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1 Introduction

Let k be a field. The vector Hermite Padé approximation problem takes as input

• N ∈ Z>0, the desired order of the approximant;

• F = (f1, . . . , fm)T ∈ k[x]m×s, a vector of truncated formal power series, say each
fi ∈ k[x]1×s of degree bounded by N − 1;

• n = (n1, . . . , nm) ∈ Zm
[−1,N−1], a tuple of degree constraints with norm defined by

‖n‖ := (n1 + 1) + · · ·+ (nm + 1).

The goal is to compute linearly independant row vectors P = (P1, . . . , Pm) ∈ k[x]1×m such
that

P(x) · F(x) =

deg≤n1︷ ︸︸ ︷
P1(x) f1(x) + · · ·+

deg≤nm︷ ︸︸ ︷
Pm(x) fm(x) = O(xN). (1)

When s = 1 and N = ‖n‖ − 1 this is the classical Hermite Padé approximation problem.
Here we allow N to be arbitrary. We describe algorithms for computing an order N genset of
type n: a matrix V ∈ k[x]∗×m such that every row of V is a solution to (1) and every solution
P of (1) can be expressed as a k[x]-linear combination of the rows of V . Ideally, V will be a
minbasis of solutions: V has full row rank, and if n̄ ≥ maxi ni then V diag(n̄−n1, . . . , n̄−nm)
is row reduced (e.g., in weak Popov form). To compare with [1], an order N minbasis of
type n will be comprised of those rows of a σ-basis (with σ = sN) which satisfy the degree
constraints (i.e., have positive defect), and vice versa. For example, the Popov form of the
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order 8 minbasis of type (1, 1, 1, 1, 1) for

F =



90 x7 + 22 x6 + 42 x5 + 3 x4 + 87 x3 + 41 x2 + 35

24 x6 + 93 x5 + 14 x4 + 87 x3 + 62 x2 + 15 x + 80

53 x7 + 71 x6 + 80 x5 + 22 x4 + 87 x3 + 90 x2 + 57 x + 42

47 x7 + 23 x6 + 75 x5 + 5 x4 + 6 x3 + 74 x2 + 72 x + 37

74 x7 + 87 x6 + 44 x5 + 29 x4 + x3 + 74 x2 + 10 x + 36


∈ Z/(97)[x]5×1

is [
x + 47 57 58 x + 44 9 x + 23 93 x + 76

15 x + 18 52 x + 23 15 x + 58 93 x + 88

]
∈ Z/(97)[x]5×5.

The Popov form of the complete σ-basis (with σ = 8) of F is

x + 47 57 58 x + 44 9 x + 23 93 x + 76

15 x + 18 52 x + 23 15 x + 58 93 x + 88

17 86 x2 + 77 x + 16 76 x + 29 90 x + 78

44 36 3 x + 42 x2 + 50 x + 26 85 x + 44

2 22 54 x + 94 73 x + 24 x2 + 2 x + 25


∈ Z/(97)[x]5×5.

Recall that σ-bases, or minimal approximant bases, are always square and nonsingular m×m
matrices. A σ-basis gives a minbasis of type (n1− j, . . . , nm− j) for all integer shifts j: as in
the example above some rows in a σ-basis may not be solutions to (1). A minbasis of type
(n1, . . . , nm) gives a minbasis of type (n1 − j, . . . , nm − j) only for all nonnegative integer
shifts j: every row is a solution to (1). Restricting the definition of minbasis and genset to
actual solutions of (1) allows us avoid computation of the full σ-basis.

Consider algorithm SPHS from [1] and algorithms M-Basis/PM-Basis from [2]. Let
us assume1 that s ≤ m. Each of the calls SPHPS(F(xs)[1, x, . . . , xs−1]T , σ, 2dlog2 σe,n) and
M-Basis/PM-Basis(F, N,n) will compute a σ-basis of type n. Algorithm SPHPS has cost
O((m2+ms)(sN)1+ε) field operations, while M-Basis and PM-Basis have cost O(m2sω−2N2)
and O(mωN1+ε), respectively.

