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Abstract
This paper presents novel language and analysis techniques
that significantly speed up software model checking of data
structure properties. Consider checking a red-black tree im-
plementation. Traditional software model checkers system-
atically generate all red-black tree states (within some given
bounds) and check every red-black tree operation (such as
insert, delete, or lookup) on every red-black tree state. Our
key idea is as follows. As our checker checks a red-black
tree operation o on a red-black tree state s, it uses program
analysis techniques to identify other red-black tree states s′1,
s′2, ..., s′k on which the operation o behaves similarly. Our
analyses guarantee that if o executes correctly on s, then
o will execute correctly on every s′i. Our checker therefore
does not need to check o on any s′i once it checks o on s.
It thus safely prunes those state transitions from its search
space, while still achieving complete test coverage within
the bounded domain. Our preliminary results show orders
of magnitude improvement over previous approaches. We
believe our techniques can make software model checking
significantly faster, and thus enable checking of much larger
programs and complex program properties than currently
possible.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging;
F.3.1 [Logics]: Specifying and Verifying Programs

General Terms
Verification, Reliability, Languages

Keywords
Software Model Checking, Program Analysis

1 Introduction
Software model checking [1, 2, 4, 7, 8, 13, 16, 44, 21, 36]
is a formal verification technique that exhaustively tests a
program on all possible inputs up to a given size (to handle

input nondeterminism) and on all possible nondeterministic
schedules (to handle scheduling nondeterminism). Most pre-
vious work on software model checking focuses on schedul-
ing nondeterminism to verify event sequences with respect
to properties expressed in temporal logics. This paper deals
with input nondeterminism. In particular, it focuses on ver-
ifying properties of linked data structures.

Consider checking that a red-black tree [9] implementation
maintains the red-black tree invariants. Previous model
checking approaches such as JPF [44, 26], CMC [36, 35],
Korat [2], or Alloy [25] systematically generate all red-black
trees (up to a given size n) and check every red-black tree
operation (such as insert or delete) on every red-black tree.
Since the number of red-black trees with at most n nodes is
exponential in n, these systems take time exponential in n
for checking a red-black tree implementation.

This paper presents novel language and analysis techniques
that significantly speed up software model checking of pro-
grams with input nondeterminism. Our key idea is as fol-
lows. Consider checking the red-black tree implementation
again on trees with at most n nodes. Our checker detects
that any red-black tree operation such as insert or delete
touches only one path in the tree from root to a leaf (and per-
haps some nearby nodes). Our checker then determines that
it is sufficient to check every operation on every unique tree
path, rather than on every unique tree. Since the number of
unique red-black tree paths is polynomial in n, our checker
takes time polynomial in n. This leads to orders of magni-
tude speedups over previous model checking approaches.

In general, our system works as follows. Consider checking
a file system implementation, as another example. As our
checker checks a file system operation o (such as reading,
writing, creating, or deleting a file or a directory) on a file
system state s, it uses program analyses to identify other
file system states s′1, s′2, ..., s′k on which the operation o
behaves similarly. Our analyses guarantee that if o executes
correctly on s, then o will also execute correctly on every
s′i. Our checker therefore does not need to check o on any
s′i once it checks o on s. It thus safely prunes all those
state transitions from its search space, while still achieving
complete test coverage within the bounded domain.

We call this the glass box approach to software model check-
ing because our checker analyzes the behavior of an opera-
tion to prune large portions of the search space. This is in
contrast to the traditional black box approach that checks
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Figure 1: Three red-black trees before and after an insert

operation. The tree path touched by the operation is

highlighted in each case. Once our glass box checker

checks the insert operation on tree t1, it determines that

it is redundant to check the same operation on t2 and t3.

every operation on every state, treating the operation as a
black box. Depending on the strength of the analyses, a
glass box checker can be significantly more efficient than a
black box checker in exploring the same search space.

Our preliminary results show orders of magnitude improve-
ment over previous model checking approaches. We believe
that our techniques can make software model checking sig-
nificantly faster, and thus enable checking of much larger
programs than currently possible.

The rest of this paper is organized as follows. Section 2
illustrates our approach with examples. Section 3 describes
our glass box model checker. Section 4 presents experimental
results. Section 5 discusses related work. Section 6 concludes
and lists our contributions.

2 Examples
This section illustrates our key idea with examples.

2.1 Red-Black Tree Example
Consider the red-black tree example from Section 1. That
is, consider checking that a red-black tree implementation
maintains the red-black tree invariants. As we discussed
in Section 1, a black box checker (such as JPF [44, 26],
CMC [36, 35], Korat [2], or Alloy [25]) systematically gener-
ates all red-black trees (up to a given size n) and checks every
red-black tree operation (such as insert or delete) on every
red-black tree. Since the number of red-black trees with at
most n nodes is exponential in n, a black box checker takes
time exponential in n for the checking.

Our glass box checker works as follows. Consider checking
the insert operation on tree t1 in Figure 1. The tree t1’

depicts the state of the tree after the operation. (For sim-
plicity, the figure only shows the tree structures and does
not show the color of the nodes, or the keys or values stored
in the nodes.) As our checker checks the insert operation
on t1, it detects that the operation touches only one path
in the tree from the root to a leaf. This path is highlighted
in the figure. That means, assuming deterministic execu-
tion, the insert operation will behave similarly on all trees,

1 class Queue {
2 private Stack front = new Stack();
3 private Stack back = new Stack();
4
5 public boolean repOk() {
6 return (back != null) && back.repOk() && (back != front)
7 && (front != null) && front.repOk();
8 }
9
10 // ------------ ------------
11 // dequeue <--- front | | back <--- enqueue
12 // ------------ ------------
13
14 public void enqueue(Object o) {
15 back.push(o);
16 }
17 public Object dequeue() throws EmptyQueueException {
18 if (front.isEmpty()) moveBackToFront();
19 if (front.isEmpty()) throw new EmptyQueueException();
20 return front.pop();
21 }
22 private void moveBackToFront() {
23 while (!back.isEmpty()) front.push(back.pop());
24 }
25 }

Figure 2: Queue implemented using two Stacks.

such as t2 or t3, where the highlighted path remains the
same. Our checker determines that it is redundant to check
the same insert operation on trees such as t2 or t3 once it
checks the insert operation on tree t1. Our checker safely
prunes those state transitions from its search space, while
still achieving complete test coverage within the bounded
domain. Our checker thus ends up checking every red-black
tree operation on every unique tree path, rather than on ev-
ery unique tree. Since the number of unique red-black tree
paths (in trees with at most n nodes) is polynomial in n, our
checker takes time polynomial in n to check a red-black tree
implementation. This leads to orders of magnitude speedups
over the black box approach.

2.2 Queue Example
This section illustrates our approach with a more detailed ex-
ample. Figure 2 presents a Queue that is implemented using
two Stack objects front and back. The enqueue method in-
serts an item at the back of a Queue by pushing it onto back.
The dequeue method removes and returns the item at the
front of a Queue by popping and returning the top item of
front. If front is empty, dequeue first moves all the items
from back to front. If front is still empty, dequeue throws
an EmptyQueueException. (One possible implementaton of
Stack is shown in Figure 7.)

Queue’s class invariant is described by its repOk method, as
good programming practice suggests [30]. The class invari-
ant of an object must hold before and after every public
method of the object. That is, the class invariant is both
a precondition and a postcondition of every public method.
The repOk method returns true iff the current state (or rep-
resentation) of an object satisfies its class invariant. The
class invariant of Queue holds iff its subobjects front and
back are different and not null, and their invariants hold.

Consider checking that every public method of Queue pre-
serves its class invariant. That is, consider checking that
if the class invariant holds before a method, then the class
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Figure 3: State space of Queue with at most n = 4 items.

State (f ,b) has f items in front Stack and b in back. A

black box checker checks Ω(n2) state transitions.
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Figure 4: A glass box checker generates only O(n) states

and checks only O(n) transitions, yet achieves complete

coverage within the bounded domain.

invariant holds after the method, and the method either re-
turns normally or by throwing one of its declared excep-
tions. We assume all Queue methods execute determinis-
tically. (Otherwise, one must expose the nondeterminism
points to the model checker to check every possibility.)

