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Abstract. We consider the problem of sparse interpolation of a multivariate
black-box polynomial in floating-point arithmetic. That is, both the inputs
and outputs of the black-box polynomial have some error, and all values are
represented in standard, fixed-precision, floating-point arithmetic. By inter-
polating the black box evaluated at random primitive roots of unity, we give
an efficient and numerically robust solution with high probability. We outline
the numerical stability of our algorithm, as well as the expected conditioning
achieved through randomization. Finally, we demonstrate the effectiveness of
our techniques through numerical experiments.

1. Introduction

When computing with multivariate polynomials and polynomial systems, it is
often effective and even necessary to work with an implicit representation. Com-
putationally, a black box for a polynomial is a procedure that, for any given input,
outputs the polynomial evaluated at that input. Black boxes may also represent
approximate polynomials, where the coefficients may have errors or noise. In such
cases the evaluations of the black box are expected to have errors as well.

In this paper we demonstrate a probabilistically robust numerical algorithm for
the sparse interpolation of approximate black-box polynomials: how to reconstruct
an accurate representation of the polynomial in the power basis. This representation
is parameterized by the sparsity — the number of non-zero terms — and its cost
will be proportional to this sparsity (instead of the dense representation size).

Suppose we have a black box for a multivariate polynomial f ∈ C[x1, . . . , xn]
which we know to be t-sparse, that is,

(1.1) f =
∑

1≤j≤t

cjx
dj1
1 x

dj2
2 · · ·xdjn

n ∈ C[x1, . . . , xn],

where c1, . . . , ct ∈ C, (dj1 , . . . , djn) ∈ Z≥0 are distinct for 1 ≤ j ≤ t. Evaluating

α1 = f(ν1), α2 = f(ν2), . . . , ακ = f(νκ),

at our chosen points ν1, ν2, . . . νκ ∈ Cn, where κ = O(t), we seek to determine
coefficients c1, . . . , ct ∈ C and exponents dj1 , . . . , djn , for 1 ≤ j ≤ t, of f . If the
evaluation points are not exact, this may not possible, so we ask our algorithm to
be numerically robust: if evaluations α̃1, . . . , α̃κ are relatively close to their true
values, we want the coefficients c̃1, . . . , c̃t ∈ C also be relatively close to their values.
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The best known interpolation methods that are sensitive to the sparsity of the
target polynomial are the algorithms of Ben-Or/Tiwari [3] and of Zippel [19]. Al-
though both approaches have been generalized and improved (see [20, 11, 10, 18]),
they all depend upon exact arithmetic. With recent advances in approximate poly-
nomial computation, we are led to investigate sparse interpolation in an approxi-
mate setting.

The problem of multivariate polynomial interpolation is not new, with early
work going back at least to Kronecker [13, 6]. More recently there has been much
activity on the topic, of both an algorithmic and mathematical nature [14]. To
our knowledge, none of the previous numerical work has considered the problems of
identifying the (sparse) support and sparse multivariate interpolation. On the other
hand, sparsity is considered in a different, bit-complexity model, using arbitrary
precision arithmetic by Mansour [15], who presents a randomized algorithm for
interpolating a sparse integer polynomial from (limited precision) interpolation
points (wherein bits of guaranteed accuracy can be extracted at unit cost).

In Section 2, we describe Prony’s algorithm [16] for interpolating a sum of ex-
ponential functions, which is very similar to the sparse polynomial interpolation of
Ben-Or and Tiwari [3]. Then we adapt the Ben-Or/Tiwari method to floating-point
arithmetic and identify the numerical difficulties.

In Section 3, we outline the numerical behaviour of our algorithm and sensitivity
of the underlying problems. We show that the stability of our algorithm is governed
by ‖V −1‖2/ min |cj |, where V is a Vandermonde matrix of the non-zero terms in the
polynomial evaluated at the sample points. The coefficients c1, . . . , ct are intrinsic
to the problem, and having one of them too small may indicate an incorrect choice
of t. On the other hand, the condition of V (as indicated by ‖V −1‖) is really a
property of the method, and we address this directly.

