Decomposition of Differential Polynomials (Extended Abstract)

Xiao-Shan Gao and Mingbo Zhang
Key Laboratory of Mathematics Mechanization
Institute of Systems Science, AMSS
Academia Sinica, Beijing 100080, China
xgao@mmrc.iss.ac.cn

Abstract

We present an algorithm to decompose nonlinear differential polynomials in one variable and with rational functions as coefficients. The algorithm is implemented in Maple for the constant field case. The program can be used to decompose differential polynomials with more than one thousand terms effectively.

Keywords. decomposition, differential polynomial, difference polynomial

1 Introduction

We propose an algorithm to decompose nonlinear univariate ordinary differential polynomials. The idea is to reduce the decomposition of nonlinear differential polynomials to the decomposition of univariate linear ordinary differential operators (LODOs). The algorithm is of exponential complexity in the worst case, but seems practically effective for a large class of problems. The reason is that the exponential complexity is mainly caused by combinatorially selections and for each such selection the algorithm uses only a small number of simple and fast operations such as polynomial factorization, solving of linear equations, and decomposition of algebraic polynomials.

We first find the right decomposition factor by reducing the problem in the general case to the decomposition of differential polynomials whose left decomposition factor is quasi linear. Then the quasi linear case is solved by decomposition of LODOs and solution of systems of linear equations. After the right decomposition factor is found, it is easy to find the left decomposition factor.

Most of the previous work on decomposition focused on decomposition of polynomials, LODOs, and linear difference operators. This seems to be the first complete algorithm to decompose nonlinear differential polynomials. We also give an algorithm to decompose nonlinear ordinary difference polynomials [5].

2 Notations and Preliminary Results

Let $\mathcal{K}=\mathbb{Q}(t)$ be the differential field of rational functions in t, x a differential indeterminate, and $\mathcal{K}\{x\}$ the ordinary differential polynomial ring over \mathcal{K}. We
denote by x_{i} the i-th derivative of x. For a differential polynomial f not in \mathcal{K}, let x_{o} be the highest derivative appearing in f, which is called the order of f and is denoted by o_{f}. Let o_{f} be the order of f, d_{f} the degree of f in $x_{o_{f}}, i_{f}$ the coefficient of $x_{o_{f}}^{d_{f}}$ in $f, s_{f}=\frac{\partial f}{\partial x_{o_{f}}}$. Then d_{f}, i_{f}, s_{f} are called the degree, initial, and separant of f respectively.

A monomial in $\mathcal{K}\{x\}$ is always arranged in the form $a \prod_{i=0}^{r} x_{i}^{\alpha_{i}}$ where $a \in \mathcal{K}$, $\alpha_{i} \in \mathbb{N}$. The number $\sum_{0 \leq i \leq r} \alpha_{i}$ is called the total degree and $\sum_{0 \leq i \leq r} i \cdot \alpha_{i}$ is called the differential degree of the monomial. The total degree and differential degree of f are denoted by $\operatorname{tdeg}(f)$ and $\operatorname{ddeg}(f)$ respectively. If $\operatorname{tdeg}(f)=k$ and f is total degree homogeneous, f is called k-total degree homogeneous. Furthermore, if $k=1$ we say that f is linear.

Let $g, h \in \mathcal{K}\{x\}$, we use $g \circ h$ to denote the composition of two differential polynomials g and h, which is obtained by substituting x_{i} in g by $h_{(i)}(0 \leq i \leq$ $\left.o_{g}\right)$. If $f=g \circ h, g, h$ are called the left and right decomposition factors of f respectively. A decomposition $f=g \circ h$ is called nontrivial, if both g and h are not in the form $a x+b$ where a and b are in \mathcal{K}.

For any $c \in \mathcal{K}$, we have $f=g \circ h=(g \circ(x+c)) \circ((x-c) \circ h)$. So we will always assume that h has no terms in \mathcal{K}. In this case, the term of f in \mathcal{K} is equal to that of g. So we can assume that f, g, and h have no terms in \mathcal{K}.