A black box checker such as JPF [44] or CMC [36, 35]
starts from an empty Queue state and recursively invokes
and checks every Queue operation on every successive Queue

state (within a bounded domain). A stateful checker stores
all the checked states in a hashtable to avoid redundantly
checking the same operation on the same state more than
once. Suppose there is exactly one concrete state represent-
ing a Stack of size n. Then there are n + 1 concrete states
representing a Queue of size n. Figure 3 shows the state
space of Queue with at most n = 4 items. State (f ,b) has f
items in front and b in back. Edges represent enqueue and
dequeue operations. E.g., the edge from (1,1) to (1,2) rep-
resents an enqueue. The edges from (1,2) to (0,2) and (0,2)
to (1,0) represent dequeue operations. A black box checker
executes Ω(n2) state transitions to explore this space.

1 class ReachabilityDemo {
2 private boolean x, y, z;
3 public boolean repOk() { return !z || x && y; }
4
5 public void setX() { x = true; }
6 public void setY() { y = true; }
7 public void setZ() { if (x && y) z = true; }
8 }

Figure 5: A class with three boolean variables x, y, z.

T,T,TT,T,T

F,F,F

T,F,F F,T,F

T,T,F

F,F,F

T,F,F F,T,F

T,T,F

Figure 6: State space of code in Figure 5 (excluding self

loops). (b1,b2,b3) implies x = b1, y = b2, z = b3. The figures

on the left and right show the state transitions executed

by a black box and glass box checker respectively.

Our glass box checker works as follows. Consider the tran-
sition from (0,0) to (0,1) using the enqueue method. This
operation terminates normally and the class invariant holds
after the method. As our checker checks this operation, its
dynamic analysis detects that the enqueue method does not
read the front Stack. That means, if the state of the front

Stack were different, the enqueue method would still exe-
cute similarly. Our checker then determines that if enqueue
executes successfully on (0,0), then it will execute success-
fully on (i,0) for any i. Our checker therefore safely prunes
all those state transitions from its search space. In partic-
ular, if Queue has at most n = 4 items, our checker prunes
the enqueue edges from (0,0), (1,0), (2,0), (3,0), and (4,0)
once it successfully checks enqueue on (0,0).

Similarly, checking enqueue on (0,1), (0,2) and (0,3) results
in pruning enqueue operations on all (i,1), (i,2) and (i,3).
Checking dequeue on (1,0), (2,0), and (3,0) results in prun-
ing dequeue operations on all (1,i), (2,i), and (3,i). Figure 4
presents the same state space as Figure 3 except that it
only shows the transitions that our checker executes. Our
glass box checker executes only O(n) state transitions to
explore the state space, while still achieving complete test
coverage within the bounded domain. Moreover, our checker
never generates states from which all transitions have been
pruned. For example, our checker never generates any state
(i,j) where i 6= 0 and j 6= 0. Thus, our checker generates only
O(n) states and checks only O(n) transitions, compared to
O(n2) states and O(n2) transitions in a black box approach.
This results in significant speedups.

For simplicity, we implicitly assumed in the above example
that there is only one possible argument to enqueue, so there
is only one enqueue transition from each state. But suppose
there are n different items that can be passed as arguments
to enqueue, so there are n enqueue transitions from each
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1 public class Stack {
2 private static class Node {
3 Node next;
4 Object value;
5 Node(Node n, Object v) { next = n; value = v; }
6 }
7
8 private Node head;
9

10 public boolean repOk() {
11 Set visited = new java.util.HashSet();
12 for (Node n = head; n != null; n = n.next) {
13 if (!visited.add(n)) return false;
14 }
15 return true;
16 }
17
18 public void push(Object value) {
19 head = new Node(head,value);
20 }
21 public Object pop() {
22 if (head == null) return null;
23 Object v = head.value; head = head.next; return v;
24 }
25 }

Figure 7: Stack implemented using a linked list.

state. Then, for checking a Queue of size n, a black box
checker actually executes an exponential number of transi-
tions. Our glass box checker still executes O(n) transitions.

3 Glass Box Model Checker
This section presents our glass box model checker. While
the basic idea illustrated in the previous section is simple,
one has to overcome several technical challenges to make it
work well in practice. This section describes our approach.

3.1 Search Space
This section describes how a glass box model checker orga-
nizes its search space.

3.1.1 Defining the Search Space
Consider the Stack example from Figure 7. The Stack is
implemented using a linked list. Its class invariant (repOk)
checks that the list is acyclic. Consider checking that the
Stack implementation preserves the Stack invariant.

One way to systematically test the Stack implementation is
to start from the initial empty Stack state, and recursively
invoke and check every Stack operation on every succes-
sive Stack state (within a bounded domain). Some black
box checkers such as JPF [44] or CMC [36] use this ap-
proach. The stateful black box checkers store (a hash of) ev-
ery checked state in a hashtable to avoid redundantly check-
ing the same operation on the same state more than once.

The above technique, however, is not a suitable way for a
glass box checker to organize its search space. The example
in Figure 5 illustrates why. Figure 6 shows the correspond-
ing state space (excluding self loops). A black box checker
using the above technique starts from the initial state and
reaches all five states by recursively invoking methods on
successive states. However, as a glass box checker checks
the setX method on state (F,F,F), its analyses detect that
setX behaves similarly on state (F,T,F). Therefore, the glass

1 public class Stack {
2 private static class Node {
3 tree Node next;
4 Object value;
5 Node(Node n, Object v) { next = n; value = v; }
6 }
7
8 private tree Node head;
9
10 public boolean repOk() { return true; }
11
12 public void push(Object value) {
13 head = new Node(head,value);
14 }
15 public Object pop() {
16 if (head == null) return null;
17 Object v = head.value; head = head.next; return v;
18 }
19 }

Figure 8: Stack in Figure 7 with its invariant rewritten

using the tree annotation (Line 3). The repOk (Line 10)

then has no additional constraints to specify.

box checker prunes that edge from its state space. Similarly,
as a glass box checker checks setY on (F,F,F), it prunes setY
from (T,F,F). But this disconnects the state space graph. A
glass box checker thus cannot depend on reachability of the
state space to reach the state (T,T,F).

Instead, our glass box checker uses a different approach.
Our system requires programmers to specify the class in-
variants of data structures. For example, in Figure 7, the
repOk method describes the class invariant of the Stack. The
search space of a glass box checker checking a data structure
is defined to consist of all type-correct states (within some
finite bounds) that satisfy its class invariant. Note that this
is different from the search space of a black box checker,
which is defined to consist of all states (within some finite
bounds) that are reachable from the initial state by perform-
ing a sequence of data structure operations. The next two
subsections discuss the implications of this difference.

A glass box checker exhaustively checks every operation on
every state within the search space, but does so efficiently
by detecting redundancies in the search space and pruning
away large portions of the search space without explicitly
checking them. Each time our checker checks an operation,
it verifies that (i) the operation either terminates normally or
throws one of its declared exception, (ii) the invariant holds
after the operation, and (iii) all the properties specified by
programmers (e.g., as assert statements) hold.

3.1.1.1 Programming Overhead

One of the main advantages of the black box model checking
approach is that it requires minimal programmer assistance.
For checking application independent properties (such as
null pointer dereferences or memory leaks), it requires no
programmer assistance. For checking application dependent
properties, it only requires a specification of the properties
to be checked in an executable form (e.g., using asserts).

Compared to black box model checking, glass box model
checking sometimes involves extra programming effort be-
cause programmers have to additionally specify class invari-
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1 public class RedBlackTree {
2 private static class Node {
3 tree Node left;
4 tree Node right;
5 Node parent
6 boolean color;
7
8 public repOkLocal() {
9 assert((left == null) || (left.parent == this));

10 assert((right == null) || (right.parent == this));
11
12 if (color == RED) {
13 assert((left == null) || (left.color == BLACK));
14 assert((right == null) || (right.color == BLACK));
15 }
16
17 return true;
18 }
19 }
20
21 private tree Node root;
22
23 public boolean repOk() {
24 // Return true iff the number of black nodes in every
25 // path from the root to a leaf is the same.
26 }
27 ...
28 }

Figure 9: Partial implementation of RedBlackTree, ex-

cluding keys and values from Nodes.

ants of data structures as described above. However, because
glass box checking is orders of magnitude faster than black
box checking (as we show later in the paper), we believe
writing the class invariants is worth the effort.