Our key innovation is the use of evaluation points at random roots of unity,
which allows reconstructing the multivariate exponents by the Chinese remainder
algorithm and adds considerable stability by avoiding large variations in magnitude
when evaluating polynomials of high degree. In particular, the associated Vander-
monde matrix V will have entries which are roots of unity. Still, difficulties can
arise when different term values in the polynomial are clustered, and a naive float-
ing point implementation of Ben-Or/Tiwari may be unstable. It is the choice of a
random primitive root of unity which removes this clustering with high probability.

In Section 4, we experiment with the effects of varying noise and term clustering
and the potential numerical instability it can cause. We demonstrate the effective-
ness of randomization at increasing stability dramatically, with high probability, in
such circumstances.

2. Prony and Ben-Or/Tiwari’s methods for interpolation

We describe Prony’s method for interpolating a sum of exponentials and the
related Ben-Or/Tiwari algorithm for multivariate polynomials. Then we present
our modification of the Ben-Or/Tiwari algorithm in floating-point arithmetic.

2.1. Prony’s method. Prony’s method interpolates a univariate function as a
sum of exponentials: it determines c1, . . . , ct ∈ C and µ1, . . . , µt ∈ C such that

(2.1) F (x) =
t∑

j=1

cje
µjx with cj 6= 0.
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If bj = eµj , by evaluating F (0), F (1), . . . ,F (2t−1) we obtain a non-linear system of
2t equations relating the 2t variables µ1, . . . , µt, c1, . . . , ct. Prony’s method solves
this non-linear system by converting it into the root finding of a single, univariate
polynomial, and the solving of linear equations. Let Λ(z) be the monic polynomial
having the bj ’s as zeros:

Λ(z) =
t∏

j=1

(z − bj) = zt + λt−1z
t−1 + · · ·λ1z + λ0.

Then λ0, . . . , λt−1 satisfy



F (0) F (1) . . . F (t− 1)
F (1) F (2) . . . F (t)

...
...

. . .
...

F (t− 1) F (t) . . . F (2t− 2)







λ0

λ1

...
λt−1


 = −




F (t)
F (t + 1)

...
F (2t− 1)


 .

After solving the above system for λ0, . . . , λt−1 of Λ(z), b1, . . . , bt (hence µ1, . . . , µt)
can be determined by finding the roots of Λ(z). The remaining unknown c1, . . . , ct

can be computed by solving the transposed Vandermonde system:

(2.2)




1 · · · 1
b1 · · · bt

...
. . .

...
bt−1
1 · · · bt−1

t







c1

c2

...
ct


 =




F (0)
F (1)

...
F (t− 1)


 .

2.2. The Ben-Or/Tiwari method. For a given black-box polynomial f with n
variables, in exact arithmetic the Ben-Or/Tiwari method finds coefficients cj and
integer exponents (dj1 , . . . , djn) such that for 1 ≤ j ≤ t,

(2.3) f(x1, . . . , xn) =
t∑

j=1

cjx
dj1
1 · · ·xdjn

n ,

with c1, . . . , ct 6= 0. Let βj(x1, . . . , xn) = x
dj1
1 · · ·xdjn

n be the jth term in f , and

bj = βj(ω1, . . . , ωn) = ω
dj1
1 · · ·ωdjn

n

with ω1, . . . , ωn ∈ D pairwise relatively prime, where D is a unique factorization
domain. Note that bk

j = βj(ωk
1 , . . . , ωk

n) for any power k.
If we set F (k) = f(ωk

1 , . . . , ωk
n), the Ben-Or/Tiwari algorithm solves for bj and

cj similar to the Prony’s method. That is, it finds a generating polynomial Λ(z),
determines its roots, and solves a Vandermonde system. Once the individual terms
bj are found as the roots of Λ(z) = 0, the exponents (dj1 , . . . , djn) are determined
by looking at their unique factorizations: bj = ω

dj1
1 ω

dj2
2 . . . , ω

djn
n .

We note that, we could also choose ω1, . . . , ωn to be roots of unity of relatively
prime order (i.e., ωpi

i = 1, ωj
i 6= 1 for 1 ≤ j < pi, and pi > degxi

f , gcd(pi, pj) = 1
whenever i 6= j). Then, given bj , we can again uniquely determine (dj1 , . . . , djn).

