Notes on computing minimal approximant bases

Arne Storjohann

David R. Cheriton School of Computer Science University of Waterloo, Ontario, Canada N2L 3G1

August 21, 2006

1 Introduction

Let k be a field. The vector Hermite Padé approximation problem takes as input

- $N \in \mathbb{Z}_{>0}$, the desired order of the approximant;
- $\mathbf{F} = (f_1, \ldots, f_m)^T \in k[x]^{m \times s}$, a vector of truncated formal power series, say each $f_i \in k[x]^{1 \times s}$ of degree bounded by N 1;
- $\mathbf{n} = (n_1, \dots, n_m) \in \mathbb{Z}_{[-1,N-1]}^m$, a tuple of degree constraints with norm defined by $\|\mathbf{n}\| := (n_1 + 1) + \dots + (n_m + 1).$

The goal is to compute linearly independant row vectors $\mathbf{P} = (P_1, \ldots, P_m) \in k[x]^{1 \times m}$ such that

$$\mathbf{P}(x) \cdot \mathbf{F}(x) = \overbrace{P_1(x)}^{\deg \le n_1} f_1(x) + \dots + \overbrace{P_m(x)}^{\deg \le n_m} f_m(x) = O(x^N).$$
(1)

When s = 1 and $N = ||\mathbf{n}|| - 1$ this is the classical Hermite Padé approximation problem. Here we allow N to be arbitrary. We describe algorithms for computing an order N genset of type **n**: a matrix $V \in k[x]^{*\times m}$ such that every row of V is a solution to (1) and every solution **P** of (1) can be expressed as a k[x]-linear combination of the rows of V. Ideally, V will be a minbasis of solutions: V has full row rank, and if $\bar{n} \ge \max_i n_i$ then $V \operatorname{diag}(\bar{n} - n_1, \ldots, \bar{n} - n_m)$ is row reduced (e.g., in weak Popov form). To compare with [1], an order N minbasis of type **n** will be comprised of those rows of a σ -basis (with $\sigma = sN$) which satisfy the degree constraints (i.e., have positive defect), and vice versa. For example, the Popov form of the

Dagstuhl Seminar Proceedings 06271 Challenges in Symbolic Computation Software

http://drops.dagstuhl.de/opus/volltexte/2006/776

order 8 minbasis of type (1, 1, 1, 1, 1) for

$$\mathbf{F} = \begin{bmatrix} 90 x^7 + 22 x^6 + 42 x^5 + 3 x^4 + 87 x^3 + 41 x^2 + 35\\ 24 x^6 + 93 x^5 + 14 x^4 + 87 x^3 + 62 x^2 + 15 x + 80\\ 53 x^7 + 71 x^6 + 80 x^5 + 22 x^4 + 87 x^3 + 90 x^2 + 57 x + 42\\ 47 x^7 + 23 x^6 + 75 x^5 + 5 x^4 + 6 x^3 + 74 x^2 + 72 x + 37\\ 74 x^7 + 87 x^6 + 44 x^5 + 29 x^4 + x^3 + 74 x^2 + 10 x + 36 \end{bmatrix} \in \mathbb{Z}/(97)[x]^{5 \times 1}$$

is

$$\begin{bmatrix} x+47 & 57 & 58x+44 & 9x+23 & 93x+76\\ 15 & x+18 & 52x+23 & 15x+58 & 93x+88 \end{bmatrix} \in \mathbb{Z}/(97)[x]^{5\times 5}.$$

The Popov form of the complete σ -basis (with $\sigma = 8$) of **F** is

$$\begin{bmatrix} x+47 & 57 & 58x+44 & 9x+23 & 93x+76\\ 15 & x+18 & 52x+23 & 15x+58 & 93x+88\\ \hline 17 & 86 & x^2+77x+16 & 76x+29 & 90x+78\\ 44 & 36 & 3x+42 & x^2+50x+26 & 85x+44\\ 2 & 22 & 54x+94 & 73x+24 & x^2+2x+25 \end{bmatrix} \in \mathbb{Z}/(97)[x]^{5\times 5}.$$

Recall that σ -bases, or minimal approximant bases, are always square and nonsingular $m \times m$ matrices. A σ -basis gives a minbasis of type $(n_1 - j, \ldots, n_m - j)$ for all integer shifts j: as in the example above some rows in a σ -basis may not be solutions to (1). A minbasis of type (n_1, \ldots, n_m) gives a minbasis of type $(n_1 - j, \ldots, n_m - j)$ only for all nonnegative integer shifts j: every row is a solution to (1). Restricting the definition of minbasis and genset to actual solutions of (1) allows us avoid computation of the full σ -basis.