Note that the effort required to write class invariants is pro-
portional to the size and complexity of the data declarations,
not the size of the code. For example, java.util.TreeMap
(a red black tree implementation) has 1670 lines of code,
whereas its invariants takes less than 1% as many lines. Also,
if the goal includes checking that a data structure imple-
mentation preserves its invariants, then programmers have
to specify the invariants for both black box and glass box
checking, in which case there is no additional overhead in-
volved in glass box checking. In addition, if programmers
make a mistake in writing the invariants, our system pro-
vides concrete counter examples to help them correct the
invariants, as we describe in the next section.

Glass box model checking thus involves slightly more pro-
gramming overhead compared to black box model check-
ing, but significantly less overhead compared to other for-
mal verification techniques using theorem provers (that re-
quire extensive programmer assistance—either as invariants
for loops and recursive functions, or as guidance to interac-
tive theorem provers). On the other hand, glass box checking
is significantly faster than black box checking but could be
slower than techniques using theorem provers, if the theorem
provers are provided sufficient manual assistance. Glass box
model checking thus presents an interesting trade-off in the
design space of software verification techniques.

3.1.1.2 Handling Errors in Invariants

Programmers can make two kinds errors in writing the class
invariant of a data structure. Let SR be the set of states

1 public class RedBlackTree {
2 private static class Node {
3 tree Node left;
4 tree Node right;
5 Node parent
6 boolean color;
7 ghost int blackHeight;
8
9 public repOkLocal() {
10 assert((left == null) || (left.parent == this));
11 assert((right == null) || (right.parent == this));
12
13 if (color == RED) {
14 assert((left == null) || (left.color == BLACK));
15 assert((right == null) || (right.color == BLACK));
16 }
17
18 int x = blackHeight - ((color == BLACK) ? 1 : 0);
19 assert(blackHeight >= 0);
20 assert((left == null) || (left.blackHeight == x));
21 assert((right == null) || (right.blackHeight == x));
22 if (x > 0) assert((left != null) && (right != null));
23
24 return true;
25 }
26 }
27
28 private tree Node root;
29
30 public boolean repOk() { return true; }
31 ...
32 }

Figure 10: RedBlackTree in Figure 9 with its invariant

rewritten using a ghost field (Line 7) and thus converting

global constraints (Lines 24-25 in Figure 9) into local

constraints (Lines 18-22 in this figure).

(within some finite bounds) that are reachable from the ini-
tial state by performing a sequence of operations. Let SI be
the set of states (within the same finite bounds) that satisfy
the invariant. We say an invariant is unsound if there is a
state in SR that is not in SI , and incomplete if there is a
state in SI that is not in SR.

If an invariant is unsound, then (assuming the initial state
is in SI) there must exist a transition from states s1 to s2,
where both s1 and s2 are in SR, but only s1 is in SI and s2

is not. Our glass box checker will eventually check such a
transition and detect that the transition does not preserve
the invariant. It will then present the transition as a concrete
counter example to the user. The user can either fix the
invariant; or alternately, if the bug is in the code, the user
can fix the code.

If an invariant is incomplete, then either (i) the checker de-
tects a false positive, that is, a state s that is in SI but
not SR on which some operation fails to check—in which
case the user can strengthen the invariant by examining the
concrete counter example s, or (ii) the checker successfully
checks the program—in which case the checker would have
verified the program not only on all reachable states but
some on unreachable states as well as.

Thus, even though our glass box checker depends on invari-
ants to cover all states, it is sound in that in does not miss
any errors in the program that a black box checker would
detect, even if programmers make a mistake in specifying
the invariants.
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1 public Finitization checkStack(int h, int nObjects) {
2 Finitization f = new Finitization("Stack");
3 f.setOperations("push", "pop");
4 f.setMaxTreeHeight(h);
5
6 Set objects = f.createObjects("Object", nObjects);
7 objects.add(null);
8 f.setFieldDomain("Node.value", objects);
9 f.setArgumentDomain("push", "value", objects);

10
11 return f;
12 }

Figure 11: Finitization description for code in Figure 8.

Field Domain

operation {push, pop}
head {N0, null}
N0.next {N1, null}
N1.next {N2, null}
N2.next {null}
N0.value {O0, O1, O2, null}
N1.value {O0, O1, O2, null}
N2.value {O0, O1, O2, null}
push.value {O0, O1, O2, null}

Figure 12: Search space for checkStack(3,3).

3.1.2 Specifying Invariants
One way programmers can specify a class invariant is by
writing a repOk method [30]. The repOk method returns
true iff the current state (or representation) of an object
satisfies its class invariant. The repOk method of Stack in
Figure 7 is an example, which checks that there are no cycles
in the linked list.

Our system also allows programmers to specify invariants (as
well as other properties to be checked) using a declarative
language, such as a subset of JML [28], as long as the declar-
ative specifications can be automatically translated into ex-
ecutable code. For example, a large subset of JML can be
automatically translated to Java using the JML tool set [28].

3.1.3 Specifying Tree-Based Invariants
In addition to the above, our system provides a stylized
way for specifying certain kinds of invariants that makes
it both convenient for programmers to write the invariants,
and faster for a glass box checker to check programs using the
invariants (as we explain later). Our approach is premised
on the observation that most data structures are tree-based.
The next three subsections describe this approach.

3.1.3.1 Specifying the Tree Backbone

Given a tree-based data structure, our system allows pro-
grammers to specify the tree backbone of the data structure
using the keyword tree as a field modifier [33]. For example,
in Figure 8, the keyword tree on Line 3 specifies that the
linked list has no cycles along the next fields. Note how this
is far more convenient to write than the executable specifi-
cation in Lines 11-15 of Figure 7.

In general, if object x has a tree field fd that contains a
pointer to object y, we say that there is a tree edge fd from
x to y. x is the tree-parent of y and y is a tree-child of x.
The meaning of the tree specification is that (before and

1 public Finitization checkRedBlackTree(int h) {
2 Finitization f = new Finitization("RedBlackTree");
3 f.setOperations(...);
4 f.setMaxTreeHeight(h);
5 return f;
6 }

Figure 13: Finitization description for code in Figure 10.

Field Domain

operation {...}
root {N0, null}
N0.left {N1, null}
N0.right {N2, null}
N1.left {N3, null}
N1.right {N4, null}
N2.left {N5, null}
N2.right {N6, null}

N3.left, N3.right, N4.left, N4.right, {null}
N5.left, N5.right, N6.left, N6.right

N0.color, N1.color, N2.color, N3.color, {RED, BLACK}
N4.color, N5.color, N6.color

N0.parent, N1.parent, N2.parent, N3.parent, {N0, N1, N2, N3,
N4.parent, N5.parent, N6.parent N4, N5, N6, null}

Figure 14: Search space for checkRedBlackTree(3).

after every public method) the graph induced by the set of
all tree edges in the heap is a forest of trees (that is, it has
no directed or undirected cycles).

Programmers can use the tree keyword to specify the tree
backbone of any tree-based data structure. This includes
singly linked lists, doubly linked lists, trees with parent point-
ers, threaded trees, balanced search trees, etc. Note that
these data structures can have other non-tree pointers that
can contain cycles, as long as their tree pointers do not con-
tain cycles. The partial implementation of a RedBlackTree

in Figure 9 provides another example. The tree keyword
on Lines 3-4 specify that the left and right fields form the
tree backbone of the data structure.

3.1.3.2 Specifying Local Invariants

Consider the RedBlackTree in Figure 9. One of its invari-
ants is that for every node N , N .left.parent=N . We say
that such invariants, that involve only (the fields of) an ob-
ject and (the fields of) its tree-children, are local invariants.
Another example of a local invariant in RedBlackTree is,
(N .color=RED) =⇒ (N .left.color 6=RED), for all nodes N .