2.3. A modified numeric Ben-Or/Tiwari algorithm. If the steps of the Ben-
Or/Tiwari algorithm are directly implemented in floating-point arithmetic, diffi-
culties arise at various stages of the computation. The first difficulty is that the
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subroutines for linear system solving and root finding may encounter significant nu-
merical errors. The second difficulty is that we can no longer employ exact divisions
to recover the exponents in a multivariate term.

While it is well-known that Hankel and Vandermonde matrices can often be
ill-conditioned [1], this is particularly true when the input is real. Therefore, we
modify the Ben-Or/Tiwari algorithm by evaluating at primitive roots of unity.
This turns out to improve the conditioning problems of the encountered Hankel
and Vandermonde systems (see Subsection 3.1), and has the added advantage that
it allows for the recovering of the exponent of each variable in a multivariate term.
We now assume we have an upper bound on the degree of each variable in f . Let
f be as in (2.3). Choose p1, . . . , pn ∈ Z>0 pairwise relatively prime such that
pk > degxk

f for 1 ≤ k ≤ n. The root of unity ωk = exp(2πi/pk) has order pk,
which is relatively prime to the product of other pj ’s. Now consider the following
sequence for interpolation with ωk = exp(2πi/pk):

(2.4) αs = f(ωs
1, ω

s
2, . . . , ω

s
n) for 0 ≤ s ≤ 2t− 1.

Setting m = p1 · · · pn and ω = exp(2πi/m), we see ωk = ωm/pk for 1 ≤ k ≤ n.
Each term βj(x1, . . . , xn) in f is evaluated as βj(ω1, . . . , ωn) = ωdj , and each

dj can be computed by rounding logω(ωdj ) = logω(βj(ω1, . . . , ωn)) to the nearest
integer. Note that this logarithm is defined in modulo m = p1 · · · pn. Because pk’s
are relatively prime, the exponent for each variable (dj1 , . . . , djn) ∈ Zn

>0 can be
uniquely determined by the reverse steps of the Chinese remainder algorithm (see,
e.g., [9]). That is, we have dj ≡ djk

mod pk for 1 ≤ k ≤ n and

(2.5) dj = dj1 ·
(

m

p1

)
+ · · ·+ djn ·

(
m

pn

)
.

We present our modified Ben-Or/Tiwari algorithm.

Algorithm: ModBOTInterp

Input: I a floating-point black box f : the target polynomial;

I t, the number of terms in f ;

I D1, . . . , Dn: Dk ≥ deg(fxk
).

Output:I cj and (dj1 , . . . , djn) for 1 ≤ j ≤ t such that
∑t

j=1 cjx
dj1
1 · · ·xdjn

n approx-
imately interpolates f .

(1) [Evaluate f at roots of unity.]

(1.1) Choose p1, . . . , pn pairwise relatively prime and pj > Dj . Let m =
p1 · · · pn, ω = exp(2πi/m), and ωk = exp(2πi/pk) = ωm/pk .

(1.2) Evaluate αs = f(ωs
1, ω

s
2, . . . , ω

s
n), 0 ≤ s ≤ 2t− 1.

(2) [Recover (dj1 , . . . , djn).]

(2.1) Solve the associated Hankel system

(2.6)




α0 . . . αt−1

α1 . . . αt

...
. . .

...
αt−1 . . . α2t−2




︸ ︷︷ ︸
H0




λ0

λ1

...
λt−1


 = −




αt

αt+1

...
α2t−1


 .
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(2.2) Find roots b1, . . . , bt for Λ(z) = zt + λt−1z
t−1 + · · ·+ λ0 = 0.

(2.3) Recover (dj1 , . . . , djn) from dj = round(logω bj) via (2.5) by the reverse
Chinese remainder algorithm.

(3) [Compute the coefficients cj.]

Solve an associated Vandermonde system: (now βj = x
dj1
1 · · ·xdjn

n are recov-
ered, b̃j can be either bj or βj(ω1, . . . , ωn))

(2.7)




1 · · · 1
b̃1 · · · b̃t

...
. . .

