
On the Monotonicity of the String Correction
Factor for Words with Mismatches

(extended abstract)

Alberto Apostolico? Cinzia Pizzi??

Georgia Tech & Univ. of Padova Univ. of Padova & Univ. of Helsinki

Abstract. The string correction factor is the term by which the prob-
ability of a word w needs to be multiplied in order to account for char-
acter changes or “errors” occurring in at most k arbitrary positions in
that word. The behavior of this factor, as a function of k and of the
word length, has implications on the number of candidates that need
to be considered and weighted when looking for subwords of a sequence
that present unusually recurrent replicas within some bounded number
of mismatches. Specifically, it is seen that over intervals of mono- or bi-
tonicity for the correction factor, only some of the candidates need be
considered. This mitigates the computation and leads to tables of over-
represented words that are more compact to represent and inspect. In
recent work, expectation and score monotonicity has been established for
a number of cases of interest, under i.i.d. probabilistic assumptions. The
present paper reviews the cases of bi-tonic behavior for the correction
factor, concentrating on the instance in which the question is still open.

1 Introduction

In computational biology, a motif is often described as a segment of DNA
or proteins sequence carrying some functional or structural information.
In the context of gene regulation, for instance, motifs are short sequences
of DNA that belong to the region of the gene upstream the coding re-
gion. They represent the locations to which specific proteins, called tran-
scription factors, bind to DNA to start the process of coding that will
transform a segment of DNA into a protein. A common approach to the
discovery of these regulatory sites goes through the detection of statisti-
cally significants regions. This pursues the commonly accepted hypothe-
sis that patterns that are unusually frequent might carry some important

? Dipartimento di Ingegneria dell’ Informazione, Università di Padova, Padova, Italy
and College of Computing, Georgia Institute of Technology, 801 Atlantic Drive,
Atlanta, GA 30318, USA. axa@dei.unipd.it Work Supported in part by the
Italian Ministry of University and Research under the National Projects FIRB
RBNE01KNFP, and PRIN “Combinatorial and Algorithmic Methods for Pattern
Discovery in Biosequences”, and by the Research Program of the University of
Padova.

?? Dipartimento di Ingegneria dell’ Informazione, Università di Padova, Italy and Dept.
of Computer Science, Univ. of Helsinki, Finland. cinzia.pizzi@dei.unipd.it

Dagstuhl Seminar Proceedings 06201
Combinatorial and Algorithmic Foundations of Pattern and Association Discovery
http://drops.dagstuhl.de/opus/volltexte/2006/789

biological meaning. The main problem when dealing with biosequences is
posed by the intrinsic variability induced by the mutations. This trans-
lates into multiple, more or less closely resembling incarnations of the
same pattern, none of which may be a perfect replica of the pattern it-
self. This leads to a number of candidates that grows exponentially with
the number of errors admitted and burdens the discovery process un-
bearably. Many heuristics (for example see [3,5,7,4,6] have been adopted
to cope with this explosion by pruning the search space in various ways,
which makes the computation more feasible, but also the real solution to
be possibly missed. Even when the limiting assumption is made that ev-
ery candidate pattern has at least one exact occurrence in the textstring,
the discovery process still needs to compare and score every substring
against every other one. Within this framework, an alternative approach
has been based on compact scoring. The idea is to build a set of classes
that cover the (already reduced) search space, and to score only one
representative for each class. By grouping together words that are syn-
tactically related and score a monotonically increasing departure from
expected frequency, we can assure that no word within a class is more
significant or informative than the representative of that class. The ap-
plication of this approach to words with mismatches (i.e., in which the
exact or maximum number of errors allowed is fixed but their positions
are arbitrary) was first studied in [1,2]. The expected number of occur-
rences, with either exactly k errors or up to k errors, was analyzed under
different scenarios letting the number of errors, or the string length, or
both increase. The corresponding score was proven to have a monotone
behavior in all cases, except in the case of exactly k errors, when the
string length is fixed and the number of errors increases. However, a
lower bound for monotonicity was established, that is given by half the
length of the word under analysis. In the present abstract, we further
concentrate on the analysis of this case and speculate that the corre-
sponding score exhibits a bi-tonic behavior, i.e., it either increases till
the end of the word, or increases up to a certain number of errors and
decreases thereupon. In order to make the present paper self-contained,
the next session reports results from [2] that are relevant to the discus-
sion. In section 3 we examine the expectation for words with mismatches
when the length is fixed and the number of errors increases.