Our system allows programmers to specify local invariants
using the repOkLocal method. Lines 8-19 in Figure 9 pro-
vide an example. To check the local invariants on a particu-
lar instance of a data structure, our system traverses the tree
backbone of the data structure and checks that repOkLocal
returns true on every tree node. The advantage of specifying
local invariants this way (as opposed to specifying them as
global invariants using the repOk method) is that program-
mers do not have to write code to perform the tree traversal.
Another advantage is that it makes glass box model checking
faster, as we explain later in the paper.
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head next value next value next value operation push.value

N0 N1 null nullO0 O1 nullpopnull

N0 N1 N2

Figure 15: A valid element of the search space in Fig-

ure 12 representing the pop operation on a Stack with

two items O1 an O2.

root

N0

left right

null null

parent color

N0 RED

N1

left right

N1 null

parent color

null RED

N0

... 

Figure 16: (A portion of) an invalid element of the search

space in Figure 14, with the root and its left child both

being red.

3.1.3.3 Specifying Non-Local Invariants

In addition to specifying local invariants using repOkLocal,
programmers can specify other non-local invariants using the
repOk method. The repOk method in Figure 9 provides an
example. It checks that the number of black nodes in every
path from the root to a leaf is the same.

It is often possible to convert non-local invariants into local
ones by adding extra fields [32]. For example, the above
non-local invariant can be converted into a local invariant by
adding a field blackHeight to every node (which stores the
number of black nodes in any path from that node to a leaf).
This is illustrated in Lines 18-22 of Figure 10. Note that in
Line 7 of the figure, blackHeight is declared to be a ghost

field [15]. A ghost field exists only during model checking,
but otherwise does not exist when the data structure is used
in a program. A ghost field is thus part of the specification
(and not implementation) of a data structure and it does
not slow down the performance of the data structure.

3.1.4 Specifying Bounds on Search Space
In any model checker that checks data structure properties,
programmers must specify finite bounds on the search space.
In our glass box checker, programmers must specify the fol-
lowing: (i) for the tree back-bone (of a tree-based data struc-
ture), the maximum height of the tree backbone; (ii) for
objects not on the tree backbone, the maximum number
of objects of each class; (iii) the domain of every method
argument and non-tree field. Our checker then checks the
program on every possible state in this finite space.

Figure 11 presents an example finitization description that
is automatically generated by our system from the type dec-
larations in Figure 7. The setOperations method speci-
fies that the checker must check the two public methods
push and pop. The setMaxTreeHeight sets the maximum
height of the tree backbone. The createObjects method
specify that a state can contain at most nObjects number
of Objects. The setFieldDomain and setArgumentDomain

methods specify that the field value and the argument to
push can either contain null or an Object.

Once our system generates a finitization, programmers can
specialize it; e.g., they can make checkStack take a single

1 void search(Finitization f) {
2 F = Set of all elements in f
3 I = Set of all elements in F that satisfy the invariant
4 S = I
5 while (S is not empty) {
6 t = Any transition in S
7 Check t
8 T = Set of all transitions similar to t (including t)
9 S = S - T
10 }
11 }

Figure 17: Pseudo-code for the search algorithm.

argument n and set both h and nObjects to n. We provide
several helper functions for easy domain construction.

Figure 13 presents another example finitization description
for the code in Figure 9. If the domain of a non-tree field
of type T is not explicitly set by the finitization, then our
system sets the domain to be the set of all values of type T .
For example, for Figure 13, our system sets the domain of
color to true and false (representing BLACK and RED).

3.1.5 Search Space
Suppose our checker is invoked using checkStack(3,3) in
Figure 11. Our system then constructs the search space in
Figure 12. Our system first allocates the specified number of
objects: one Stack, three Nodes, and three Objects. It then
sets the domain of each object field and method argument
as described in the finitization. Finally, it includes the two
public methods of Stack in the operations to be checked.

The search space consists of all possible assignments to the
above fields, where each field gets a value from its corre-
sponding domain. Every element of this search space is
a state transition consisting of a concrete Stack state, a
method to invoke on the state, and the method arguments.
For example, Figure 15 corresponds to invoking pop on a
Stack with two items O0 and O1. In Figure 12, there are
four fields with four elements in their domains and four with
two, so the size of this search space in 44 ∗ 24. In general,
when our checker is invoked with checkStack(n,n), the size
of the search space is (2n + 2)n+1.

Note that some elements of a search space may be invalid
because the corresponding data structure does not satisfy
the class invariant. For example, the element in Figure 16
(for the search space in Figure 14) is invalid because the root
and its left child are both red.

3.1.6 Search
Figure 17 presents the basic glass box search algorithm.
Given a class to check and a finitization, our system first
initializes the search space S to the set I of all elements that
satisfy the invariant of the class. It then systematically ex-
plores the space S by repeatedly selecting a transition t from
S, checking t, running its analyses to identify the set T of
other transitions similar to t (including t), and pruning T

from S.

Sections 3.2 and 3.3 describe how to perform the above
search efficiently.
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0 1

root

root.right

root.leftroot.left

root.colorroot.color root.color

right.color

left.color left.color left.color

right.color

Figure 18: BDD representing the set of all RedBlackTrees

of maximum height 2 that satisfy the invariant in Fig-

ure 10.

3.2 Search Space Representation
Consider checking the RedBlackTree (Figure 10) with check-

RedBlackTree(h). Say, n = 2h. Then, our checker gener-
ates O(n2) and checks O(n2) transitions to cover this search
space (as we show later). But the size of the search space
is exponential in n. Also, the size of the set I in Figure 17
is exponential in n. If we are not careful, then search space
management itself could take exponential time, thus defeat-
ing most of the advantage gained by glass box checking. To
avoid this, we compactly represent the search space using
reduced ordered binary decision diagrams [3], or BDDs.

Figure 18 presents an example, where the BDD represents
the set I (in Figure 17) of all RedBlackTrees of maximum
height 2 that satisfy the invariant in Figure 10. Each node
in the BDD represents one bit. A solid line from the node
represents the bit being 1 and a dotted line 0. For the
fields root, left, and right, 1 represents that the field
is non-null and 0 null; for color, 1 represents BLACK and
0 RED. Any path in the BDD from the initial node to the
node 1 represents (one or more) elements of the set I, that
is, data structures that satisfy the invariant. For example,
the following are elements of I: {root=null}, {root 6=null,
root.color=BLACK, root.left=null, root.right=null}.
Figure 19 presents another example, with a BDD represent-
ing the same set as in Figure 18, but with the order of the
fields in the BDD reversed. Figure 20 presents a BDD repre-
senting all RedBlackTrees of maximum height 3 that satisfy
the invariant in Figure 10.

Note that in Figures 18, 19, and 20, we do not include the
field parent in the BDD. This is because our analyses detect
that parent is a derived field. That is, given any reachable
node in a tree, there is exactly one possible value of parent

01

right.color

left.color left.color

root.color root.color root.color

root.leftroot.left

root.right

root

root.left

root.right

Figure 19: BDD representing the same set as in Fig-

ure 18, with the order of the fields in the BDD reversed.

that satisfies the invariant. It is therefore unnecessary to
store the values of the parent fields in the set S in Fig-
ure 17, because given any element of S, one can reconstruct
the values of all the parent fields. Similarly, we do not in-
clude the ghost field blackHeight (Line 7 in Figure 10) in
the BDDs, because it is a derived field. In general, ghost
fields are almost always derived fields.

A good field ordering is the key to keeping the BDD size
small. In Figures 19 and 20, we order the fields in the BDDs
based on a post-order traversal of the tree backbone of the
data structure. In general, this is ordering of fields we use
in our system. For objects not on the tree backbone, we
include them in the order in which we encounter them as we
build the set I as described in Section 3.3. The above field
ordering keeps the fields connected by invariants together
in the BDD, which seems to naturally induce a good field
ordering and thus compact BDDs.

