use the spherical harmonic analysis of the sub-part
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to describe its geometry. Spherical harmonic analysis has been defined in [10]
and this descriptor is rotation invariant. In [10] the scale invariance is obtained
by uniformly scaling a model in a cube whose edge length is two; therefore, in
our case each sub-part is separately scaled.

(a) (b) (c)

(d)

Fig. 2. A Reeb graph of a calf a), the surface segmentation associated b) and
the oriented graph c). In d) the surface portions associated to some nodes are
highlighted; these regions contain all patches associated to the subgraph nodes.

3.2 Graph matching

The sub-part shape correspondence between two objects is obtained by match-
ing the directed attributed graphs. Inexact graph matching has been topic of re-
search since many years and several techniques are available [25,26]: recently,the
framework proposed in [2] formalizes the enumeration of all common subgraphs
of two graphs in a way that makes it straightforward usable for plugging heuris-
tics in it and, according to the specific case, achieves different approximations
of the optimal solution. The matching algorithm proposed in this paper is a
specialization of that described in [2] for partial graph matching applications.

According to the notation proposed in [2] we name a graph G a common

subgraph of G1 and G2 if there exists a subgraph isomorphism from G1 to G and
from G2 to G. A maximal common subgraph is a common subgraph that can not
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be extended to another subgraph by the addition of nodes or edges. A maximum

common subgraph of G1 and G2 is a common subgraph G such that there exists
no other common subgraph having more nodes than G. The maximum common
subgraph in not necessarily unique.

The output of the matching process should be the largest maximal common
subgraph that minimizes the geometrical and the structural differences. The
proposed matching algorithm can be synthetically described by the two following
steps:

1. Select a mappings M among the nodes of the two graphs G1 and G2. The
mapping M is a set of node pairs (v1, v2), where v1 is a node of G1 and v2 is
a node of G2;

2. compute the common subgraph between G1 and G2 by expanding the map-
ping M .

The step 2 expands the initial mapping M as much as possible while respecting
the definition of common subgraph.

As discussed in [3], running the algorithm on M yields an approximation
of the maximum common subgraph. Heuristic techniques can be used to select
the best initial mappings and the subgraph expansion rules, in order to better
approximate the optimal solution.

Depending on the attributes and on the topology of the graph, some nodes
are more relevant than others. Since the considered input graph G is directed,
each node v identifies a subgraph G ′ induced by the set of nodes having v as
ancestor plus v itself [24]. The notion of node relevance is used to select the
initial mapping M and it is captured by the subgraph associated to the node:
a large subgraph corresponds to a large amount of structural and geometric
information and then to a more relevant articulated object sub-part. Another
useful heuristic has been constructed associating to the pair of nodes (v1, v2)
the information about how much the common subgraph would expand with the
addition of that pair. To this end, the distance function between two nodes v1

and v2 that involves node and edge attributes and the approximation of the
structure of the subgraphs related to v1 and v2 has been shown in the equation
(1), for details see [3].

d(v1, v2) =
w1G S + w2St S + w3Sz S

w1 + w2 + w3
, (1)

In equation (1) G S, St S and Sz S are real numbers, G S, St S, Sz S ∈

[0, 1]. G S and St S respectively represent the geometric similarity between the
node attributes and the structural similarity between the node subgraphs. Sz S

evaluates the similarity between the size of the sub-parts associated to nodes,
where the size corresponds to the sum of the lengths of the subgraph edges.
Finally, the three weights w1, w2 and w3 belong to the range [0, 1] and combine
the three components of d. G S compares the geometric signatures associated
to v1 and v2. The signature of each node is obtained decomposing the sub-part
surface into a collection of functions defined on concentric spheres and using
spherical harmonics to discard orientation information for each one, [10].
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Then, the similarity between the subgraph structures is defined as:

St S =
in + out + sub n + sub in + sub out

5
,

where

X =

{

0 if max(X(v1), X(v2)) = 0
|X(v1)−X(v2)|

max(X(v1),X(v2))
otherwise

in and out represent the in-degree and the out-degree of the two nodes, sub n the
number of the subgraph nodes, sub in and sub out the in-degree and out-degree
sum of the subgraph nodes. Finally Sz S = sub s, where sub s is the sum of the
edge attributes of the subgraph.