Consider algorithm SPHS from [1] and algorithms M-Basis/PM-Basis from [2]. Let us assume¹ that $s \leq m$. Each of the calls SPHPS($\mathbf{F}(x^s)[1, x, \dots, x^{s-1}]^T, \sigma, 2^{\lceil \log_2 \sigma \rceil}, \mathbf{n}$) and M-Basis/PM-Basis($\mathbf{F}, N, \mathbf{n}$) will compute a σ -basis of type \mathbf{n} . Algorithm SPHPS has cost $O((m^2 + ms)(sN)^{1+\epsilon})$ field operations, while M-Basis and PM-Basis have cost $O(m^2s^{\omega-2}N^2)$ and $O(m^{\omega}N^{1+\epsilon})$, respectively.

On the one hand, algorithms M-Basis and PM-Basis are particularly efficient when $s \approx m$ and N is not too large. On the other hand, if s = 1 and N is large, say N = m(d + 1) - 1 where $d = ||\mathbf{n}||/m - 1$, which precisely covers the case of classical Hermite Padé approximation, the resulting worst case runtime estimates for M-Basis and PM-Basis of $O(m^4d^2)$ and $O(m^{\omega}(md)^{1+\epsilon})$, respectively, seem too high. Indeed, algorithm SHPS from [1] uses only $O(m^2(md)^{1+\epsilon})$ field operations for this case. Here we observe that algorithms M-Basis and PM-Basis can be used to compute an order N genset of type **n** for this case in time $O(m^{\omega}d^2)$ and $O(m^{\omega}d^{1+\epsilon})$, respectively.

¹This restriction on s is not required but simplifies the cost estimates. Moreover, all the classical application of the vector Hermite Padé approximation problem seem to satisfy $s \le m$: see [1, Table 1].

We can outline our approach by giving an example of Hermite Padé approximation as in the last paragraph. Suppose we are starting with the following problem: $\mathbf{F} \in k[x]^{m \times 1}$ and $N = ||\mathbf{n}|| - 1$ where

$$\mathbf{n} = (\overbrace{d, \ldots, d}^{m/2}, \overbrace{2d, \ldots, 2d}^{m/4}, \overbrace{4d, \ldots, 4d}^{m/8}, \ldots, \ldots, \overbrace{md/2}^{1}).$$

Note that $\|\mathbf{n}\| = \Theta(md \log m)$ for this example. First we transform to a new problem $\bar{\mathbf{F}} \in k[x]^{O(m)\times 1}$ of the same order but of type $\bar{\mathbf{n}}$, each element of $\bar{\mathbf{n}}$ bounded by $O(\|\mathbf{n}\|/m)$, which for this example is $O(d \log m)$. Then we transform to a new problem $\hat{\mathbf{F}} \in k[x]^{O(m)\times O(m)}$ of type type $\hat{\mathbf{n}}$ with $\max_i \hat{n}_i = \max_i \bar{n}_i$. An order $\Theta(\|\mathbf{n}\|/m)$ genset for $\hat{\mathbf{F}}$ of type $\hat{\mathbf{n}}$ can be computed with PM-Basis in time $O(n^{\omega}(d \log m)^{1+\epsilon})$ and gives a genset for the original \mathbf{F} .

In general, it is possible to compute an order N genset in time $O(m^{\omega}(||\mathbf{n}||/m)^{1+\epsilon})$ for all problems with $sN = O(||\mathbf{n}||)$. This seems to cover most cases arising in practice since a generic problem instance will have no solutions for $sN \ge ||\mathbf{n}||$, and exactly one solution for $sN = ||\mathbf{n}|| - 1$.

2 Reduction to lower order

For convenience, suppose that s = 1, that is, that $\mathbf{F} \in k[x]^{m \times 1}$. Recall that the multiindex of degree constraints $\mathbf{n} = (n_1, \ldots, n_m)$ satisfies $n_i < N$, N the desired order of the approximants. We will show how to construct an equivalent problem of order d, any d satisfying $\max_i n_i \leq d < N$.

First note that, for any $k \ge 0$, an order N minbasis of type **n** for **F** is an order N + k minbasis of type **n** for x^k **F**, and vice versa. This shows that, up to the transformation $(N, \mathbf{F}) \leftarrow (N + k, x^k \mathbf{F})$ with $k = \text{modp}(d - N, d + 1) \in [0, d]$, we may assume without loss of generality that N > 2d and that d + 1 divides N - d.