We can always write f, g, h as follows.

$$
\begin{align*}
f & =f_{d_{f}} x_{o_{f}}^{d_{f}}+f_{d_{f}-1} x_{o_{f}}^{d_{f}-1}+\ldots+f_{1} x_{o_{f}}+f_{0} \\
g & =g_{d_{g}} x_{o_{g}}^{d_{g}}+g_{d_{g}-1} x_{o_{g}}^{d_{g}-1}+\ldots+g_{1} x_{o_{g}}+g_{0} \tag{1}\\
h & =i_{h} x_{o_{h}}^{d_{h}}+h_{1}
\end{align*}
$$

where $f_{d_{f}}=i_{f}, g_{d_{g}}=i_{g}$ and h_{1} is of degree lower than h in $x_{o_{h}}$.
Lemma 1. If $f=g \circ h$, we have $o_{f}=o_{g}+o_{h}, \quad s_{f}=\left(s_{g} \circ h\right) \cdot s_{h}$.
Lemma 2. If $f=g \circ h$ and $o_{g}=0$, we have $o_{f}=o_{h}, d_{f}=d_{g} d_{h}, i_{f}=\left(i_{g} \circ h\right) i_{h}^{d_{g}}$.
Lemma 3. If $f=g \circ h$ and $o_{g}>0$, we have $o_{f}=o_{g}+o_{h}, d_{f}=d_{g}, i_{f}=$ $\left(i_{g} \circ h\right) \cdot s_{h}^{d_{f}}$.
Lemma 4. Use the notations in (1). If $f=g \circ h$ and $o_{g}>0$, then $s_{h}^{i}\left(1 \leq i \leq d_{f}\right)$ is a factor of f_{i} over \mathcal{K}.

Lemma 5. Let $f=g \circ h$ and $o_{g}>0$. Denote $d_{f}\left(=d_{g}\right)$ by $d, \frac{\partial^{k} f}{\partial^{k} x_{o_{f}}}$ by $s^{(k)}(f)$ and $\frac{\partial^{k} g}{\partial^{k} x_{o_{g}}}$ by $s^{(k)}(g)(1 \leq k \leq d)$ respectively. Then we have $s^{(i)}(f) / s_{h}^{i}=s^{(i)}(g) \circ$ $h(1 \leq i \leq d)$. Namely, h is a right decomposition factor of $s^{i}(f) / s_{h}^{i}$.
Lemma 6. q, u, v are differential polynomials, $q=u \circ v$. Let $d=\operatorname{tdeg}(q), d_{1}=$ $\operatorname{tdeg}(u), d_{2}=\operatorname{tdeg}(v)$. Then $d=d_{1} \cdot d_{2}$. Furthermore, if $Q_{d}, U_{d_{1}}, V_{d_{2}}$ are the sums of monomials in q, u, v with total degrees d, d_{1}, d_{2} respectively, then $Q_{d}=$ $U_{d_{1}} \circ V_{d_{2}}$.

3 Reduction to Quasi Linear Case

Two basic operations are often needed: (1) to examine whether a given differential polynomial is a right decomposition factor of another differential polynomial and (2) to find a univariate polynomial decomposition of a differential polynomial. The second problem could be considered as a univariate decomposition of multi-variate polynomials. Such an algorithm has been given in 4. An algorithm for the first problem is simple and can be found in [1]. Therefore, we need only to find a right decomposition factor.

A differential polynomial p in $\mathcal{K}\{x\}$ is called quasi linear if p is of the form $p=x_{o_{p}}+p_{1}$ where p_{1} is of order lower than o_{p}.

When $o_{g}>0$, we have $s_{h}^{i} \mid f_{i}\left(1 \leq i \leq d_{f}\right)$ by Lemma 4. From this relation, we may find a finite number of candidates S for s_{h}. Our decomposition algorithm will start with such a possible separant S. We consider two cases.