The above field ordering also makes the search efficient. The
reason is as follows. In the BDD package we use (and in the
BDD packages we know of), all the BDDs are immutable. A
BDD node once created cannot be modified. But different
BDDs can share nodes. To make a change to a BDD, the
implementation constructs a new BDD by copying all the
BDD nodes above the place where the change happens. That
means, making a change to the bottom of a BDD is more
expensive because there is more copying involved, whereas
making a change to the top of a BDD is cheaper. It is
therefore better to keep fields that change frequently at the
top of the BDD. In the context of our search (Figure 17),
that means it is better to keep fields that are frequently
accessed at the top of the BDD. Operations on tree-based
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Figure 20: BDD representing the set of all RedBlackTrees in the search space in Figure 14 (with maximum height 3)

that satisfy the invariant in Figure 10.
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Max. Height Set Size BDD Size

1 2 0
2 7 12
3 34 58
4 597 226
5 238526 744
6 42715248230 2367
7 1123387228727905854061 7359

Figure 21: For a given maximum height, Column 2 above

presents the number of RedBlackTrees that satisfy the class

invariant in Figure 10, and Column 3 presents the size of

the BDD representing the set of all such RedBlackTrees.

data structures access a node at the top of the tree more
frequently than a node at the bottom of the tree. Hence we
use the field ordering in Figure 19 rather than Figure 18.

Figure 21 presents the sizes of BDDs representing the set
I (in Figure 17) for RedBlackTrees with different maxi-
mum heights. The numbers indicate that as the height h
increases, assuming n = 2h, the size of the BDD grows as
O(n log n). The number of elements in I however grows ex-
ponentially in n, because there are exponentially (w.r.t. n)
many RedBlackTrees of a given maximum height h. This
illustrates how a BDD can provide a compact representation
for a set of related data structures.

In general, if all the invariants of a tree-based data struc-
ture are local (that is, the invariants are specified using only
repOkLocal and without using repOk), then it is easy to see
that the size of the BDD representing the set I in Figure 17
is always O(n log n) (where n is the maximum size of the
data structure), even though the number of elements in I

could be exponential in n. This is part of the reason why it
is advantageous to use local invariants as much as possible
for glass box model checking.

3.3 Search
Figure 17 presented the search algorithm. This section de-
scribes how to perform each step of the algorithm efficiently.

3.3.1 Lines 5, 6, and 9 in Figure 17
We described in Section 3.2 how we use BDDs to represent
our search space. Given that, the operations in Lines 5,
6, and 9 of Figure 17 can be performed efficiently. Line 5,
checking if a set is empty, is a constant time BDD operation.
Line 9, computing the difference of two sets, is usually an
efficient BDD operation. In particular, even if the two sets
contain exponentially many elements, operations on the sets
can be performed efficiently using their compact BDD rep-
resentations. Line 6, choosing an element from a non-empty
set, takes time linear in the number of fields in the BDD. If
the set has more than one element, our system chooses the
lexicographically least element of the set. That ensures that
the search space remains contiguous and structured as much
as possible, which in turn leads to smaller BDD representa-
tions of the search space as the search progresses.

3.3.2 Lines 7 and 8 in Figure 17
Section 2 illustrated the basic idea behind glass box check-
ing. Section 3 so far described various pieces that are nec-

essary to make glass box checking practical. This section,
finally, describes the main glass box checking technique.

The key to making glass box model checking efficient is to
identify as large a set T as possible in Figure 17, that is, given
a transition t, to identify as many transitions similar to t as
possible, so that they can be pruned away without explicitly
checking them. This section describes how we monitor the
program as we check a transition t (Line 7) and how we
use the results of the monitoring to construct the set T of
transitions similar to t (Line 8).

3.3.2.1 Pruning the Search Space

Consider the Stack example in Figure 8. Consider checking
that the transition in Figure 15 preserves the Stack invari-
ant. As our checker runs the pop method, it monitors the
set Fr of fields that pop reads. In this case, pop reads head,
N0.value, and N0.next. That means, regardless of the val-
ues of the remaining fields, pop will still behave similarly.
Our system then determines (as we explain below) that re-
gardless of the values of the remaining fields, if the invariant
holds before pop, then the invariant holds after pop. Our sys-
tem therefore prunes all elements of the search space where
head=N0, N0.value=O0, N0.next=N1, and operation=pop.

The above technique, in effect, detects don’t care fields in a
transition t, and suggests that all transitions t’ that differ
from t only at the don’t care fields can potentially be pruned
from the search space. However, we need some additional
mechanisms to ensure that the system is sound. So see why
the above technique alone is unsound, consider the following
example:

1 class SoundnessDemo {
2 private boolean x, y;
3 public boolean repOk() { return !x || y; }
4 public void flipX() { x = !x; }
5 }

The invariant repOk returns true iff x implies y. Suppose
we invoke flipX on x=false and y=true. The invariant
holds before and after the transition. flipX reads only x;
y is a don’t care. The above technique suggests that flipX

will perhaps verify on all states where x=false (and there-
fore those elements be pruned from the search space). But
the suggestion is incorrect because flipX does not verify
on x=false and y=false. The invariant holds before the
transition, but not after. The above technique fails on this
example because there is an invariant between a field that is
modified (x) and a field that is a don’t care (y).

To soundly prune the search space, our system therefore
tracks (conservatively) the sets of fields that may be con-
nected by invariants. It works as follows. If a data struc-
ture invariant only specifies that the tree backbone of the
data structure must remain a tree (that is, both repOk and
repOkLocal always return true), then the above technique
is actually sound. The above technique thus works correctly
on the Stack example in Figure 8.

If a data structure invariant only specifies local invariants in
addition to the tree backbone (that is, repOk always return
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true), our system knows that the only sets of fields that may
be connected by an invariant are those that only include the
fields of a node and the fields of its tree-children. Say, a
transition t reads fields Fr and modifies fields Fm, and S1..k

are sets of fields connected by invariants. Our system then
computes the smallest set Fr′ such that: (i) if f ∈ Fr then
f ∈ Fr′ , and (ii) if f1 ∈ Fr ∩ Fm and f1, f2 ∈ Si for any
1 ≤ i ≤ k then f2 ∈ Fr′ . Our system treats any field not in
Fr′ as a don’t care, and prunes all transitions t’ that differ
from t only at the don’t care fields.

If a data structure invariant specifies global invariants (that
is, repOk does not always return true), then our system con-
servatively assumes that all the fields read by repOk are con-
nected by an invariant. (This is another reason, in addition
to the one at the end of Section 3.2, why using local in-
variants as much as possible is advantageous.) Our system
includes the set Sk+1 of all the fields read by repOk in the
sets of fields connected by invariants, and computes the set
Fr′ and uses it to prune the search space as described above.
In the future, we plan to use static analysis to more precisely
identify the sets of fields connected by invariants specified by
a repOk.

3.3.2.2 Improving Precision By Tracking Information Flow

This section describes an optimization to more precisely
compute the set Fr. The above algorithm sets Fr to the
set of fields read by a method. But sometimes, even though
a method reads a field, it does not depend on it. The Point

class below provides an example. Suppose the method re-
turns false on Line 5 because x==y. The above analysis as-
sumes that because the method read all three fields x, y,
z, the return value depends on all the fields—even though
it depends only on x and y.

1 class Point {
2 private int _x, _y, _z;
3 public boolean isSkewed() {
4 int x=_x, y=_y, z=_z;
5 if (x == y) return false;
6 if (y == z) return false;
7 if (z == x) return false;
8 return true;
9 }}

To make our analysis more precise, we use dynamic infor-
mation flow tracking to compute Fr. Consider Stack in Fig-
ure 12. There are nine fields. For every value v the program
computes, our system also computes a nine-bit shadow value
v′ that tracks the input fields from which there is an infor-
mation flow to v. Given an execution trace of a method m,
we set Fr to the set of fields from which there is information
flow to the value returned by m and to all the values written
by m.

One thing we must be careful about is that information flow
analysis [11, 37] is different from dynamic slicing [27], as the
following example shows.

1 class InfoFlowDemo {
2 private boolean b;
3 public boolean m() {
4 boolean x = false; if (b) x = true; return x;
5 }}

1 I = F
2
3 // Enforce local constraints
4
5 for (all nodes N in post-order traversal of tree backbone) {
6 I’ = I
7 I = Empty set
8 while (I’ is not empty) {
9 t = Any transition in I’
10 r = repOkLocal holds for t on node N
11 T = Set of all transitions with same repOkLocal behavior
12 I’ = I’ - T
13 if (r) I = I + T
14 }
15 }
16
17 // Enforce global constraints
18
19 I’ = I
20 I = Empty set
21 while (I’ is not empty) {
22 t = Any transition in I’
23 r = repOk holds for t
24 T = Set of all transitions with same repOk behavior
25 I’ = I’ - T
26 if (r) I = I + T
27 }

Figure 22: Pseudo-code for initializing the search space.

