Notes on computing minimal approximant bases

Arne Storjohann
David R. Cheriton School of Computer Science
University of Waterloo, Ontario, Canada N2L 3G1

August 21, 2006

1 Introduction

Let k be a field. The vector Hermite Padé approximation problem takes as input

- $N \in \mathbb{Z}_{>0}$, the desired order of the approximant;
- $\mathbf{F}=\left(f_{1}, \ldots, f_{m}\right)^{T} \in k[x]^{m \times s}$, a vector of truncated formal power series, say each $f_{i} \in k[x]^{1 \times s}$ of degree bounded by $N-1$;
- $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{Z}_{[-1, N-1]}^{m}$, a tuple of degree constraints with norm defined by $\|\mathbf{n}\|:=\left(n_{1}+1\right)+\cdots+\left(n_{m}+1\right)$.

The goal is to compute linearly independant row vectors $\mathbf{P}=\left(P_{1}, \ldots, P_{m}\right) \in k[x]^{1 \times m}$ such that

$$
\begin{equation*}
\mathbf{P}(x) \cdot \mathbf{F}(x)=\overbrace{P_{1}(x)}^{\operatorname{deg} \leq n_{1}} f_{1}(x)+\cdots+\overbrace{P_{m}(x)}^{\operatorname{deg} \leq n_{m}} f_{m}(x)=O\left(x^{N}\right) . \tag{1}
\end{equation*}
$$

When $s=1$ and $N=\|\mathbf{n}\|-1$ this is the classical Hermite Padé approximation problem. Here we allow N to be arbitrary. We describe algorithms for computing an order N genset of type \mathbf{n} : a matrix $V \in k[x]^{* \times m}$ such that every row of V is a solution to (1) and every solution \mathbf{P} of (1) can be expressed as a $k[x]$-linear combination of the rows of V. Ideally, V will be a minbasis of solutions: V has full row rank, and if $\bar{n} \geq \max _{i} n_{i}$ then $V \operatorname{diag}\left(\bar{n}-n_{1}, \ldots, \bar{n}-n_{m}\right)$ is row reduced (e.g., in weak Popov form). To compare with [1], an order N minbasis of type \mathbf{n} will be comprised of those rows of a σ-basis (with $\sigma=s N$) which satisfy the degree constraints (i.e., have positive defect), and vice versa. For example, the Popov form of the
order 8 minbasis of type $(1,1,1,1,1)$ for

$$
\mathbf{F}=\left[\begin{array}{c}
90 x^{7}+22 x^{6}+42 x^{5}+3 x^{4}+87 x^{3}+41 x^{2}+35 \\
24 x^{6}+93 x^{5}+14 x^{4}+87 x^{3}+62 x^{2}+15 x+80 \\
53 x^{7}+71 x^{6}+80 x^{5}+22 x^{4}+87 x^{3}+90 x^{2}+57 x+42 \\
47 x^{7}+23 x^{6}+75 x^{5}+5 x^{4}+6 x^{3}+74 x^{2}+72 x+37 \\
74 x^{7}+87 x^{6}+44 x^{5}+29 x^{4}+x^{3}+74 x^{2}+10 x+36
\end{array}\right] \in \mathbb{Z} /(97)[x]^{5 \times 1}
$$

is

$$
\left[\begin{array}{ccccc}
x+47 & 57 & 58 x+44 & 9 x+23 & 93 x+76 \\
15 & x+18 & 52 x+23 & 15 x+58 & 93 x+88
\end{array}\right] \in \mathbb{Z} /(97)[x]^{5 \times 5}
$$

The Popov form of the complete σ-basis (with $\sigma=8$) of \mathbf{F} is

$$
\left[\begin{array}{ccccc}
x+47 & 57 & 58 x+44 & 9 x+23 & 93 x+76 \\
15 & x+18 & 52 x+23 & 15 x+58 & 93 x+88 \\
\hline 17 & 86 & x^{2}+77 x+16 & 76 x+29 & 90 x+78 \\
44 & 36 & 3 x+42 & x^{2}+50 x+26 & 85 x+44 \\
2 & 22 & 54 x+94 & 73 x+24 & x^{2}+2 x+25
\end{array}\right] \in \mathbb{Z} /(97)[x]^{5 \times 5} .
$$