Case 1. $\frac{f_{d}}{s_{h}^{d}}=\frac{i_{f}}{s_{h}^{d}} \notin \mathcal{K}$. By Lemma 3, h is a right decomposition factor of $\frac{f_{d}}{s_{h}^{d}}$. Then we can consider the decomposition of $\frac{f_{d}}{s_{h}^{d}}$ recursively.

Note that after an iteration, the left decomposition factor of $\frac{f_{d}}{s_{h}^{d}}$ could be a polynomial and the condition $o_{g}>0$ is not valid anymore. We need to test whether $\frac{f_{d}}{s_{h}^{d}}$ has a polynomial decomposition such that the separant of the right decomposition factor is S. Such a decomposition is unique if it exists. If $\frac{f_{d}}{s_{h}^{d}}$ has such a polynomial decomposition, we will check whether the right decomposition factor of it is a right decomposition factor of f. If $\frac{f_{d}}{s_{h}^{d}}$ does not have such a polynomial decomposition or the right decomposition factor of it is not a right decomposition factor of f, we can repeat the above procedure recursively.

Case 2. $\frac{f_{d}}{s_{h}^{d}}=c \in \mathcal{K}$. By Lemma [2, $g_{d} \in \mathcal{K}$. Now let $d=d_{f}\left(=d_{g}\right)$ and $i=d-1$ in Lemma 5, we have $s^{d-1}(f) / s_{h}^{d-1}=s^{d-1}(g) \circ h$. Using notations in (1), by direct computation, we have

$$
\begin{aligned}
s^{d-1}(f) & =\frac{\partial^{d-1} f}{\partial^{d-1} x_{o_{f}}}=d!f_{d} x_{o_{f}}+(d-1)!f_{d-1} \\
s^{d-1}(g) & =d!g_{d} x_{o_{g}}+(d-1)!g_{d-1}
\end{aligned}
$$

So we have

$$
\begin{equation*}
\left(f_{d} x_{o_{f}}+\frac{1}{d} f_{d-1}\right) / s_{h}^{d-1}=\left(g_{d} x_{o_{g}}+\frac{1}{d} g_{d-1}\right) \circ h \tag{2}
\end{equation*}
$$

By (2) we have

$$
s_{h} x_{o_{f}}+\frac{1}{c d} \cdot \frac{f_{d-1}}{s_{h}^{d-1}}=\left(\frac{g_{d}}{c} x_{o_{g}}+\frac{1}{c d} g_{d-1}\right) \circ h=\frac{g_{d}}{c}\left(s_{h} x_{o_{f}}+R_{h}\right)+\frac{1}{c d} g_{d-1} \circ h .
$$

Comparing the coefficients of $x_{o_{f}}$, we have $s_{h}=\frac{g_{d}}{c} \cdot s_{h}$ and then $\frac{g_{d}}{c}=1$. Let $w=\frac{1}{c d} \cdot \frac{f_{d-1}}{s_{h}^{d-1}}, g^{\prime}=\frac{1}{c d} g_{d-1}$. Then

$$
\begin{equation*}
p=s_{h} x_{o_{f}}+w=\left(x_{o_{g}}+g^{\prime}\right) \circ h \tag{3}
\end{equation*}
$$

So, the left decomposition factor of p w.r.t.the right decomposition factor h is quasi linear.

The above analysis leads to the following algorithm.

Algorithm 1 Input: differential polynomials f, S.

Output: There are three possibilities: (1) differential polynomials g and h such that $f=g \circ h$; (2) a differential polynomial p such that if h is a right decomposition factor of f with separant S, then h is a right decomposition factor of p and the corresponding left decomposition factor of p w.r.t. h is quasi linear; or (3) an empty set which means that f has no right decomposition factors with separant S.