This is the expanded version of Line 3 in Figure 17.

There is information flow from b to x above. But if b is
false, then x is not control or data dependent on b because
the branch is not taken. If we use dynamic slicing, then
on running the method with b=false we would incorrectly
conclude that the method does not depend on b and always
returns false. To avoid that, our analysis conservatively as-
sumes that after any join point in the control flow graph, all
variables depend on the corresponding branch conditional.
Thus the return value x depends on b. However, in the fol-
lowing example, q on Line 2 does not depend on p because
the branch on Line 1 always exits from the method, so there
is no join point.

1 if (p) return true;
2 if (q) return true;

3.3.2.3 Pruning Isomorphic Structures

Compare the Stack in Figure 15 with a Stack where head=N0,
N0.next=N1, N0.value=O2, N1.next=null, and N1.value=O1. The
two are isomorphic. Clearly, once we check pop on the first
Stack, it is redundant to check pop on the second Stack.
Our checker avoids checking isomorphic structures as follows.
After checking the transition in Figure 15, the analyses in
the previous sections conclude that the pop operation on
all Stacks with head=N0, N0.next=N1, and N0.value=O0 can
be pruned. Our isomorphism analysis then determines that
pop can also be pruned from all structures that satisfy the
following formula: (head=N0 ∧ N0.next=N1 ∧ N0.value6=null)

In general, to construct the formula, our isomorphism anal-
ysis traverses all the relevant fields of a transition t. Each
time it encounters a fresh object o that a field points to, it
includes (in the formula) all other transitions t′ where the
fields read by the traversal so far have the same values except
that instead of o in t there is another fresh object o′ in t′.
Our system then prunes all transitions denoted by the for-
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Transitions BDD Nodes Created Time (seconds)
Benchmark Max Size Total Initialization Checking Max BDD Size Total Initialization Checking

1 4 9 4 5 2 0.470 0.468 0.002
2 5 16 6 10 3 0.469 0.468 0.001
3 5 18 8 10 3 0.469 0.467 0.002
4 5 20 10 10 3 0.471 0.469 0.002
5 5 22 12 10 3 0.470 0.469 0.001

Stack 6 5 24 14 10 3 0.470 0.468 0.002
7 5 26 16 10 3 0.488 0.487 0.001
8 5 28 18 10 3 0.469 0.468 0.001

...
16 5 44 34 10 3 0.474 0.472 0.002
32 5 76 66 10 3 0.475 0.473 0.002
64 5 140 130 10 3 0.477 0.475 0.002

128 5 268 258 10 3 0.480 0.477 0.003

1 5 17 6 11 4 0.476 0.474 0.002
2 7 34 10 24 8 0.475 0.473 0.002
3 8 48 14 34 10 0.476 0.474 0.002
4 9 57 18 39 10 0.477 0.475 0.002
5 10 74 22 52 10 0.476 0.473 0.003

Queue 6 11 81 26 55 10 0.476 0.473 0.003
7 12 113 30 83 10 0.476 0.473 0.003
8 13 122 34 88 10 0.477 0.473 0.004

...
16 21 291 66 225 18 0.491 0.481 0.010
32 37 934 130 804 34 0.546 0.513 0.033
64 69 3211 258 2953 66 0.565 0.490 0.075

128 133 11448 514 10934 130 0.588 0.496 0.092

1 4 4 2 0 1 0.490 0.488 0.002
2 8 57 14 29 10 0.487 0.484 0.003
3 13 262 70 122 37 0.492 0.487 0.005
4 22 607 74 459 63 0.497 0.491 0.006
5 32 2200 348 1504 190 0.495 0.487 0.008

HeapArray 6 45 4653 595 3463 360 0.501 0.488 0.013
7 59 9000 957 7086 759 0.512 0.486 0.026
8 79 15416 670 14076 2143 0.522 0.486 0.036
9 100 46695 3090 40515 5509 0.568 0.495 0.073

10 124 71829 3961 63907 7058 0.583 0.489 0.094
11 149 127326 5385 116556 10687 0.650 0.491 0.159
12 176 231491 7297 216897 15036 0.755 0.492 0.263
13 204 487375 10405 466565 28593 1.106 0.492 0.614
14 235 1216192 17504 1181184 107758 2.216 0.496 1.720

Max Height

1 14 107 19 88 9 0.478 0.474 0.004
2 48 667 155 512 51 0.489 0.474 0.015
3 156 3973 576 3397 249 0.537 0.476 0.061

RedBlackTree 4 478 31868 2558 29310 983 0.628 0.477 0.151
5 1350 190363 7642 182721 3492 0.930 0.485 0.445
6 3544 1008747 22832 985915 12066 2.679 0.496 2.183
7 8804 6618185 68458 6549727 39339 16.272 0.541 15.731

Height/ Degree

2 2 62 630 58 572 21 0.495 0.481 0.014
3 2 135 1431 42 1389 14 0.523 0.483 0.040
4 2 240 3194 131 3063 41 0.542 0.481 0.061
5 2 380 5666 162 5504 40 0.560 0.480 0.080
6 2 558 8721 218 8503 56 0.574 0.481 0.093
7 2 777 11710 87 11623 18 0.587 0.482 0.105
8 2 1040 19723 350 19373 86 0.626 0.483 0.143
9 2 1350 28322 392 27930 79 0.636 0.482 0.154
10 2 1710 37544 509 37035 105 0.670 0.483 0.187

2 3 102 987 152 835 31 0.514 0.482 0.032
3 3 270 2469 108 2361 20 0.541 0.482 0.059

FileSystem 4 3 560 6273 1035 5238 93 0.578 0.481 0.097
5 3 1005 11430 1587 9843 95 0.626 0.484 0.142
6 3 1638 19967 3650 16317 170 0.707 0.487 0.220
7 3 2492 24288 496 23792 27 0.745 0.497 0.248
8 3 3600 49240 12226 37014 348 1.063 0.504 0.559
9 3 4995 65091 14698 50393 329 1.404 0.518 0.886
10 3 6710 95751 27351 68400 511 1.993 0.527 1.466

2 4 182 1767 442 1325 49 0.530 0.483 0.047
3 4 675 5209 273 4936 21 0.579 0.484 0.095
4 4 1840 25309 12443 12866 289 0.816 0.497 0.319
5 4 4130 56441 27500 28941 349 1.458 0.527 0.931

2 5 342 3691 1420 2271 83 0.555 0.484 0.071
3 5 1890 13186 765 12421 26 0.717 0.499 0.218

Figure 23: Experimental results for glass box model checking.
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mula using efficient BDD operations. The above technique
is sound if the analysis traverses the fields in a fixed order.

Note that some black box checkers also prune isomorphs us-
ing heap canonicalization [24, 34]. The difference is, in heap
canonicalization, once a checker visits a state, it canonical-
izes the state and checks if the state has been previously vis-
ited. In our isomorphism pruning, once our checker checks a
transition t, it computes a formula F denoting (often an ex-
ponentially large number of) transitions isomorphic to t, and
prunes F from the search space (often with a small number
of BDD operations). Our checker never visits F’s transitions.

In addition to heap symmetries, our checker also handles
other symmetries. For example, if the actual values of in-
tegers in a program do not matter but only their relative
ordering matters, our checker prunes states which are sym-
metric in the above respect using efficient BDD operations.

3.3.3 Lines 2, 3, and 4 in Figure 17
Line 2 builds a BDD F that represents the search space de-
scribed by a given finitization (e.g., the search spaces in Fig-
ures 12 and 14). It takes linear time. Lines 3 and 4 initialize
the search space with the set I of all structures that satisfy
the invariant. The pseudo code for constructing the set I is
shown in Figure 22. It works as follows. First, our system
initializes I to F. It then performs a post-order traversal of
the tree backbone of the data structure. Each time it en-
counters a node N , it constraints I with the local constraints
specified by repOkLocal (Lines 6-14 in Figure 22). Finally,
it further constraints I with the global constraints specified
by repOk (Lines 19-27 in Figure 22). Note that the above
algorithm for initializing the search space is similar to the
algorithm for performing the search (Figure 17).