Finally Sz S = sub s, where sub s is the sum of the attributes of the sub-
graph that represent the size of the sub-parts associated to nodes.

The graph matching algorithm follows the framework proposed in [2,3]. In
the listings 1.1 and 1.2 a brief description of the algorithm pseudo-code shows
how the expansion process produce the common sub-graph starting from the
initial set of relevant nodes.

The relevance of a node is computed with respect to the average size of all
subgraphs induced, and the set of the initial nodes mapping (CANDIDATES) is
obtained by combining all relevant graph nodes, see listing 1.1. The node pairs

Listing 1.1. The initial mapping procedure

In i t i a l Mapp ing (G1 , G2 , CANDIDATES)
{

Relevant Nodes (G1 , RG1) ;
Relevant Nodes (G2 , RG2) ;
f o r each node v1 o f RG1

f o r each node v2 o f RG2
Add( ( v1 , v2 ) , CANDIDATES) ;

}

belonging to the set CANDIDATES are ordered with respect to the distance d

shown in equation (1); then, the candidate node pair with the smallest value of
d is extracted. New node pairs are added to CANDIDATES by combining all the
nodes out-coming from the initial pair.

The process that produce the common subgraph by expanding the set of
node pair CANDIDATES is outlined in the listing 1.2. The function Pop extracts
the candidate node pair with the smallest value of d, while the statement Check
between the edges e1 and e2, guarantees the construction of the common sub-
graph CS is correct with respect to the definition of common sub-graph. Updates
adds new node pairs to M combining all the nodes out-coming from v1 and v2.

In particular has to be observed that the initial mapping among relevant
nodes makes the algorithm robust with respect to structural noise allowing the
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Listing 1.2. The comparison procedure

Match (G1 , G2 , CS)
{

In i t i a l Mapp ing (G1 , G2 , M) ;
whi le (M Not Empty){

c = ( v1 , v2 ) = Pop(M) ;
e1 = ( Parent ( v1 ) , v1 ) ;
e2 = ( Parent ( v2 ) , v2 ) ;

i f (Mapped( v1 ) and Mapped( v2 ) )
i f (Check ( e1 , e2 ) ){

Add( ( e1 , e2 ) , CS ) ;
} e l s e i f (Not Mapped( v1 ) and

Not Mapped( v2 ) ){
Add( c , CS ) ;
Add( ( e1 , e2 ) , CS ) ;

}

Update (CANDIDATES, c ) ;
}

}

construction of a not necessarily connected common subgraph enabling the recog-
nition of similar sub-parts even if the overall objects shape/structure is dissimi-
lar.

3.3 Computational complexity

The computational cost of the algorithm is given by the sum of the costs of two
main steps: the extraction of the structural algorithm and the graph matching
phase. The first step of the algorithm (that includes the extraction of the ERG
structure and the coding of the models sub-parts using the spherical harmonic
descriptor in [10]) may be stored in an out-of-core pre-processing phase. As shown
in [1] the complexity of the ERG extraction process is O(max(m + n, n log(n)))
with m the number of vertices inserted in the triangulation during the slicing
phase and n the number of vertices in the original mesh. The storage of the
graph nodes using the spherical harmonic descriptor requires O(b4)) operations
using a volumetric regular grid having O(b3) cells, see [27] for details.

The computation of the common subgraph between two graphs, with n and
m nodes respectively, is polynomial with respect to k = max(n, m). In fact,
identifying the relevant nodes is linear with respect to the number of nodes of
the graph O(k), while the mapping M is obtained by combining all relevant
graph nodes O(s ∗ k2), where s is the computational cost of the comparison of
two geometric attributes associated to the graph nodes. The construction of the
ordered set CANDIDATES takes O(k ∗ log ∗ k) while the extraction of the smallest
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value of d is constant; new elements of CANDIDATES are obtained by combining
all the nodes out-coming from the pair of nodes O(s ∗ k2) and this operation
is repeated at most once for each node belonging to the common subgraph.
By all these observations the computational complexity of the graph matching
algorithm is O(s ∗ k3).