S1 $q:=f$.
S2 Let $d=d_{q}$. Write q as the form $q=q_{d} x_{o_{q}}^{d}+\cdots+q_{1} x_{o_{q}}+q_{0}$. If $o_{q}<o_{S}$, then output the empty set and terminate the algorithm.
S3 If $c=\frac{s_{q}}{S} \in \mathcal{K}$, check whether there exists a nontrivial g such that $f=g \circ q$, and if it is, output g and q; otherwise output $p=\frac{q}{c}$. Terminate the algorithm.
S4 If we find a pair of r, h such that r is a polynomial and $q=r \circ h$ and $s_{h}=S$, then try to find a g such that $f=g \circ h$. If such a g exists, output g, h and terminate the algorithm; otherwise, go to next step. S3 and S4 consider the polynomial decomposition of q.
S5 For $i=1, \ldots, d$, if there exists some i such that $S^{i} \vee q_{i}$, then output the empty set and terminate the algorithm.
S6 Let $c=q_{d} / S^{d}$. If $c \in \mathcal{K}$, let $w=\frac{1}{c \cdot d} \frac{q_{d-1}}{S^{d-1}}$, output $p=S x_{o_{q}}+w$ and terminate the algorithm.
S7 Let $q=c-c_{0}$, where c_{0} denotes the term of c in \mathcal{K}. Go to S2.

4 Solving the Quasi Linear Case

We consider the following problem: if a given differential polynomial p has a decomposition $p=r \circ h$ such that r is quasi linear, how to find r and h ?

We write differential polynomials p, r, h as the sum of total degree homogeneous parts:

$$
\begin{aligned}
& p=P_{d}+P_{d-1}+\cdots+P_{2}+P_{1} \\
& r=R_{d_{1}}+R_{d_{1}-1}+\cdots+R_{2}+R_{1} \\
& h=H_{d_{2}}+H_{d_{2}-1}+\cdots+H_{2}+H_{1}
\end{aligned}
$$

where d, d_{1}, d_{2} denote the total degrees of p, r, h respectively. Notice that p, r, h have no terms in \mathcal{K}. Since r is quasi linear, $R_{1} \neq 0$ and $o_{R_{i}}<o_{R_{1}}$ for $2 \leq i \leq d_{1}$.

For any differential polynomial f, denote \exists_{k} to be the sum of the monomials included in f with total degree k. We consider two cases: $P_{1} \neq 0$ and $P_{1}=0$.

Case 1: $P_{1} \neq 0$
We assume $d_{1}<d_{2}$ (the case $d_{1} \geq d_{2}$ is similar). Comparing the sum of the monomials with total degree $l(1 \leq l \leq d)$ in $p=r \circ h$, we have $(E 1)$.

$$
(E 1)\left\{\begin{array}{l}
P_{1}=R_{1} \circ H_{1} \\
P_{2}=R_{1} \circ H_{2}+R_{2} \circ H_{1} \\
\vdots \\
P_{k}=R_{1} \circ H_{k}+R_{k} \circ H_{1}+\sum_{1<i<k} R_{i} \circ\left(\sum_{1 \leq j \leq k-1} H_{j}\right) \\
\vdots \\
P_{s}=R_{1} \circ H_{s}+\sum_{1<i \leq d_{1}}\left(k \leq d_{1}\right) \\
\vdots \\
R_{i} \circ\left(\sum_{1 \leq j \leq s-1} H_{j}\right) \\
d_{2}
\end{array}\left(d_{1}<s \leq d_{2}\right)\right.
$$

The idea of our algorithm is as follows: find R_{1}, H_{1} from the first equation of (E1) and substitute R_{1}, H_{1} into $P_{k}=0(k>1)$ to obtain H_{k} and R_{k} by solving a linear equation system in the coefficients of H_{k} and R_{k}. To make this into an algorithm, we need to answer the following questions.