2 Preliminaries

Given an alphabet Σ, we set w = v · a, where w, v ∈ Σ∗ and a ∈ Σ. The
correction factor for a symbol a is the quantity by which the probability
of a solid word w should be multiplied by if one error occurs at the
position occupied by the symbol a. Under i.i.d. assumptions, the symbol
correction factor for a is given by:

fa =

∑
s∈Σ\{a} ps

pa

2

The correction factor Ck(w) for solid word w is similarly defined as the
quantity by which the probability of w should be multiplied in order to
take into account k errors that can occur in any of its positions.

The correction factor for w with exactly k errors can be computed in
O(k2) time after a dynamic programming based on a pre-processing step
that takes O(nk) time (see [2] for details), or it can be computed directly
in O(k|w|) by applying the dynamic programming formula used in that
pre-processing, and generalized by the following equation:

Ck(w) = Ck(v) + Ck−1(v)fa. (1)

An assumption was made that limits the skew on our probability dis-
tributions in exchange for some useful consequences. The assumption is
quite reasonable for genomic as well as general applications.

Assumption 1: pa ≤
∑

s∈Σ\{a}
ps

As an immediate consequence of this assumption, we get

Property 1: fa ≥ 1 ∀a ∈ Σ

Property 2: Ci(w[1...j]) ≥ 0 ∀i, j and where w[1...j] is the prefix of
w of length j

This shows that correction factors are always non-negative, and in fact
that they are positive for words longer than the number of errors k.

Property 3: Ck(w) ≥ 0 ∀k, w and Ck(w) ≥ 1 ∀w : |w| ≥ k > 0.

We discuss next some monotonicity properties of correction factors for
the case (ECF) of exactly k errors when:

1. the word length is increased, keeping error number fixed;

2. the number of errors is increased, keeping word size fixed;

3. both word length and number of errors are increased.

Lemma 1. For w = va, Ck(w) ≥ Ck(v).

Proof. From equation 1, considering Property 1 we have Ck(w) =
Ck(v) + Ck−1(v)fa ≥ Ck(v) + Ck−1(v). By Property 2, Ck−1(v) ≥ 0.
We can conclude that Ck(w) ≥ Ck(v) + Ck−1(v) ≥ Ck(v). ut

Lemma 2. For w = va, Ck(w) ≥ Ck−1(v).

Proof. By the argument in the previous Lemma, since Ck(v) ≥ 0 we also
have: Ck(w) ≥ Ck(v) + Ck−1(v) ≥ Ck−1(v). ut

3

A counterexample will show that, in general, the correction factor is not
monotonically increasing when the number of errors allowed is increased
while the length of the string is kept fixed. To see this, assume that the
characters of Σ have the same probability. Hence:

ps1 = ps2 = . . . = ps|Σ| = p =
1

|Σ| and fs1 = fs2 = . . . = fs|Σ| = f = |Σ|−1

In this special case, for a word w we have:

Ck(w) =

(
|w|
k

)
fk.

By the definition of Ck(w) we have:

Ck(w) < Ck+1(w) =⇒
(
|w|
k

)
fk <

(
|w|

k + 1

)
fk+1 =⇒ f >

k + 1

|w| − k

Hence Ck(w) < Ck+1(w) holds for:

k <
|w|f − 1

f + 1
.

Combined with its symmetric argument, this leads to conclude that, with
k̄ = b |w|f−1

f+1
c, we have:

{
Ck(w) < Ck+1(w) for k ≤ k̄
Ck(w) > Ck+1(w) for k > k̄

Thus Ck(w) is bi-tonic in this case.
The next lemma establishes an acceptable lower bound for k̄, that cor-
responds to half the length of the string w.

Lemma 3. Ck(w) ≥ Ck−1(w) ∀k ≤ |w|
2

.

Proof. Let w = w1w2 . . . wm. The inequality holds for k = 1, since
C0(w) = 1 and:

C1(w) =

m∑
i=1

fi ≥
m∑

i=1

1 = m ≥ 1 = C0(w).

The contribution of each position in this case is the correction factor of
the character occupying that position. Hence we obtain a set of

(
m
1

)
= m

terms, which may be expressed as:

C1 = (f1, f2, . . . , fm).