...
b̃t−1
1 · · · b̃t−1

t







c1

c2

...
ct


 =




α0

α1

...
αt−1


 .

3. Sensitivity analysis and randomized conditioning

Now we focus on the numerical accuracy of the interpolation algorithm pre-
sented in the previous section. We introduce a randomized technique which will
dramatically improve the expected numerical stability of our algorithm.

The Ben-Or/Tiwari algorithm first recovers the polynomial support. That is, it
determines which terms are non-zero in the target polynomial. We look at its nu-
merical sensitivity, and link it directly to the choice of sparsity t and the condition
of the associated Vandermonde system V . After the non-zero terms are determined,
we still need to separate the exponents of different variables and recover the corre-
sponding coefficients, again via the Vandermonde system V . Finally, we show how
randomization can substantially improve the conditioning of V , hence improve the
stability of the entire interpolation process.

3.1. Conditioning of associated Hankel system. Consider the modified nu-
meric Ben-Or/Tiwari algorithm in Subsection 2.3. To determine polynomial Λ(z) =
zt +λt−1z

t−1 + · · ·+λ0, we need to solve a Hankel system as in (2.6). In general, if
polynomial f is evaluated at powers of real values, the difference between the sizes
of varying powers will contribute detrimentally to the conditioning of the Hankel
system. Such scaling problem is avoided in our method, since our H0 is formed
from the evaluations on the unit circle.

Consider f in (2.3) at primitive roots of unity as in (2.4), αs = f(ωs
1, ω

s
2, . . . , ω

s
n)

for 0 ≤ s ≤ 2t− 1 and bj = βj(ω1, . . . , ωn). Define D = diag(c1, . . . , ct),

H0 =




α0 · · · αt−1

...
. . .

...
αt−1 · · · α2t−2


 and V =




1 1 . . . 1
b1 b2 . . . bt

...
...

. . .
...

bt−1
1 bt−1

2 . . . bt−1
t


 ,

then

(3.1) H0 = V DV Tr.

Following proposition links the condition of H0 to the condition of V and to
1/|cj | of coefficients cj in the target polynomial (for 1 ≤ j ≤ t).

Proposition 3.1.

(i) ‖H−1
0 ‖ ≥ 1

t
max

j

1
|cj | , and ‖H−1

0 ‖ ≥ ‖V −1‖2∑
1≤j≤t |cj | .
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(ii) ‖H−1
0 ‖ ≤ ‖V −1‖2 ·max

j

1
|cj | .

Thus, bounds for ‖H−1
0 ‖ involve both the (inverses of) coefficients of the inter-

polated polynomial c1, . . . , ct and the condition of the Vandermonde system V . In
some sense coefficients c1, . . . , ct are intrinsic to a problem instance, and having
them very small (hence with large reciprocals) means that we have chosen t too
large. The Vandermonde matrix V , on the other hand, is intrinsic to our algorithm,
and we will address its conditioning, and methods to improve this conditioning, in
the following sections.

3.2. Root finding on the generating polynomial. In our modified numeric
Ben-Or/Tiwari algorithm, we also need to find roots for Λ(z) = 0. In general, root
finding can be very ill-conditioned to the perturbations in the coefficients [17].

However, due to our choice of evaluation points, all the roots bj = βj(ω1, . . . , ωn)
in (2.3) are on the unit circle. Using Wilkinson’s argument for points on the unit
circle, the condition can be improved, and is related to the separation b1, . . . , bt.

Theorem 3.1. For polynomial f(x1, . . . , xn) =
∑t

j=1 cjβj(x1, . . . , xn) interpolated
on the unit circle, let bk be a zero of Λ(z) and b̃k a zero of Λ(z) + εΓ(z), then

(3.2) |bk − b̃k| < ε · ‖Γ(z)‖1
|∏j 6=k(bk − bj)| + Kε2.

Note that ε · ‖Γ(z)‖1 is an upper bound for the perturbation of the polynomial
Λ(z) evaluated on the unit circle, which is also a measure of the size of a pertur-
bation in the solution of the Hankel system (2.6). The value of |∏j 6=k(bk − bj)| is
directly related to the condition of the Vandermonde system V , and depends on
the distribution of bj ’s on the unit circle (see Subsection 3.5).