Q1. How to determine d_{1} and d_{2} ?
Q2. How to determine R_{1}, H_{1} from the first equation of $(E 1)$, that is, how to decompose LODOs over \mathcal{K} ?
Q3. Can $R_{k}, H_{k}\left(1 \leq k \leq \min \left\{d_{1}, d_{2}\right\}\right)$ be determined uniquely by R_{1} and H_{1} ? If the answer is no, then some new parameters over \mathcal{K} will appear and we may face the difficult problem of solving algebraic differential equations about the coefficients in the next step.
Q4. If $d_{1}<d_{2}$, we will obtain $R_{i}, H_{i}\left(1 \leq i \leq d_{1}\right)$ firstly and then compute $H_{j}\left(d_{1}<j \leq d_{2}\right)$. We need to know whether $H_{j}\left(d_{1}<j \leq d_{2}\right)$ can be determined uniquely. Similarly, how about the case of $d_{1} \geq d_{2}$?

For problem Q1, by Lemma 6 we have $d=d_{1} d_{2}$. It is obvious that $d_{2}=$ $\operatorname{tdeg}(h) \geq \operatorname{tdeg}(S)+1$, where S is the possible separant of h. So we will search all possible pairs $\left(d_{1}, d_{2}\right)$ satisfying these two conditions.

For problem Q2, we may use the algorithm in [3] to find a complete enumeration of all decompositions of P_{1}.

Theorem 2 below answers the first part of problem Q3 affirmatively.
Theorem 2. Let R_{1}, H_{1} be two linear differential polynomials and P_{k}^{\prime} a k-total degree homogeneous differential polynomial $(k>1)$ over \mathcal{K}. If there exist k-total degree homogeneous differential polynomials R_{k}, H_{k} over \mathcal{K} such that $o_{R_{k}}<o_{R_{1}}$ and $P_{k}^{\prime}=R_{1} \circ H_{k}+R_{k} \circ H_{1}$, then they are unique.

As shown by the following example, parameters will be introduced in the decomposition of LODOs:

Example 1. $\mathcal{K}=\mathbb{C}(t), x_{2} \in \mathcal{K}\{x\}$ has the following two decompositions

$$
x_{2}=x_{1} \circ x_{1}=\left(x_{1}+\frac{1}{t+c} x\right) \circ\left(x_{1}-\frac{1}{t+c} x\right)
$$

where $c \in \mathbb{C}$ is a constant parameter.
Theorem 2 asserts that no new parameters will be introduced in both of R_{k} and $H_{k}\left(1<k \leq d_{1}\right)$. If R_{1}, H_{1} contain parameters, H_{k}, R_{k} may contain these parameters, too. Furthermore, the identical equation $R_{1} \circ H_{k}+R_{k} \circ H_{1}=P_{k}^{\prime}$ may add new constraints on the parameters in R_{1} and H_{1}. These newly added constraints can be handled by the method in [2].

When R_{1}, H_{1}, P_{k} are given and $R_{i}, H_{i}(2 \leq i \leq k-1)$ have been obtained, we hope to find R_{k}, H_{k} from

$$
R_{1} \circ H_{k}+R_{k} \circ H_{1}=P_{k}^{\prime}=P_{k}-\sum_{1<i<k} R_{i} \circ\left(\sum_{1 \leq j \leq k-1} H_{j}\right)
$$

Denote $\tilde{R}_{k}, \tilde{H}_{k}$ to be the sums of the terms in R_{k}, H_{k} with maximal differential degree respectively. Comparing the sum of the terms with maximal differential degree of both sides, we have:

$$
\begin{equation*}
a_{m} \sum_{J} b_{J}\left(x_{m} \circ x^{j_{0}} x_{1}^{j_{1}} \cdots x_{o_{2}}^{j_{o_{2}}}\right)+b_{n}^{k} \sum_{I}\left(a_{I} x^{i_{0}} x_{1}^{i_{1}} \cdots x_{o_{1}}^{i_{o_{1}}}\right) \circ x_{n}-\tilde{P}_{k}^{\prime}=0 \tag{4}
\end{equation*}
$$

Notice that in the identity (4), all the coefficients a_{I}, b_{J} are algebraic linear. So we need only to solve an algebraic linear system to obtain $\tilde{R}_{k}, \tilde{H}_{k}$.