The last part of the above algorithm (Lines 19-27 in Fig-
ure 22) is also similar to our previous work on Korat [2]
for generating all structures satisfying a given global invari-
ant (repOk), except that in this paper we use information
flow tracking to improve the precision of the analysis (Sec-
tion 3.3.2.2) and we use BDDs to represent the search space
which leads to better pruning. The main difference between
Korat and our glass box model checker, however, is that Ko-
rat ultimately works like a black box model checker. That
is, Korat generates every valid state (within a bounded do-
main) and checks every operation on every state. Our glass
box checker, on the other hand, prunes away a large number
of states and operations on states without explicitly check-
ing them (as described in the previous sections). We present
experimental results comparing Korat with glass box model
checking in Section 4.

4 Experimental Results
This section presents our preliminary experimental results.
We implemented a rudimentary glass box model checker as
described in this paper. We extended the Polyglot [38] com-
piler framework to automatically instrument programs to
perform our dynamic analysis (described in Section 3.3.2),
and to automatically generate the finitization descriptions
(described in Section 3.1.4). We used JavaBDD [45] for
BDDs, which is built on top of the BuDDy package [29].

We performed all our experiments on a Linux Fedora Core
4 machine with a Pentium 4 3.2 GHz processor and 1 GB
memory using Sun’s Java 1.4.2 08.

We present results for the following benchmarks: (a) Stack

shown in Figure 8, with methods push and pop; (b) Queue

shown in Figure 2, implemented using the Stack in Fig-
ure 8, with methods enqueue and dequeue; (c) HeapArray [9],
an array based implementation of a binary heap to repre-
sent a priority queue, with methods insert and extractMin;
(d) RedBlackTree [9], from java.util.TreeMap, with meth-
ods get, put, and remove; and (e) FileSystem, adopted from
the Daisy file system benchmark [12], with methods lookup,
create, unlink, mkdir, and rmdir.

We checked each benchmark on states up to a maximum size,
where: a Stack of maximum size n has at most n nodes and
n values; a Queue of maximum size n has at most n nodes
in the front Stack, n nodes in the back Stack, and n values;
a HeapArray of maximum size n has at most n nodes and
n values; a RedBlackTree of maximum size h has height at
most h; and a FileSystem of maximum size (h, d) has height
at most h and degree at most d, that is, each directory has
at most d entries.

Figure 23 presents our experimental results. It reports the
following numbers for glass box model checking. It shows
the number of transitions that are explicitly checked by our
checker (that is, the number of times the loop in Lines 5-10
in Figure 17 is executed). It shows the number of BDD nodes
created, as a measure of the search space management over-
head. It also shows the time taken by our checker. Note that
we did not yet optimize the execution time of our checker,
but we report it here nonetheless to provide a rough idea.
For the number of BDD nodes created and the time taken,
the figure shows the totals as well as the numbers separately
for the initialization phase (Lines 2-4 in Figure 17) and the
checking phase (Lines 5-10 in Figure 17). Finally, the figure
also shows the maximum size of the BDD representing the
search space (set S in Figure 17).

Note that in Figure 23, for checking the Stack, our glass box
checker checks only O(1) transitions regardless of the size of
the Stack. This is because push and pop touch only a con-
stant number of fields at the beginning of the linked list. For
checking the Queue, our glass box checker checks O(n) tran-
sitions, as explained in Section 2.2. For the HeapArray and
the RedBlackTree, the growth in the number of transitions
appears to be roughly O(n2) (where n is the maximum num-
ber of nodes in the tree and h = log n is the maximum height
of the tree). However, for the HeapArray, the search space
management overhead dominates the cost. We are currently
exploring combining symbolic model checking with our glass
box approach, by augmenting our search space with symbolic
values, to reduce the search space management overhead.

Figure 24 presents results of comparing the performance of
our glass box model checker with JPF [44]. For JPF, we
report the number of transitions explicitly checked by the
checker, as well as the number of unique states visited by
the checker (as a measure of its space overhead, since JPF
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Glassbox JPF
Benchmark Max Size Transitions BDD Nodes Time (s) Transitions States Time (s)

1 4 9 0.470 22 12 0.765
2 5 16 0.469 170 66 0.766
3 5 18 0.469 3864 1290 2.686
4 5 20 0.471 335174 99368 174.0
5 5 22 0.470 timeout

Stack ...
8 5 28 0.469 timeout

16 5 44 0.474 timeout
32 5 76 0.475 timeout
64 5 140 0.477 timeout

128 5 268 0.480 timeout

1 5 17 0.476 24 18 0.663
2 7 34 0.475 284 144 0.985
3 8 48 0.476 1955 791 2.213
4 9 57 0.477 86736 29197 60.00
5 10 74 0.476 timeout

Queue ...
8 13 122 0.477 timeout

16 21 291 0.491 timeout
32 37 934 0.546 timeout
64 69 3211 0.565 timeout

128 133 11448 0.588 timeout

1 4 4 0.490 170 85 0.604
2 8 57 0.487 1558 627 1.983
3 13 262 0.492 28826 9705 24.218
4 22 607 0.497 795606 229455 900.0
5 32 2200 0.495 timeout
6 45 4653 0.501 timeout

HeapArray 7 59 9000 0.512 timeout
8 79 15416 0.522 timeout
9 100 46695 0.568 timeout

10 124 71829 0.583 timeout
11 149 127326 0.650 timeout
12 176 231491 0.755 timeout
13 204 487375 1.106 timeout
14 235 1216192 2.216 timeout

Max Height

1 14 107 0.478 47 29 0.752
2 48 667 0.489 7585 3306 5.000
3 156 3973 0.537 timeout

RedBlackTree 4 478 31868 0.628 timeout
5 1350 190363 0.930 timeout
6 3544 1008747 2.679 timeout
7 8804 6618185 16.272 timeout

Figure 24: Comparing glass box model checking to JPF.
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Glassbox Blackbox
Benchmark Max Size Transitions BDD Nodes Time (s) Transitions States Time (s)

1 4 9 0.470 1 1 0.001
2 5 16 0.469 9 3 0.001
3 5 18 0.469 32 8 0.001
4 5 20 0.471 115 23 0.007
5 5 22 0.470 450 75 0.013
6 5 24 0.470 1946 278 0.023
7 5 26 0.488 9240 1115 0.066

Stack 8 5 28 0.469 47655 5295 0.368
9 5 30 0.470 264420 26442 2.333

10 5 32 0.474 1566587 142417 17.587
...
16 5 44 0.474 timeout
32 5 76 0.475 timeout
64 5 140 0.477 timeout

128 5 268 0.480 timeout

1 5 17 0.476 15 5 0.001
2 7 34 0.475 132 33 0.013
3 8 48 0.476 1815 363 0.093
4 9 57 0.477 38838 6473 0.517
5 10 74 0.476 1175041 167873 18.609
6 11 81 0.476 timeout

Queue 7 12 113 0.476 timeout
8 13 122 0.477 timeout

...
16 21 291 0.491 timeout
32 37 934 0.546 timeout
64 69 3211 0.565 timeout

128 133 11448 0.588 timeout

1 4 4 0.490 6 2 0.001
2 8 57 0.487 24 6 0.001
3 13 262 0.492 120 24 0.004
4 22 607 0.497 660 110 0.034
5 32 2200 0.495 4648 664 0.096

HeapArray 6 45 4653 0.501 36120 4515 0.330
7 59 9000 0.512 375264 41696 2.690
8 79 15416 0.522 3445710 344571 29.973
9 100 46695 0.568 timeout

10 124 71829 0.583 timeout
11 149 127326 0.650 timeout
12 176 231491 0.755 timeout
13 204 487375 1.106 timeout
14 235 1216192 2.216 timeout

Max Height

1 14 107 0.478 6 2 0.024
2 48 667 0.489 315 21 0.065
3 156 3973 0.537 3713787 58949 81.395