3.3. Separation of powers. After computing approximations b̃1, . . . , b̃t for term
values b1, . . . , bt, we still need to consider the precision required for recovering the
integer exponents (with respect to ω = exp(2πi/m)) by taking the logarithms of
bj = ωdj (with respect to ω), for 1 ≤ j ≤ t, as in (2.5). Since each bj lies on the
unit circle, we only need to consider the argument of b̃j in determining its logarithm
with respect to ω (i.e., we normalize b̃j := b̃j/|̃bj |).

Two consecutive mth roots of unity on the unit circle are separated by an angle
of radian 2π

m , and the distance between these two is bounded below by twice the
sine of half the angle between them. In order to separate any two such points by
rounding, one must have the computed values b̃1, . . . , b̃t of b1, . . . , bt correct to

|bj − b̃j | ≤ 1
2
|2 sin(

π

m
)| < π

m
, and m = p1 · · · pn,

for 1 ≤ j ≤ t, where pk > deg fxk
for 1 ≤ k ≤ n.

We note that π/m is not a particularly demanding bound, and is easily achieved
(for fixed-precision, floating-point numbers) when H is well-conditioned, for reason-
ably size m. In particular, we need only O(log m) bits correct to effectively identify
the non-zero terms in our target sparse polynomial.
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3.4. Recovering the coefficients. Once the values of b1, . . . , bt, and hence ex-
ponents of the non-zero terms, have been determined, it still remains to compute
their coefficients c1, . . . , ct. We can do this directly by solving the Vandermonde
system V in equation (2.7) (Step 3 in algorithm ModBOTInterp). The main issue
in this case is the condition of V . We examine this in Subsection 3.5.

3.5. Condition of the Vandermonde system. While Vandermonde matrices
can be poorly conditioned [8, 1], our problem will be better behaved. First, all
our nodes (b1, . . . , bt) lie on the unit circle. For example, in the case of m × m
Vandermonde matrices, the 2-norm condition number has the optimal value of 1
when the nodes are all the mth roots of unity [7, example 6.4]. A slightly less
uniform sequence of nodes is studied in [5], where the nodes are chosen according
to a Van der Corput sequence, to achieve a 2-norm condition number of

√
2t of

a t × t Vandermonde matrix (for any t). Both results suggest the possibility of
well-conditioning of complex Vandermonde matrices.

When b1, . . . , bt are all mth roots of unity (for m ≥ t) we have the following
bounds for ‖V −1‖ from [7]:

(3.3) max
1≤k≤t

1/
√

t∏
j 6=k |bj − bk| < ‖V −1‖ ≤ max

1≤k≤t

2t−1
√

t∏
j 6=k |bj − bk| .

These bounds may still be dependent exponentially on t and m, particularly if
b1, . . . , bt are clustered. In the worst case, we find

‖V −1‖ >
1√
t
·
(

m

2π(t− 1)

)t−1

.

For a more general discussion, see [2].
This indicates that as m, as well as t, gets larger, the condition of V can get dra-

matically worse, particularly if m is large. For example, if m = 1000 (which might
occur with a tri-variate polynomial of degree 10 in each variable) with 10 terms, V
could have condition number greater than 1016. This is quite worrisome, as m is
proportional to the number of possible terms in the dense representation, and is ex-
ponential in the number of variables n. Moreover, the bound seems surprising bad,
as one might hope for better conditioning as m gets larger, when there is greater
“opportunity” for node distribution. This is addressed in the next subsection.

3.6. Randomized reconditioning. We now demonstrate how randomization dra-
matically ameliorates the potential ill-conditioning in the Vandermonde matrix.

Let p1, . . . , pn be distinct primes, pk > degxk
f , and ω = exp(2πi/m) for m =

p1 · · · pn. If polynomial f is evaluated at powers of (ω1, . . ., ωn) for ωk = ωm/pk

(cf. Subsection 2.3), the distribution of term values on the unit circle is fixed be-
cause the polynomial terms are fixed. We may well end up in an ill-conditioned
Vandermonde matrix as discussed above. To eliminate this situation with high
probability, we introduce randomization as follows. Instead of using exp(2πi/pk),
the principle pkth primitive root of unity, we choose a random pkth primitive root
of unity, ωk = exp(2πirk/pk), for some 1 ≤ rk < pk. Equivalently, we choose a
single r with r ≡ rk mod pk, 1 ≤ r < m, so that ωk = ωmr/pk (see (2.5)).