The above analysis leads to the following algorithm.
Algorithm 3 Input: differential polynomials $R_{1}, H_{1}, P_{k}^{\prime} \in \mathcal{K}\{x\}$ and a positive integer $o_{p} . R_{1}, H_{1}$ are linear, $i_{R_{1}}=1$ and P_{k}^{\prime} is k-total degree homogeneous.

Output: differential polynomials $R_{k}, H_{k} \in \mathcal{K}\{x\}$ such that $o_{R_{k}}<o_{R_{1}}, o_{H_{k}} \leq$ $o_{p}-o_{R_{1}}$ and $R_{1} \circ H_{k}+R_{k} \circ H_{1}=P_{k}^{\prime}$ if they exist.

S1 Let $m=o_{R_{1}}, n=o_{H_{1}}, b_{n}=i_{H_{1}}, o_{2}=o_{p}-m, R_{k}=H_{k}=0$.
S2 If $P_{k}^{\prime}=0$, return R_{k}, H_{k}; If $\operatorname{ddeg}\left(P_{k}^{\prime}\right)<\max \{m, n \cdot k\}$, then R_{k}, H_{k} do not exist, return. Let \tilde{P}_{k}^{\prime} be the sum of the terms included in P_{k}^{\prime} with maximal differential degree.
S3 Let

$$
\begin{aligned}
& T_{1}=\left\{\left(i_{0}, i_{1}, \cdots, i_{m-1}\right): \sum_{0 \leq s \leq m-1} i_{s}=k, \sum_{0 \leq s \leq m-1} s \cdot i_{s}=\operatorname{ddeg}\left(P_{k}^{\prime}\right)-m\right\} \\
& T_{2}=\left\{\left(j_{0}, j_{1}, \cdots, j_{o_{2}}\right): \sum_{0 \leq l \leq o_{2}} j_{l}=k, \sum_{0 \leq l \leq o_{2}} l \cdot j_{l}=\operatorname{ddeg}\left(P_{k}^{\prime}\right)-n \cdot k\right\} \\
& \tilde{R}_{k}=\sum_{I \in T_{1}} a_{I} x^{i_{0}} x_{1}^{i_{1}} \cdots x_{m-1}^{i_{m-1}}, \quad \tilde{H}_{k}=\sum_{J \in T_{2}} b_{J} x^{j_{0}} x_{1}^{j_{1}} \cdots x_{o_{2}}^{j_{o_{2}}}
\end{aligned}
$$

Then we have

$$
\sum_{J \in T_{2}} b_{J}\left(x_{m} \circ x^{j_{0}} x_{1}^{j_{1}} \cdots x_{o_{2}}^{j_{o_{2}}}\right)-b_{n}^{k} \sum_{I \in T_{1}}\left(a_{I} x^{i_{0}} x_{1}^{i_{1}} \cdots x_{m-1}^{i_{m-1}}\right) \circ x_{n}-\tilde{P}_{k}^{\prime}=0(5)
$$

If $T_{1}\left(T_{2}\right)$ is empty, then $R_{k}:=0\left(H_{k}:=0\right)$ and the corresponding sum is defined to be zero. Simplify the left part of (5) and let the coefficients of each monomial be zero. We obtain linear equations about a_{I} and b_{J}. If this equation system does not have a solution, then R_{k}, H_{k} do not exist, return; else, $R_{k}:=R_{k}+\tilde{R_{k}}, H_{k}:=H_{k}+\tilde{H}_{k}$.
S4 $P_{k}^{\prime}:=P_{k}^{\prime}-R_{1} \circ \tilde{H}_{k}-\tilde{R}_{k} \circ H_{1}$, go to S 2 .
Problem Q4 is easier to explain: when $d_{1} \geq d_{2}$, we obtain all $H^{\prime} s$ firstly, then we have obtained the right decomposition factor of p and the corresponding left decomposition factor is certainly uniquely determined by the coefficients of h.