Define $\bar{s} := (N - d)/(d + 1), \ \bar{m} := m + \bar{s} - 1,$

$$\bar{\mathbf{n}} := (n_1, \dots, n_m, \overbrace{d-1, \dots, d-1}^{\bar{s}-1})$$

and construct the matrix

Suppose $W \in k[x]^{* \times \overline{m}}$ is an order 2d + 1 minbasis of type $\overline{\mathbf{n}}$ for $\overline{\mathbf{F}}$. Write $W = \begin{bmatrix} W_1 & W_2 \end{bmatrix}$ where $W_1 \in k[x]^{* \times m}$. We claim that W_1 is an order N minbasis of type \mathbf{n} for \mathbf{F} . To see that W_1 is a genset it suffices to verify that every row of W_1 is a solution to (1), and in the reverse direction, every solution \mathbf{P} of (1) can be extended to give a solution to the new problem. To see that W_1 is a minbasis it suffices to verify that W_1 is row reduced.

Worked example

We are working over $k = \mathbb{Z}/(97)$. The Popov form of the the order 7 minbasis of type $\mathbf{n} = (1, 1, 0, 1, 1)$ of

$$\mathbf{F} = \begin{bmatrix} 90 x^{6} + 22 x^{5} + 42 x^{4} + 3 x^{3} + 87 x^{2} + 41 x \\ 35 x^{6} + 24 x^{4} + 93 x^{3} + 14 x^{2} + 87 x + 62 \\ 15 x^{6} + 80 x^{5} + 53 x^{4} + 71 x^{3} + 80 x^{2} + 22 x + 87 \\ 90 x^{6} + 57 x^{5} + 42 x^{4} + 47 x^{3} + 23 x^{2} + 75 x + 5 \\ 6 x^{6} + 74 x^{5} + 72 x^{4} + 37 x^{3} + 74 x^{2} + 87 x + 44 \end{bmatrix} \in k[x]^{5 \times 1}$$

is

$$\begin{array}{ccccc} x+40 & 20 & 78 & 9x+84 & 11x+77 \\ 30 & x+17 & 93 & 32x+9 & 78x+16 \end{array} \right] \in k[x]^{2\times 5}.$$

For d = 1 the above recipe gives

$$\bar{\mathbf{F}} = \begin{bmatrix} 87x^2 + 41x & 42x^2 + 3x + 87 & 90x^2 + 22x + 42\\ 14x^2 + 87x + 62 & 24x^2 + 93x + 14 & 35x^2 + 24\\ 80x^2 + 22x + 87 & 53x^2 + 71x + 80 & 15x^2 + 80x + 53\\ 23x^2 + 75x + 5 & 42x^2 + 47x + 23 & 90x^2 + 57x + 42\\ 74x^2 + 87x + 44 & 72x^2 + 37x + 74 & 6x^2 + 74x + 72\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \in k[x]^{7\times 3}.$$

The Popov form of the order 3 minbasis of type (1, 1, 0, 1, 1, 0, 0) of $\overline{\mathbf{F}}$ is equal to

$$\begin{bmatrix} x+40 & 20 & 78 & 9x+84 & 11x+77 \mid 24 & 57 \\ 30 & x+17 & 93 & 32x+9 & 78x+16 \mid 58 & 21 \end{bmatrix} \in k[x]^{2\times7}.$$

3 Reduction to smaller degree constraints

Consider the multi-index (n_1, \ldots, n_m) . For $b \ge 0$, let ϕ_b be the function which maps a single degree bound n_i to a sequence of degree bounds, all element of the sequence equal to b except for possibly the last, and such that $||(n_i)|| = n_i + 1 = ||(\phi_b(n_i))||$. Let $len(\phi_b(n_i))$ denote the length of the sequence. For example, we have $\phi_3(10) = 3, 3, 2$ with $len(\phi_3(10)) = 3$, while $\phi_2(11) = 2, 2, 2, 2$ and $len(\phi_2(11)) = 4$. Computing a genset of solutions to (1) can be reduced to computing an order N genset of type $\bar{\mathbf{n}} = (\phi_b(n_1), \ldots, \phi_b(n_m))$.