To analyze the distribution of term values, we equivalently consider the univari-
ate f̃(x) =

∑t
j=1 cjx

dj where dj = dj1(m/p1) + · · · + djn(m/pn) (cf. Subsection
2.3). The term values are ωd1 , . . . , ωdt , and the stability of recovering dj depends
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on the condition of the Vandermonde matrix V with nodes ωd1 , . . . , ωdt , which is
inversely related to the product of |ωdj − ωdk | for 1 ≤ j < k ≤ t described in (3.3).

For each interpolation attempt, we pick an r uniformly and randomly from
1 . . .m− 1. The condition number of the new Vandermonde matrix Ṽ , with nodes
bj = ωrdj for 1 ≤ j ≤ t is now inversely related to the differences |rdj − rdk| =
r|dj − dk| mod m. In some sense we are multiplying each difference by a random r,
hopefully minimizing the chance that there are many small differences. Once the
Hankel matrix H0 is constructed, we check the conditioning, and if it is poor, we
can choose another random r and repeat the process. The next theorem gives us
the assurance that we never have to do this very often.

Theorem 3.2. Let p1, . . . , pn > t2/2 be distinct primes as above, with m = p1 . . . pt

and ω = exp(2πi/m). Let 0 ≤ d1, . . . , dt ≤ m − 1 be distinct. Suppose r is chosen
uniformly and randomly from 1, . . . ,m − 1 and let Ṽ be the Vandermonde matrix
on nodes bi = ωrdi . Then, with probability at least 1/2,

‖Ṽ −1‖ ≤
√

t

(
2t2

π

)t−1

.

Thus we eliminate the dependence upon m, and hence the dependence upon
the size of the dense representation of the polynomial. However, we believe this
is probably still far from optimal. Considerable cancelation might be expected in
the sizes of the entries of V −1, though bounding these formally seems difficult. We
have conducted intensive numerical experiments which suggest that the bound (in
terms of t) on the condition number (of H and V ) is much lower.

Sparsity(%)
0.1 1 2 5 10

101 2.2137 2.1942 3.6469 9.9189 26.974
211 2.2551 3.6963 6.9576 25.279 69.442
503 2.3136 9.4414 22.311 80.068 247.65
701 2.2000 16.363 38.664 164.16 439.31D

eg
re

e

1009 2.3247 29.810 72.378 481.44 765.84
Figure 4.1: Median condition number of V with randomization.

A difficult problem we have not addressed thus far is the determination of the
sparsity t. While do not offer a complete solution, we note that randomization is
of potential help.

Consider

H1 =




α1 . . . αt

...
. . .

...
αt . . . α2t−1


 .

The randomization appears to ensure that all leading minors of H1 are well-
conditioned with high probability. This leads to a possible way to identify the
sparsity t of f by simply computing α1, α2, . . . (at a random root of unity) until
the constructed H1 becomes ill-conditioned. This can be achieved efficiently with
the algorithm of [4], and with high probability should identify t.

It is shown in [12, Theorem 4] that all leading minors of H1 are non-singular
with high probability, which is clearly a necessary condition for the leading minors
to be well-conditioned. The proof of [12, Theorem 4] makes use of the factorization
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of the leading k × k minor H
(k)
1 of H1,

H
(k)
1 = V (k)DY (V (k))Tr,

where matrix V (k) ∈ Ck×t consists of the first k rows of V and Y = diag(b1, . . . , bt).
Since Theorem 3.2 can easily be generalized to the k × t matrix V (k), a well-
conditioned V (k) provides an explanation for a well-conditioned H

(k)
1 .

4. Experiments

We have tested our modified Ben-Or/Tiwari method. Our computational envi-
ronment is the computer algebra system Maple 10 using hardware arithmetic (IEEE
floating point).