For k = 2, we obtain a set of
(

m
2

)
= m(m− 1)/2 terms, where each term

results from the combination of the characters at two positions of w, say,
wi and wj , and consists of the product of the corresponding correction
factors fifj . The set of contributions for k = 2 is given by:

C2 = (f1f2, f1f3, . . . , f1fm, f2f3, . . . , f2fm, . . . , fm−1fm)

4

Since ∀i fi ≥ 1, then fifj = fjfi ≥ fi ∀i, j, so that for every term f in
C1 we have at least one element f̄ of C2 such that f̄ ≥ f . This argument
propagates from one C to the next for as long as the number of terms
increases. But the number of terms is given by the binomial coefficients,
hence our condition is preserved only for values of k up to m

2
.

We conclude that |w|/2 is always safe as a lower bound for k̄. ut

A natural question at this point concerns values of k greater than |w|/2.
From what was seen, it is unlikely that all kinds of oscillations be possible.
In the next section we deal with this specific situation.

3 Bitonicity of the expectation.

We propose here an iterative method to verify that Ck(w) exhibits either
a monotonic or a bi-tonic behavior when the number of errors increases
and the word length is fixed.
It is convenient to refine the problem as follows. We already know that
given the error number k̄, for strings of length at least 2k̄, the correction
factor increases when we increase the error number from 0 to k̄. What
we still have to verify is that for strings of shorter length, we can still
guarantee monotonicity or bi-tonicity. Therefore we need to study the
behavior of the correction factor for the all prefixes of w when we increase
the number of errors up to exactly k̄.
Towards this, we introduce a k × |w| table B to be filled as follow:

B[i][j] =

{
+ if Ci(w[1 . . . j]) > Ci−1(w[1 . . . j])
− if Ci(w[1 . . . j]) < Ci−1(w[1 . . . j])

Our goal is established once we would prove that in each column of B
there can be at most one sign change.
The following lemma gives a handle for our discussion:

Lemma 4. For w = va, if Ck(v) > Ck−1(v) and Ck−1(v) > Ck−2(v)
then Ck(w) > Ck−1(w). Likewise, if Ck(v) < Ck−1(v) and Ck−1(v) <
Ck−2(v) then Ck(w) < Ck−1(w).

Proof. For simplicity we discuss only the case for “>”. The proof for“<”
is easily obtained by interchanging symbols.
From Equation 1 we have:

Ck−1(w) = Ck−1(v) + Ck−2(v)fa and Ck(w) = Ck(v) + Ck−1(v)fa

Since Ck(v) > Ck−1(v) and Ck−1(v) > Ck−2(v), we have:

Ck(w) = Ck(v) + Ck−1(v)fa > Ck−1(v) + Ck−2(v)fa = Ck−1(w)

ut
As said, we hope to fill table B in such a way that in each column there
is at most one sign change. After the initial set up described later, we

5

 j j+1

-
- -

 j j+1

+
+ +

Fig. 1. Sign propagation in B[i][j]

will fill in the cells of the table column-wise. The lemma above tells us
how to fill a cell in the next column whenever two consecutive cells in
the current column have the same sign.

3.1 Initial Setup
We know from the proved lower bound that for the generic prefix
w[1 . . . j] the first d j

2
e cells are set to “+”. Thus for positions j ≥ 2k− 1

all the columns are set to “+”, showing a monotone behavior for the
corresponding prefixes. We then concentrate our attention on columns
ranging from 1 to 2k − 2.

Since at most j errors can occur in a string of length j, then the value
of the correction factor for w[1 . . . j] for more than j errors is 0. For such
a string, the correction factor for exactly j errors is positive, so that
we can set B[j + 1][j] to “-” for j = 1 . . . k − 1. Since the value of the
correction factor is still 0 for a number of errors greater than j + 1, we
are guaranteed that in any column j no sign changes take place past
row-index j + 1. Hence, k − j more cells in column j have their value
defined.

+ + + + + + + + + +

+
+

+ + + + + + + +
+ + + + +

+ +
+ + +

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5

-
-

-
-=

==
=

= =

Fig. 2. Initial setup of B[i][j] for k = 5 errors

3.2 Filling the Table
By the initial setup, we have now that the cells that are still to be filled
amount to k − d j

2
e − (k − j) = b j

2
c for positions j, 1 ≤ j ≤ k, and to

k − d j
2
e for positions j, k < j ≤ 2k − 2.