Case 2: $P_{1}=0$
Let $k=\min \left\{i: P_{i} \neq 0\right\}$. Then $k=\min \left\{i: H_{i} \neq 0\right\}$. Comparing the sum of the monomials with total degree $l(k \leq l \leq d)$ in $p=r \circ h$, we have

$$
(E 2)\left\{\begin{array}{l}
P_{k}=R_{1} \circ H_{k} \\
P_{k+1}=R_{1} \circ H_{k+1} \\
\vdots \\
P_{2 k-1}=R_{1} \circ H_{2 k-1} \\
P_{2 k}=R_{1} \circ H_{2 k}+R_{2} \circ H_{k} \\
P_{2 k+1}=R_{1} \circ H_{2 k+1}+R_{2} \circ\left(H_{k}+H_{k+1}\right) \\
\vdots \\
\vdots \\
P_{d}=R_{d_{1}} \circ H_{d_{2}}
\end{array}\right.
$$

Generally, for $m, n \leq \min \left\{k \cdot d_{1}, d_{2}\right\}$, we have :

$$
\begin{align*}
& P_{m}=R_{1} \circ H_{m}+\sum_{2 \leq l \leq\left[\frac{m}{k}\right]} R_{l} \circ\left(\sum_{k \leq j \leq\left[\frac{m}{l}\right]} H_{j}\right) \quad(k V m) \tag{6}\\
& P_{n}=R_{1} \circ H_{n}+R_{\frac{n}{k}} \circ H_{k}+\sum_{2 \leq l<\frac{n}{k}} R_{l} \circ\left(\sum_{k \leq j \leq\left[\frac{n}{l}\right]} H_{j}\right) \tag{7}\\
& n
\end{align*}(k \mid n)
$$

where $\left[\frac{m}{l}\right]$ denotes the maximal integer not larger than $\frac{m}{l}$.
We will obtain R_{1} from the first k equalities $R_{1} \circ H_{j}=P_{j}(k \leq j \leq 2 k-1)$ by decomposing linear differential polynomials with coefficients in \mathcal{K} and get other R_{i}, H_{j} by solving linear systems as before. The choice of $\left(d_{1}, d_{2}\right)$ and the uniqueness of $R(H)$ are almost the same with that in the case $P_{1} \neq 0$. When R_{1} is given, the uniqueness for $H_{j}(k \vee j)$ is obvious by (6) and the uniqueness for $R_{\frac{j}{k}}$ and $H_{j}(k \mid j)$ in (7) is guaranteed by Theorem 4.
Theorem 4. Let R_{1} be a linear differential polynomial and $P_{i k}$ an $i \cdot k$-total degree homogeneous differential polynomial. If there exists an $i-$ total degree homogeneous differential polynomial R_{i} and an $i \cdot k$-total degree homogeneous differential polynomial $H_{i k}$ such that $o_{R_{i}}<o_{R_{1}}$ and $P_{i k}=R_{1} \circ H_{i k}+R_{i} \circ H_{k}$, then they are unique.

Now we show how to get R_{1} from $P_{j}=R_{1} \circ H_{j}(k \leq j \leq 2 k-1)$. We consider the general problem: given a total degree homogeneous differential polynomial q $(\operatorname{tdeg}(q)>1)$, how to obtain all enumerations of linear differential polynomial s such that $q=s$ or for some differential polynomial r ? We first prove a lemma.
Lemma 7. If $l \circ q=u \circ x_{m}$, where l, q, u are total degree homogeneous, l is linear, $\operatorname{tdeg}(q)>1$ and m is a positive integer, then there exists a differential polynomial q^{\prime} such that $q=q^{\prime} \circ x_{m}$.