Our algorithm interpolates multivariate polynomials. However, during the com-
putation, a multivariate polynomial is regarded as a univariate polynomial on the
unit circle through the (reverse) steps of the Chinese remainder algorithm (see Sub-
section 2.3). Therefore, we concentrate on univariate examples. Since the stability
is directly dependent on the condition of the underlying Vandermonde system, we
arrange our tests by the condition of this system.

Term values evenly distributed on the unit circle
This is the best and “easiest” case, wherein the Vandermonde system is well-

conditioned. We randomly generated 100 univariate polynomials, with the num-
ber of terms between 10 and 50, and roughly evenly distributed the term degrees
between 0 and 1000. When the non-zero coefficients are randomly distributed be-
tween -1 and 1, the following table reveals the performance of both interpolation
algorithms. Robustness is evaluated as the 2-norm distance between the interpola-
tion result and the target polynomial. For this we list both the mean and median
for the performance of the interpolation of these 100 random polynomials.

Random noise Mean Median
0 .120505981901393e− 11 .133841077792715e− 11

±10−12 ∼ 10−9 .581398079681344e− 9 .582075115365304e− 9
±10−9 ∼ 10−6 .570763804647327e− 6 .569467774610552e− 6
±10−6 ∼ 10−3 .577975930552999e− 3 .583391747553225e− 3

As the above table illustrates, well-conditioned Vandermonde systems give ex-
cellent interpolation results, and the amount of the input noise is proportional to
the error in the output.

Clustered term values
For a second experiment, we interpolate polynomials with terms x0, x3, x6,

xb
994
t−2 c+6, xb

2·994
t−2 c+6, . . ., xb

(t−3)·994
t−2 c+6 at powers of ω = exp(2π/1000), in which

terms x0, x3, and x6 are close to each other while the remaining terms are relatively
evenly distributed.

In our test, we encounter a (numerically) singular system when the (random)
noise is in the range of ±10−9 ∼ 10−6. We list the mean and median of all the
non-singular results. We also note that 11 of the 99 non-singular results are of
distance less or around .0001 from the target polynomial.
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Random noise Mean Median
0 .136907950785253e− 9 .101038098751213e− 9

±10−12 ∼ 10−9 .118191438770386e− 6 .700404450937545e− 7
±10−9 ∼ 10−6 .713728504313218 .641238385320081
±10−6 ∼ 10−3 .843675339146120 .754345867272459

In this experiment, good interpolation results may still be obtained for Vander-
monde systems with a few nodes clustered on the unit circle. However, such results
tend to be very sensitive to noise.

Effective randomization to ameliorate term value accumulation
In our third set of tests we consider the effect of randomization to improve the

numerical conditioning of the interpolation problems. Here we consider polynomial
interpolation associated with a Vandermonde system with 3 terms clustered. That
is, the 100 random univariate polynomials, with the number of terms between 10
and 50, all have terms x0, x, and x2. All other remaining term are roughly evenly
distributed the term degrees between 3 and 1000.

We interpolate the polynomial at powers of exp(2πi/1009). As the following
table shows, the clustering greatly affects the effectiveness of both interpolation
algorithms.

Random noise Mean Median
0 92.8019727202980 73.4823536193264

However, after randomization, that is, instead of interpolating at powers of ω =
exp(2πi/1009), we interpolate at powers of ω = exp(2rπi/1009) for a random r ∈
{1, . . . , 1008}, for the same set of random polynomials, we have the following results.

Random noise Mean Median
0 27.9983307662379 .242793778266858e− 7

±10−12 ∼ 10−9 .869652877288326 .170781612648532e− 6

In addition, when the random noise belongs to ±10−9 ∼ 10−6, a singular system
is encountered in our test, and 22 among the 99 non-singular results are of distance
less than 10−4 after randomization.

Notice that, although we do not obtain good interpolation results each time, the
error at the median is generally quite good (a terribly conditioned randomization
can affect the mean dramatically). In practice, upon obtaining an ill-conditioned
result, we would simply re-randomize and repeat the computation. Theorem 3.2
provides assurances that we should never have to restart this many times before
achieving a well-conditioned Vandermonde matrix, and hence obtain reliable results.
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