6

In particular, for j = 1 the column is already filled. It is seen (refer to
Fig.2) that in the first column there is only one sign change. For j = 2
and j = 3 we have 1 empty cell, for j = 4 and j = 5, two empty cells,
and so on: for 1 ≤ t ≤ k

2
, we have exactly t empty cells in columns 2t

and 2t + 1.
We start filling in the table from the second column. The top empty
cell here is B[2][2], and this must be filled with either a “+” or a “-”,
depending on the value of the symbol correction factors. Either way, this
will result in having only one sign change in the column. Moreover, if we
put a “-” in B[2][2] this will propagate to the cells B[3][3], B[4][4], and so
on, along the diagonal, according to Lemma 4. This implies that in the
subsequent columns one more cell has already been filled. In particular,
Column 3 is completed with only one sign change, Column 4 has now
1 empty cell, etc. If, on the other hand, we set B[2][2] to “+”, then no
propagation occurs, because the first cell involved in the lemma has been
already filled by the initial set up.

+ + + + + + + + + +

+
+

+ + + + + + + +
+ + + + +

+ +
+ + +

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5

-
-

-
-=

==
=

= =

-
-

-

-
+ + + + + + + + + +

+
+

+ + + + + + + +
+ + + + +

+ +
+ + +

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5

-
-

-
-=

==
=

= =

+

Fig. 3. Illustrating the “-” case with propagation(table of the left) and the “+” case,
with no propagation (table on the right)

Following the first one of the cases considered, we can move directly to
Column 4, where just one cell needs to be filled, and iterate the process.

+ + + + + + + + + +

+
+

+ + + + + + + +
+ + + + +

+ +
+ + +

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5

-
-

-
-=

==
=

= =

++
+

+ + + + + + + + + +

+
+

+ + + + + + + +
+ + + + +

+ +
+ + +

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5

-
-

-
-=

==
=

= =

-
-

+

-

Fig. 4. The two possible cases, both with propagation, in the further step for B[2][2] =
“+”

In the second case, we still need to consider Column 3, however, even
this case requires to set the value of one cell only. The advantage now is
that whatever the sign obtained for that cell, there will be propagation
to the next column (just one cell in case of a “+”, the whole diagonal
in case of a “-” as shown in Fig.4). Now, when moving to Column 4 we

7

will have again just one cell to set up, and we can iterate the process. In
Fig.5 there is an example of possible filling of the table in which at most
one sign change per column occurs.

1 2 3 4 5 6 7 8 9 10
+ + + + + + + + + +

+
+

+ + + + + + + +
+ + + + +

+ +
+ + +

1
2
3
4
5

-
-

-
-=

==
=

= = +
+

+
+-

--
-

calculated

propagated

init set up
+

-

Fig. 5. Example of a possible final configuration for Table B

4 Conclusions and future work.

There are cases in addition to those contemplated in the present paper
that need to be addressed in order to verify that the expectation, for the
range of number of errors k spanning from |w|/2 to |w|, is either mono-
tonic or bi-tonic. This forms the subject of work in progress. It would
be interesting in the future to extend the analysis of the behavior of
some kind of z-scores, also reported in [2], to intervals not necessarily of
constant frequency. In fact, when the counted number of occurrences in-
creases or decreases at rate slower than the expected value, we might still
be able to design compact representations for over/represented strings
of the kind considered here.

References

1. Apostolico, A., Pizzi, C. “Motif Discovery by Monotone Scores” to
appear in Discrete Applied Mathematics, Special Issue on Bioinfor-
matics (2006).

2. Apostolico, A., Pizzi, C. “Monotone Scoring of Pattern with Mis-
matches” in Proceedings of the 4th Workshop on Algorithms in
Bioinformatics (WABI 2004), Bergen, Norway, September 14 - 17,
2004 LNCS/LNBI 3240, pp 87–98.

3. Bailey,T. L., and Elkan,C. “Unsupervised learning of multiple motifs
in biopolymers using expectation maximization”. Machine Learning,
21(1-2):51–80, 1995.

4. Buhler, J., Tompa, M. “Finding motifs using random projections”.
Journal of Computational Biology, 9(2) 225–242, 2002.

5. Hertz, G. Z., and Stormo, G. D. Identifying dna and protein pat-
terns with statistically signi¯cant alignments of multiple sequences.
Bioinformatics, 15:563–577, 1999

8

6. Lawrence, C., Altschul, S., Bugoski, M., Liu, J., Neuwald, A., and
Wootton, J. “Detecting subtle sequence signals: a Gibbs sampling
strategy for multiple alignment”. Science, 262:208–214, 1993.

7. Stormo, G., and Hartzell, G. “Identifying protein-binding sites from
unaligned dna fragments”. In Proceedings of the National Academy
of Science USA, volume 86, pages 1183–1187, 1989.

9