4 Examples and discussion

In this section some experimental results are provided and discussed. Sub-part
correspondence represented in the figures of this section is obtained by giving
the same color to similar sub-parts.

In figure 3 is shown the partial correspondence obtained by comparing similar
models, in our case three horses. Although the overall shape of the animals is
the same, the models differ over some details: for example, the structure of the
head, the tail and the posture. Our partial matching correctly recognizes the
correspondence among the bodies and the front/rear sub-parts of the models. If
some shape features have no correspondence in the other models (like the tail)
they are not mapped at all. Nevertheless it could happen that features like the
legs may be switched. This is caused by a lack of structural information into the
leg description, in these cases the sub-parts mapping is completely demanded to
the geometric descriptor that produces this output.

Fig. 3. Sub-part correspondence among three animals: these models have similar
structure and geometry.

Other experimental results of the application of our matching method to
models having same overall shape but different spatial embedding are shown in
figure 4. The geodesic distance distribution on a human model does not change
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if the legs and the arms are stretched rather than curled up. Therefore, since
our structural descriptor is independent of different poses of the same object,
our method can recognize human features like hands, head, legs and body in
arbitrary positions, see figure 4.

(a)

(b) (c)

Fig. 4. Correspondence of shape features on a human model in different poses
(a), between two similar chairs (b) and finally between two spectacles (c).

Two examples of partial correspondence among models having different over-
all appearance is given in figure 5(a) and 5(b). In this case the models may differ
both in structure and geometry but they have similar sub-parts: even if the two
objects shown in figure 5(a) are not similar from a geometric and structural point
of view, they have two similar two big protrusions. The coupling of geometry
and structure pursued by our algorithm correctly map the common sub-parts of
the two objects. On the contrary, the central parts of the models are different,
thus they are not recognized as similar sub-parts. Similar remarks hold for figure
5(b), where the two objects have a similar subpart.

In figures 6 and 7, two examples where a whole model is a sub-part of another
one are shown. In figure 6 the graph of the cow head is a subgraph of the cow
graph. The matching algorithm computes the common subgraph reasoning on
the graph structure and on the geometric attributes, with the result that the
mouth, the ears and the horns are correctly mapped. Even if the two shapes
of figure 7(a) 7(b) are dissimilar, the elongated part shown in (b) is correctly
recognized as sub-part of the model shown in (a). This is because the structural
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(a) (b)

Fig. 5. The correspondence between the sub-parts of the models is highlighted
by the color.

Fig. 6. Recognition of the head of a cow with respect to the whole animal model.

descriptor of (a) correctly characterizes both the geometry and the structure of
the sub-part that identifies the long part of the screwdriver.

5 Concluding remarks and future work

In summary, in this paper we have presented a new method for measuring similar-
ity and recognizing sub-part correspondence between 3D shapes. Main research
contribution is the new similarity matching mechanism to compare 3D shapes
coupling geometry and topology. Since this method computes an approximation
of the maximal common subgraph of two structural shape descriptors, it is par-
ticularly suitable for sub-part shape correspondence. In addition, it is flexible,
because it can be applied to any skeletal structure with the same properties of
our topological graph (attributed, directed and acyclic), and tunable, as it can
be used in a multi-step query approach, to progressively refine the set of geomet-
rically similar candidates. Even if the flexibility of the mapping function makes
adaptable to various application contexts, other shape descriptors like the shape

graph proposed in [28] may be considered.
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(a) (b)

Fig. 7. The whole model (b) is recognized as sub-part of the screwdriver (a).

The method proposed in this paper produces an object segmentation with-
out any user interaction while the approaches in [13] and [15] do. Furthermore,
differently from [12] that always splits a shape into three parts, our segmentation
depends on the shape complexity of the object and decomposes it into a set of
significant sub-parts. The method proposed in [14] produces an automatic and
structural subdivision of the object surface but it works only on simple surfaces
where shape discontinuities are present and easily recognized. As shown in figures
3 and 4, coupling structure and geometry like in our approach is advantageous
for comparing models having similar overall shape and structure but different
posture.
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