Recall that σ-bases, or minimal approximant bases, are always square and nonsingular $m \times m$ matrices. A σ-basis gives a minbasis of type $\left(n_{1}-j, \ldots, n_{m}-j\right)$ for all integer shifts j : as in the example above some rows in a σ-basis may not be solutions to (1). A minbasis of type $\left(n_{1}, \ldots, n_{m}\right)$ gives a minbasis of type $\left(n_{1}-j, \ldots, n_{m}-j\right)$ only for all nonnegative integer shifts j : every row is a solution to (1). Restricting the definition of minbasis and genset to actual solutions of (1) allows us avoid computation of the full σ-basis.

Consider algorithm SPHS from [1] and algorithms M-Basis/PM-Basis from [2]. Let us assume ${ }^{1}$ that $s \leq m$. Each of the calls $\operatorname{SPHPS}\left(\mathbf{F}\left(x^{s}\right)\left[1, x, \ldots, x^{s-1}\right]^{T}, \sigma, 2^{\left[\log _{2} \sigma\right\rceil}, \mathbf{n}\right)$ and M-Basis/PM-Basis $(\mathbf{F}, N, \mathbf{n})$ will compute a σ-basis of type \mathbf{n}. Algorithm SPHPS has cost $O\left(\left(m^{2}+m s\right)(s N)^{1+\epsilon}\right)$ field operations, while M-Basis and PM-Basis have cost $O\left(m^{2} s^{\omega-2} N^{2}\right)$ and $O\left(m^{\omega} N^{1+\epsilon}\right)$, respectively.

On the one hand, algorithms M-Basis and PM-Basis are particularly efficient when $s \approx m$ and N is not too large. On the other hand, if $s=1$ and N is large, say $N=m(d+$ 1) - 1 where $d=\|\mathbf{n}\| / m-1$, which precisely covers the case of classical Hermite Padé approximation, the resulting worst case runtime estimates for M-Basis and PM-Basis of $O\left(m^{4} d^{2}\right)$ and $O\left(m^{\omega}(m d)^{1+\epsilon}\right)$, respectively, seem too high. Indeed, algorithm SHPS from [1] uses only $O\left(m^{2}(m d)^{1+\epsilon}\right)$ field operations for this case. Here we observe that algorithms M-Basis and PM-Basis can be used to compute an order N genset of type \mathbf{n} for this case in time $O\left(m^{\omega} d^{2}\right)$ and $O\left(m^{\omega} d^{1+\epsilon}\right)$, respectively.

[^0]We can outline our approach by giving an example of Hermite Padé approximation as in the last paragraph. Suppose we are starting with the following problem: $\mathbf{F} \in k[x]^{m \times 1}$ and $N=\|\mathbf{n}\|-1$ where

$$
\mathbf{n}=(\overbrace{d, \ldots, d}^{m / 2}, \overbrace{2 d, \ldots, 2 d}^{m / 4}, \overbrace{4 d, \ldots, 4 d}^{m / 8}, \ldots, \ldots, \overbrace{m d / 2}^{1}) .
$$

Note that $\|\mathbf{n}\|=\Theta(m d \log m)$ for this example. First we transform to a new problem $\overline{\mathbf{F}} \in k[x]^{O(m) \times 1}$ of the same order but of type $\overline{\mathbf{n}}$, each element of $\overline{\mathbf{n}}$ bounded by $O(\|\mathbf{n}\| / m)$, which for this example is $O(d \log m)$. Then we transform to a new problem $\hat{\mathbf{F}} \in k[x]^{O(m) \times O(m)}$ of type type $\hat{\mathbf{n}}$ with $\max _{i} \hat{n}_{i}=\max _{i} \bar{n}_{i}$. An order $\Theta(\|\mathbf{n}\| / m)$ genset for $\hat{\mathbf{F}}$ of type $\hat{\mathbf{n}}$ can be computed with PM-Basis in time $O\left(n^{\omega}(d \log m)^{1+\epsilon}\right)$ and gives a genset for the original \mathbf{F}.