to $\bar{\mathbf{n}}$ define the expansion/compression matrix

$$B := \begin{bmatrix} 1 & & & & \\ x^{b+1} & & & \\ \vdots & & & \\ x^{(b+1)\operatorname{len}(\phi_b(n_1))-1} & & & \\ & 1 & & \\ & x^{(b+1)\operatorname{len}(\phi_b(n_2))-1} & \\ & \vdots & \\ & x^{(b+1)(\operatorname{len}(\phi_b(n_2))-1)} & \\ \hline & & \ddots \end{bmatrix} \in k[x]^{\bar{m} \times m}$$

where $\bar{m} = \sum_{i=1}^{m} \ln(\phi_b(n_i)) = \sum_{i=1}^{m} \lceil (n_i + 1)/(b + 1) \rceil$. Now "expand" to construct

$$\bar{\mathbf{F}} := B \begin{bmatrix} f_1 \\ f_1 x^{b+1} \\ \vdots \\ \hline \frac{f_1}{f_2} \\ \vdots \end{bmatrix} = \begin{bmatrix} f_1 \\ f_1 x^{(b+1)(\operatorname{len}(\phi_b(n_1)-1)} \\ f_2 \\ f_2 x^{b+1} \\ \vdots \\ f_2 x^{(b+1)(\operatorname{len}(\phi_b(n_2)-1)} \\ \vdots \end{bmatrix} \in k[x]^{\bar{m} \times s}$$

Let $W \in k[x]^{* \times \overline{m}}$ be an order N genset of type $\overline{\mathbf{n}}$ for $\overline{\mathbf{F}}$. Then the "compression" $WB \in k[x]^{* \times m}$ is an order N genset of type \mathbf{n} for \mathbf{F} . In general, WB will not be a minbasis even if W is. However, because W is a minbasis of type $\overline{\mathbf{n}}$, and each element of $\overline{\mathbf{n}}$ is bounded by b, we know that WB has the following very nice property: every approximant \mathbf{P} of type \mathbf{n} for \mathbf{F} can be expressed as a P = vWB for a vector v over k[x] that has degrees bounded by b.

Note: The construction above is obviously just a partial linearization of the problem. On the one hand, the choice b = 0 fully linearizes, transforming to an $\|\mathbf{n}\| \times N$ linear system over k, thus reducing the problem to computing a left nullspace. On the other hand, the key point here is that any choice $b = \Omega(\lceil \|\mathbf{n}\|/m \rceil)$ will balance the degree constraints but not increase significantly the dimension of the problem (i.e., $\bar{m} = O(m)$).

Worked example

We are working over $k = \mathbb{Z}/(97)$. The Popov form the order 5 minbasis of type (0, 1, 4) of

$$\mathbf{F} = \begin{bmatrix} 90 \, x^3 + 22 \, x^2 + 42 \, x + 3 \\ 87 \, x^3 + 41 \, x^2 + 35 \\ 24 \, x^2 + 93 \, x + 14 \end{bmatrix} \in k[x]^{3 \times 1}$$

is

$$\begin{bmatrix} 0 & 1 & 56x^3 + 16x^2 + 27x + 46 \\ 1 & 0 & 28x^3 + 18x^2 + 88x + 76 \\ 0 & 0 & x^4 \end{bmatrix} k[x]^{3\times 3}.$$

If we apply the above recipe with b = 1 we reduce to a problem

$$\bar{\mathbf{F}} = \begin{bmatrix} 90 x^3 + 22 x^2 + 42 x + 3 \\ 87 x^3 + 41 x^2 + 35 \\ 24 x^2 + 93 x + 14 \\ 93 x^3 + 14 x^2 \\ 0 \end{bmatrix} \in k[x]^{5 \times 1}.$$

If we compute a genset W for $\overline{\mathbf{F}}$ of type (0, 1, 1, 1, 0) we can compress to recover a genset G for \mathbf{F} :

$$\begin{bmatrix} 1 & 65 & 59 & 79x + 88 & 0 \\ 0 & x + 45 & 33 & 14x + 68 & 0 \\ 0 & 18 & x + 52 & 38x + 94 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \\ \hline & 1 \\ \hline & 1 \\ \hline & \\ & x^2 \\ \hline & x^4 \end{bmatrix} = \begin{bmatrix} 1 & 65 & 79x^3 + 88x^2 + 59 \\ 0 & x + 45 & 14x^3 + 68x^2 + 33 \\ 0 & 18 & 38x^3 + 94x^2 + x + 52 \\ 0 & 0 & x^4 \end{bmatrix} \in k[x]^{4 \times 3}$$

Note that although W is a minbasis for $\overline{\mathbf{F}}$, G is not a minbasis for \mathbf{F} , only a genset.

References

- B. Beckermann and G. Labahn. A uniform approach for the fast computation of matrixtype Padé approximants. SIAM Journal on Matrix Analysis and Applications, 15(3):804– 823, 1994.
- [2] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix computations, 2003. Research Report 2003-2. Laboratoire LIP, ENS Lyon, France.