RedBlackTree 4 478 31868 0.628 timeout
5 1350 190363 0.930 timeout
6 3544 1008747 2.679 timeout
7 8804 6618185 16.272 timeout

Figure 25: Comparing glass box model checking to an optimal black box model checking.
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Glassbox Korat
Benchmark Max Size Transitions BDD Nodes Time (s) States Considered Transitions Time (s)

1 4 9 0.470 7 6 0.001
2 5 16 0.469 12 9 0.001
3 5 18 0.469 18 12 0.001
4 5 20 0.471 25 15 0.001
5 5 22 0.470 33 18 0.001
6 5 24 0.470 42 21 0.002
7 5 26 0.488 52 24 0.002

Stack 8 5 28 0.469 63 27 0.002
9 5 30 0.470 75 30 0.002

10 5 32 0.474 88 33 0.002
...
16 5 44 0.474 187 51 0.008
32 5 76 0.475 627 99 0.019
64 5 140 0.477 2275 195 0.054

128 5 268 0.480 8643 387 0.258

1 5 17 0.476 20 15 0.001
2 7 34 0.475 43 27 0.001
3 8 48 0.476 77 42 0.002
4 9 57 0.477 124 60 0.003
5 10 74 0.476 186 81 0.006
6 11 81 0.476 265 105 0.012

Queue 7 12 113 0.476 363 132 0.015
8 13 122 0.477 482 162 0.018

...
16 21 291 0.491 2430 510 0.041
32 37 934 0.546 14838 1782 0.195
64 69 3211 0.565 102374 6630 1.805

128 133 11448 0.588 757702 25542 26.162

1 4 4 0.490 13 12 0.001
2 8 57 0.487 66 60 0.001
3 13 262 0.492 364 330 0.004
4 22 607 0.497 2185 1920 0.013
5 32 2200 0.495 15250 13433 0.076

HeapArray 6 45 4653 0.501 119658 105112 0.267
7 59 9000 0.512 1168018 1058058 2.286
8 79 15416 0.522 11370780 10050750 24.501
9 100 46695 0.568 timeout

10 124 71829 0.583 timeout
11 149 127326 0.650 timeout
12 176 231491 0.755 timeout
13 204 487375 1.106 timeout
14 235 1216192 2.216 timeout

Figure 26: Comparing glass box model checking to Korat.
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is a stateful checker). The results clearly indicate how JPF
takes exponentially more time as the size of the data struc-
tures increase. Our glass box checker, however, scales much
better.

While running experiments with JPF, we noticed that JPF
sometimes does not detect that two states are isomorphic.
It therefore visits a lot more states than necessary. To make
for a fairer comparison, we implemented our own black box
checker. We implemented all the optimizations in published
literature that we are aware of. We also handcoded a isomor-
phism detector for each data structure we tested, to simulate
an optimal black box checker. Figure 25 presents results of
comparing the performance of our glass box model checker
with our optimal black box model checker. Once again, the
results clearly indicate that glass box model checking scales
significantly better than black box model checking.

Finally, Figure 26 presents the results of comparing the per-
formance of our glass box model checker with Korat [2]. Ko-
rat ultimately works like a black box checker, so the results
for Korat are similar to other black box checkers. Our glass
box checker performs much better.

5 Related Work

There has been much research on software model checking
tools that exhaustively test a program on all possible inputs
up to a given size (to handle input nondeterminism) and on
all possible nondeterministic schedules (to handle scheduling
nondeterminism). Verisoft [16] is a stateless model checker
for C programs. Java PathFinder (JPF) [44, 26] is a state-
ful model checker for Java programs. XRT [20] checks Mi-
crosoft CIL programs. Bandera [8] and JCAT [10] translate
Java programs into the input language of model checkers like
SPIN [22] and SMV [31]. Bogor [13] provides an extensible
framework for building software model checkers. CMC [36] is
a stateful model checker for C programs that has been used
to test large pieces of software including the Linux imple-
mentation of TCP/IP and the ext3 file system [35]. How-
ever, most of the above work on applying model checking
to software focuses on scheduling nondeterminism to verify
event sequences with respect to temporal properties. This
paper deals with input nondeterminism. In particular, it
focuses on verifying properties of linked data structures.

The main contribution of this paper is as follows. Consider
checking a red-black tree implementation. Previous model
checking approaches such as JPF [44, 26], CMC [36, 35], Ko-
rat [2], and Alloy [25] systematically generate all red-black
trees up to a given size n and check every red-black tree oper-
ation on every red-black tree. Since the number of red-black
trees is exponential in n, these checkers take exponential
time. On the other hand, our checker detects similarities
in the search space and infers that it is sufficient to check
every red-black tree operation on every red-black tree path.
Since the number of red-black tree paths is polynomial in
n, our checker takes polynomial time. This leads to orders
of magnitude speedups over the previous approaches. This
paper also introduces several techniques to make glass box
checking work well in practice.

Tools such a Slam [1], Blast [21], and Magic [4] use heuristics
to construct and check an abstraction of a program (usually
predicate abstraction [19]). Abstractions that are too coarse
generate false positives, which are then used to refine the
abstraction and redo the checking. The abstraction-based
tools group several concrete program states into an abstract
state and check the abstract state instead of checking several
concrete states. Our glass box checker also in effect groups
concrete states by using program analyses to identify states
on which a given operation behaves similarly, and checks the
operation on only one state from each group. One difference
is that the abstraction-based tools use heuristics to group
states, whereas our system groups states only if they are
found to be similar with respect to an operation. However,
the two techniques are complementary and can be combined.

There are many static [16, 17] and dynamic [14] partial or-
der reduction systems. These systems are designed to han-
dle scheduling nondeterminism and use techniques that are
quite different from our techniques for checking data struc-
ture properties. In particular, the dynamic partial order
reduction [14] works only in a stateless checker. Our checker
is stateful in that it does not visit a state more than once.

There is a large body of research on specification-based test-
ing. An early paper [18] emphasizes its importance. Many
projects automate test case generation from specifications,
such as Z specifications [23, 41], UML statecharts [39], or
ADL specifications [6]. These specifications typically do not
consider linked data structures, and the tools do not gener-
ate Java test cases.

For systematically generating states from invariants we pre-
viously developed a system called Korat [2]. The main dif-
ference between Korat and our checker is that Korat works
like a black box checker. That is, generates every valid state
(within a bounded domain) and checks every operation on
every state. Our checker, on the other hand, prunes away
a large number of states and operations on states without
explicitly checking them. Figure 26 provides an experimen-
tal comparision of the two approaches. Also, Section 3.3.3
discusses other differences between Korat and this paper.
[43] translates a program and its specifications into a SAT
formula and uses a constraint solver to check the program.
However, this approach does not seem to scale well probably
because it generates huge formulas. Moreover, it introduces
additional unsoundness by bounding the lengths of compu-
tations (e.g., 3 unrollings of loops).

ESC/Java [15] uses a theorem prover to verify absence of
such errors as null pointer dereferences and array bounds
violations. JVer [5] uses a theorem prover to verify resource
bounds of applets. Static analyses such as TVLA [40] and
PALE [33] offer a promising approach for verifying properties
of data structures. However, none of the above techniques
are currently practical enough to verify, say, the correct-
ness of implementations of balanced trees, such as red-black
trees. Exhaustive testing, on the other hand, is a general ap-
proach that can verify any decidable property, but for inputs
bounded by a given size.
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6 Conclusions
This paper presents a novel approach to software model
checking of data structure properties. While most previ-
ous work on software model checking focuses on scheduling
nondeterminism to verify event sequences with respect to
properties expressed in temporal logics, this paper focuses
on verifying properties of linked data structures. The pa-
per presents novel techniques for detecting similarities in the
search space of data structures, and for soundly pruning re-
dundant states and operations without explicitly checking
them. It also presents novel techniques for efficiently man-
aging extremely large sets of data structures. This results in
dramatic speedups. We do not know of any other software
model checker that scales nearly as well for checking linked
data structures. This paper also presents several techniques
that make glass box model checking work well in practice.
We believe our techniques can make software model checking
significantly faster, and thus enable checking of much larger
programs and complex program properties than currently
possible.
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