In general, it is possible to compute an order N genset in time $O\left(m^{\omega}(\|\mathbf{n}\| / m)^{1+\epsilon}\right)$ for all problems with $s N=O(\|\mathbf{n}\|)$. This seems to cover most cases arising in practice since a generic problem instance will have no solutions for $s N \geq\|\mathbf{n}\|$, and exactly one solution for $s N=\|\mathbf{n}\|-1$.

2 Reduction to lower order

For convenience, suppose that $s=1$, that is, that $\mathbf{F} \in k[x]^{m \times 1}$. Recall that the multiindex of degree constraints $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right)$ satisfies $n_{i}<N, N$ the desired order of the approximants. We will show how to construct an equivalent problem of order d, any d satisfying $\max _{i} n_{i} \leq d<N$.

First note that, for any $k \geq 0$, an order N minbasis of type \mathbf{n} for \mathbf{F} is an order $N+k$ minbasis of type \mathbf{n} for $x^{k} \mathbf{F}$, and vice versa. This shows that, up to the transformation $(N, \mathbf{F}) \leftarrow\left(N+k, x^{k} \mathbf{F}\right)$ with $k=\operatorname{modp}(d-N, d+1) \in[0, d]$, we may assume without loss of generality that $N>2 d$ and that $d+1$ divides $N-d$.

Define $\bar{s}:=(N-d) /(d+1), \bar{m}:=m+\bar{s}-1$,

$$
\overline{\mathbf{n}}:=(n_{1}, \ldots, n_{m}, \overbrace{d-1, \ldots, d-1}^{\bar{s}-1})
$$

and construct the matrix
$\overline{\mathbf{F}}:=\left[\begin{array}{c|c|c|c|c}\mathbf{F} & \operatorname{Left}(\mathbf{F}, d+1) & \operatorname{Left}(\mathbf{F}, 2(d+1)) & \cdots & \operatorname{Left}(\mathbf{F}, N-2 d-1) \\ \hline & 1 & 1 & & \\ & & & \ddots & \\ & & & & 1\end{array}\right] \bmod x^{2 d+1} \in k[x]^{\bar{m} \times \bar{s}}$.
Suppose $W \in k[x]^{* \times \bar{m}}$ is an order $2 d+1$ minbasis of type $\overline{\mathbf{n}}$ for $\overline{\mathbf{F}}$. Write $W=\left[W_{1} \mid W_{2}\right]$ where $W_{1} \in k[x]^{* \times m}$. We claim that W_{1} is an order N minbasis of type \mathbf{n} for \mathbf{F}. To see that W_{1} is a genset it suffices to verify that every row of W_{1} is a solution to (1), and in the reverse direction, every solution \mathbf{P} of (1) can be extended to give a solution to the new problem. To see that W_{1} is a minbasis it suffices to verify that W_{1} is row reduced.

Worked example

We are working over $k=\mathbb{Z} /(97)$. The Popov form of the the order 7 minbasis of type $\mathbf{n}=(1,1,0,1,1)$ of

$$
\mathbf{F}=\left[\begin{array}{c}
90 x^{6}+22 x^{5}+42 x^{4}+3 x^{3}+87 x^{2}+41 x \\
35 x^{6}+24 x^{4}+93 x^{3}+14 x^{2}+87 x+62 \\
15 x^{6}+80 x^{5}+53 x^{4}+71 x^{3}+80 x^{2}+22 x+87 \\
90 x^{6}+57 x^{5}+42 x^{4}+47 x^{3}+23 x^{2}+75 x+5 \\
6 x^{6}+74 x^{5}+72 x^{4}+37 x^{3}+74 x^{2}+87 x+44
\end{array}\right] \in k[x]^{5 \times 1}
$$

is

$$
\left[\begin{array}{ccccc}
x+40 & 20 & 78 & 9 x+84 & 11 x+77 \\
30 & x+17 & 93 & 32 x+9 & 78 x+16
\end{array}\right] \in k[x]^{2 \times 5} .
$$