On the one hand, algorithms M-Basis and PM-Basis are particularly efficient when s ≈ m
and N is not too large. On the other hand, if s = 1 and N is large, say N = m(d +
1) − 1 where d = ‖n‖/m − 1, which precisely covers the case of classical Hermite Padé
approximation, the resulting worst case runtime estimates for M-Basis and PM-Basis of
O(m4d2) and O(mω(md)1+ε), respectively, seem too high. Indeed, algorithm SHPS from [1]
uses only O(m2(md)1+ε) field operations for this case. Here we observe that algorithms
M-Basis and PM-Basis can be used to compute an order N genset of type n for this case in
time O(mωd2) and O(mωd1+ε), respectively.

1This restriction on s is not required but simplifies the cost estimates. Moreover, all the classical appli-
cation of the vector Hermite Padé approximation problem seem to satisfy s ≤ m: see [1, Table 1].
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We can outline our approach by giving an example of Hermite Padé approximation as in
the last paragraph. Suppose we are starting with the following problem: F ∈ k[x]m×1 and
N = ‖n‖ − 1 where

n = (

m/2︷ ︸︸ ︷
d, . . . , d,

m/4︷ ︸︸ ︷
2d, . . . , 2d,

m/8︷ ︸︸ ︷
4d, . . . , 4d, . . . , . . . ,

1︷ ︸︸ ︷
md/2).

Note that ‖n‖ = Θ(md log m) for this example. First we transform to a new problem
F̄ ∈ k[x]O(m)×1 of the same order but of type n̄, each element of n̄ bounded by O(‖n‖/m),
which for this example is O(d log m). Then we transform to a new problem F̂ ∈ k[x]O(m)×O(m)

of type type n̂ with maxi n̂i = maxi n̄i. An order Θ(‖n‖/m) genset for F̂ of type n̂ can be
computed with PM-Basis in time O(nω(d log m)1+ε) and gives a genset for the original F.

In general, it is possible to compute an order N genset in time O(mω(‖n‖/m)1+ε) for
all problems with sN = O(‖n‖). This seems to cover most cases arising in practice since a
generic problem instance will have no solutions for sN ≥ ‖n‖, and exactly one solution for
sN = ‖n‖ − 1.

2 Reduction to lower order

For convenience, suppose that s = 1, that is, that F ∈ k[x]m×1. Recall that the multi-
index of degree constraints n = (n1, . . . , nm) satisfies ni < N , N the desired order of the
approximants. We will show how to construct an equivalent problem of order d, any d
satisfying maxi ni ≤ d < N .

First note that, for any k ≥ 0, an order N minbasis of type n for F is an order N + k
minbasis of type n for xkF, and vice versa. This shows that, up to the transformation
(N,F) ← (N + k, xkF) with k = modp(d − N, d + 1) ∈ [0, d], we may assume without loss
of generality that N > 2d and that d + 1 divides N − d.

Define s̄ := (N − d)/(d + 1), m̄ := m + s̄− 1,

n̄ := (n1, . . . , nm,

s̄−1︷ ︸︸ ︷
d− 1, . . . , d− 1)

and construct the matrix

F̄ :=


F Left(F, d + 1) Left(F, 2(d + 1)) · · · Left(F, N − 2d− 1)

1
1

. . .

1

 mod x2d+1 ∈ k[x]m̄×s̄.

Suppose W ∈ k[x]∗×m̄ is an order 2d + 1 minbasis of type n̄ for F̄. Write W =
[

W1 W2

]
where W1 ∈ k[x]∗×m. We claim that W1 is an order N minbasis of type n for F. To see that
W1 is a genset it suffices to verify that every row of W1 is a solution to (1), and in the reverse
direction, every solution P of (1) can be extended to give a solution to the new problem. To
see that W1 is a minbasis it suffices to verify that W1 is row reduced.
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Worked example

We are working over k = Z/(97). The Popov form of the the order 7 minbasis of type
n = (1, 1, 0, 1, 1) of

F =



90 x6 + 22 x5 + 42 x4 + 3 x3 + 87 x2 + 41 x

35 x6 + 24 x4 + 93 x3 + 14 x2 + 87 x + 62

15 x6 + 80 x5 + 53 x4 + 71 x3 + 80 x2 + 22 x + 87

90 x6 + 57 x5 + 42 x4 + 47 x3 + 23 x2 + 75 x + 5

6 x6 + 74 x5 + 72 x4 + 37 x3 + 74 x2 + 87 x + 44


∈ k[x]5×1

is [
x + 40 20 78 9 x + 84 11 x + 77

30 x + 17 93 32 x + 9 78 x + 16

]
∈ k[x]2×5.