For $d=1$ the above recipe gives

$$
\overline{\mathbf{F}}=\left[\begin{array}{ccc}
87 x^{2}+41 x & 42 x^{2}+3 x+87 & 90 x^{2}+22 x+42 \\
14 x^{2}+87 x+62 & 24 x^{2}+93 x+14 & 35 x^{2}+24 \\
80 x^{2}+22 x+87 & 53 x^{2}+71 x+80 & 15 x^{2}+80 x+53 \\
23 x^{2}+75 x+5 & 42 x^{2}+47 x+23 & 90 x^{2}+57 x+42 \\
74 x^{2}+87 x+44 & 72 x^{2}+37 x+74 & 6 x^{2}+74 x+72 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in k[x]^{7 \times 3}
$$

The Popov form of the order 3 minbasis of type $(1,1,0,1,1,0,0)$ of $\overline{\mathbf{F}}$ is equal to

$$
\left[\begin{array}{ccccc|cc}
x+40 & 20 & 78 & 9 x+84 & 11 x+77 \mid 24 & 57 \\
30 & x+17 & 93 & 32 x+9 & 78 x+16 & 58 & 21
\end{array}\right] \in k[x]^{2 \times 7} .
$$

3 Reduction to smaller degree constraints

Consider the multi-index $\left(n_{1}, \ldots, n_{m}\right)$. For $b \geq 0$, let ϕ_{b} be the function which maps a single degree bound n_{i} to a sequence of degree bounds, all element of the sequence equal to b except for possibly the last, and such that $\left\|\left(n_{i}\right)\right\|=n_{i}+1=\left\|\left(\phi_{b}\left(n_{i}\right)\right)\right\|$. Let len $\left(\phi_{b}\left(n_{i}\right)\right)$ denote the length of the sequence. For example, we have $\phi_{3}(10)=3,3,2$ with $\operatorname{len}\left(\phi_{3}(10)\right)=3$, while $\phi_{2}(11)=2,2,2,2$ and $\operatorname{len}\left(\phi_{2}(11)\right)=4$. Computing a genset of solutions to (1) can be reduced to computing an order N genset of type $\overline{\mathbf{n}}=\left(\phi_{b}\left(n_{1}\right), \ldots, \phi_{b}\left(n_{m}\right)\right)$. Corresponding
to $\overline{\mathbf{n}}$ define the expansion/compression matrix

$$
B:=\left[\begin{array}{c|c|c}
1 & & \\
x^{b+1} & & \\
\vdots & & \\
x^{(b+1) \operatorname{len}\left(\phi_{b}\left(n_{1}\right)\right)-1} & & \\
& x^{b+1} & \\
& \vdots & \\
& \left.x^{(b+1)\left(\operatorname{len}\left(\phi_{b}\left(n_{2}\right)\right)-1\right.}\right) & \\
\hline & & \ddots
\end{array}\right] \in k[x]^{\bar{m} \times m}
$$

where $\bar{m}=\sum_{i}^{m} \operatorname{len}\left(\phi_{b}\left(n_{i}\right)\right)=\sum_{i}^{m}\left\lceil\left(n_{i}+1\right) /(b+1)\right\rceil$. Now "expand" to construct

$$
\overline{\mathbf{F}}:=B\left[\begin{array}{c}
f_{1} \\
\frac{\mathbf{F}}{\frac{f_{1}}{f_{2}}} \bar{\vdots}
\end{array}\right]=\left[\begin{array}{c}
f_{1} x^{b+1} \\
\vdots \\
\frac{f_{1} x^{(b+1)\left(\operatorname{len}\left(\phi_{b}\left(n_{1}\right)-1\right)\right.}}{f_{2}} \\
f_{2} x^{b+1} \\
\vdots \\
\frac{f_{2} x^{(b+1)\left(\operatorname{len}\left(\phi_{b}\left(n_{2}\right)-1\right)\right.}}{\vdots}
\end{array}\right] \in k[x]^{\bar{m} \times s}
$$

Let $W \in k[x]^{* \times \bar{m}}$ be an order N genset of type $\overline{\mathbf{n}}$ for $\overline{\mathbf{F}}$. Then the "compression" $W B \in$ $k[x]^{* \times m}$ is an order N genset of type \mathbf{n} for \mathbf{F}. In general, $W B$ will not be a minbasis even if W is. However, because W is a minbasis of type $\overline{\mathbf{n}}$, and each element of $\overline{\mathbf{n}}$ is bounded by b, we know that $W B$ has the following very nice property: every approximant \mathbf{P} of type \mathbf{n} for F can be expressed as a $P=v W B$ for a vector v over $k[x]$ that has degrees bounded by b.

Note: The construction above is obviously just a partial linearization of the problem. On the one hand, the choice $b=0$ fully linearizes, transforming to an $\|\mathbf{n}\| \times N$ linear system over k, thus reducing the problem to computing a left nullspace. On the other hand, the key point here is that any choice $b=\Omega(\lceil\|\mathbf{n}\| / m\rceil)$ will balance the degree constraints but not increase significantly the dimension of the problem (i.e., $\bar{m}=O(m)$).

Worked example

We are working over $k=\mathbb{Z} /(97)$. The Popov form the order 5 minbasis of type $(0,1,4)$ of

$$
\mathbf{F}=\left[\begin{array}{c}
90 x^{3}+22 x^{2}+42 x+3 \\
87 x^{3}+41 x^{2}+35 \\
24 x^{2}+93 x+14
\end{array}\right] \in k[x]^{3 \times 1}
$$

is

$$
\left[\begin{array}{ccc}
0 & 1 & 56 x^{3}+16 x^{2}+27 x+46 \\
1 & 0 & 28 x^{3}+18 x^{2}+88 x+76 \\
0 & 0 & x^{4}
\end{array}\right] k[x]^{3 \times 3} .
$$

If we apply the above recipe with $b=1$ we reduce to a problem

$$
\overline{\mathbf{F}}=\left[\begin{array}{c}
90 x^{3}+22 x^{2}+42 x+3 \\
87 x^{3}+41 x^{2}+35 \\
24 x^{2}+93 x+14 \\
93 x^{3}+14 x^{2} \\
0
\end{array}\right] \in k[x]^{5 \times 1}
$$

If we compute a genset W for $\overline{\mathbf{F}}$ of type $(0,1,1,1,0)$ we can compress to recover a genset G for \mathbf{F} :

$$
\left[\begin{array}{ccccc}
1 & 65 & 59 & 79 x+88 & 0 \\
0 & x+45 & 33 & 14 x+68 & 0 \\
0 & 18 & x+52 & 38 x+94 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c|c|c}
1 & & \\
\hline & 1 & \\
\hline & & 1 \\
& & x^{2} \\
x^{4}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 65 & 79 x^{3}+88 x^{2}+59 \\
0 & x+45 & 14 x^{3}+68 x^{2}+33 \\
0 & 18 & 38 x^{3}+94 x^{2}+x+52 \\
0 & 0 & x^{4}
\end{array}\right] \in k[x]^{4 \times 3} .
$$

Note that although W is a minbasis for $\overline{\mathbf{F}}, G$ is not a minbasis for \mathbf{F}, only a genset.

References

[1] B. Beckermann and G. Labahn. A uniform approach for the fast computation of matrixtype Padé approximants. SIAM Journal on Matrix Analysis and Applications, 15(3):804823, 1994.
[2] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix computations, 2003. Research Report 2003-2. Laboratoire LIP, ENS Lyon, France.

[^0]: ${ }^{1}$ This restriction on s is not required but simplifies the cost estimates. Moreover, all the classical application of the vector Hermite Padé approximation problem seem to satisfy $s \leq m$: see [1, Table 1].