For d = 1 the above recipe gives

F̄ =



87 x2 + 41 x 42 x2 + 3 x + 87 90 x2 + 22 x + 42

14 x2 + 87 x + 62 24 x2 + 93 x + 14 35 x2 + 24

80 x2 + 22 x + 87 53 x2 + 71 x + 80 15 x2 + 80 x + 53

23 x2 + 75 x + 5 42 x2 + 47 x + 23 90 x2 + 57 x + 42

74 x2 + 87 x + 44 72 x2 + 37 x + 74 6 x2 + 74 x + 72

0 1 0

0 0 1


∈ k[x]7×3.

The Popov form of the order 3 minbasis of type (1, 1, 0, 1, 1, 0, 0) of F̄ is equal to[
x + 40 20 78 9 x + 84 11 x + 77 24 57

30 x + 17 93 32 x + 9 78 x + 16 58 21

]
∈ k[x]2×7.

3 Reduction to smaller degree constraints

Consider the multi-index (n1, . . . , nm). For b ≥ 0, let φb be the function which maps a single
degree bound ni to a sequence of degree bounds, all element of the sequence equal to b except
for possibly the last, and such that ‖(ni)‖ = ni + 1 = ‖(φb(ni))‖. Let len(φb(ni)) denote
the length of the sequence. For example, we have φ3(10) = 3, 3, 2 with len(φ3(10)) = 3,
while φ2(11) = 2, 2, 2, 2 and len(φ2(11)) = 4. Computing a genset of solutions to (1) can be
reduced to computing an order N genset of type n̄ = (φb(n1), . . . , φb(nm)). Corresponding
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to n̄ define the expansion/compression matrix

B :=



1
xb+1

...
x(b+1)len(φb(n1))−1

1
xb+1

...
x(b+1)(len(φb(n2))−1)

. . .


∈ k[x]m̄×m

where m̄ =
∑m

i len(φb(ni)) =
∑m

i d(ni + 1)/(b + 1)e. Now “expand” to construct

F̄ := B

F f1

f2

...

=



f1

f1x
b+1

...
f1x

(b+1)(len(φb(n1)−1)

f2

f2x
b+1

...
f2x

(b+1)(len(φb(n2)−1)

...


∈ k[x]m̄×s

Let W ∈ k[x]∗×m̄ be an order N genset of type n̄ for F̄. Then the “compression” WB ∈
k[x]∗×m is an order N genset of type n for F. In general, WB will not be a minbasis even if
W is. However, because W is a minbasis of type n̄, and each element of n̄ is bounded by b,
we know that WB has the following very nice property: every approximant P of type n for
F can be expressed as a P = vWB for a vector v over k[x] that has degrees bounded by b.

Note: The construction above is obviously just a partial linearization of the problem.
On the one hand, the choice b = 0 fully linearizes, transforming to an ‖n‖×N linear system
over k, thus reducing the problem to computing a left nullspace. On the other hand, the key
point here is that any choice b = Ω(d‖n‖/me) will balance the degree constraints but not
increase significantly the dimension of the problem (i.e., m̄ = O(m)).

Worked example

We are working over k = Z/(97). The Popov form the order 5 minbasis of type (0, 1, 4) of

F =


90 x3 + 22 x2 + 42 x + 3

87 x3 + 41 x2 + 35

24 x2 + 93 x + 14

 ∈ k[x]3×1
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is 
0 1 56 x3 + 16 x2 + 27 x + 46

1 0 28 x3 + 18 x2 + 88 x + 76

0 0 x4

 k[x]3×3.

If we apply the above recipe with b = 1 we reduce to a problem

F̄ =



90 x3 + 22 x2 + 42 x + 3

87 x3 + 41 x2 + 35

24 x2 + 93 x + 14

93 x3 + 14 x2

0


∈ k[x]5×1.

If we compute a genset W for F̄ of type (0, 1, 1, 1, 0) we can compress to recover a genset G
for F:

W
1 65 59 79 x + 88 0

0 x + 45 33 14 x + 68 0

0 18 x + 52 38 x + 94 0

0 0 0 0 1


B

1
1

1
x2

x4

=

G
1 65 79 x3 + 88 x2 + 59

0 x + 45 14 x3 + 68 x2 + 33

0 18 38 x3 + 94 x2 + x + 52

0 0 x4

∈ k[x]4×3.

Note that although W is a minbasis for F̄, G is not a minbasis for F, only a genset.
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