Assume that q can be decomposed as $q=s \circ r$, where s is linear and r is total degree homogeneous. Let $v=\min \left\{i: x_{i}\right.$ appears in $\left.q\right\}$. By Lemma 7, there exists a differential polynomial r^{\prime} such that $r=r^{\prime} \circ x_{v}$, thus $q^{\prime}=s \circ r^{\prime}$. So we need only to consider the case of $v=0$. Let $a=\operatorname{deg}_{x} q, e=\operatorname{deg}_{x} r, n=o_{s}$, we can write q, s, r as follows:

$$
\begin{aligned}
q & =q_{a} x^{a}+\cdots+q_{1} x+q_{0} \\
s & =s_{n} x_{n}+\cdots+s_{1} x_{1}+s_{0} x \\
r & =r_{e} x^{e}+\cdots+r_{1} x+r_{0}
\end{aligned}
$$

where $o_{r_{e}} \geq 1$ or $r_{e}=1\left(\right.$ if $r_{e} \in \mathcal{K}$, then $\left.s \circ r=\left(s \circ r_{e} x\right) \circ\left(\frac{r}{r_{e}}\right)\right)$. We have

$$
s \circ r= \begin{cases}\left(s \circ r_{e}\right) x^{e}+u_{2} & o_{r_{e}} \geq 1 \\ s_{0} x^{e}+\left(s \circ\left(r_{e-1}+e x\right)-e s_{0} x\right) x^{e-1}+u_{3} & r_{e}=1 \text { and } s_{0} \neq 0 \\ \left(s \circ\left(r_{e-1}+e x\right)\right) x^{e-1}+u_{4} & r_{e}=1 \text { and } s_{0}=0\end{cases}
$$

where u_{1}, u_{3}, u_{4} are of degree lower than $e-1$ in x and u_{2} is of degree lower than e in x.

From $q=s \circ r$, we have

1. If $q_{a} \notin \mathcal{K}$, then s satisfies $s \circ r_{e}=q_{a}$ or $s \circ\left(r_{e-1}+e x\right)=q_{a}$. In these cases, s is a linear left decomposition factor of q_{a}. So, we will find the linear left decomposition factors of q_{a}.
2. If $q_{a} \in \mathcal{K}$, then $s_{0}=q_{a}, e=a$ and $q_{a-1}=s \circ\left(r_{e-1}+e x\right)-e s_{0} x$. So $q_{a-1}+a q_{a} x=s \circ\left(r_{e-1}+e x\right)$ and we will consider the decomposition of $q_{a-1}+a q_{a} x$, which is linear.

The above analysis leads to the following algorithm.
Algorithm 5 Input: a total degree homogeneous differential polynomial q with $\operatorname{tdeg}(q)>1$. Output: a set Δ contains all possible enumerations of linear left decomposition factors s of q with $o_{s}>0, i_{s}=1$.
S1 Let $v=\min \left\{i: x_{i}\right.$ appears in $\left.q\right\}$, find q^{\prime} such that $q=q^{\prime} \circ x_{v}$, that is, replace x_{i} with x_{i-v} in q. Let $a=\operatorname{deg}_{x} q^{\prime}, q_{a}$ and q_{a-1} be the coefficient of x^{a} and x^{a-1} in q^{\prime} respectively.
S2 If $q_{a} \in \mathcal{K}, \Delta:=\left\{s: s / i_{s}\right.$ is the left decomposition factor of $\left.q_{a-1}+a q_{a} x\right\}$, return.
S3 $q:=q_{a}$. If $\operatorname{tdeg}(q)=1, \Delta:=\{s: s$ is the left decomposition factor of q and $\left.i_{s}=1\right\}$, return; else, go to S1.

5 Experimental Results

We implemented the algorithm in Maple for the constant field case $\mathcal{K}=\mathbb{Q}$. In Table 1, we generate a differential polynomial randomly and decompose it. All the randomly generated differential polynomials in Table 1 are indecomposable. In Table 2, we generate two differential polynomials g and h randomly and decompose $f=g \circ h$. The running times are collected on a PC with a 1.6G CPU and 128 M memory and are given in seconds. In Tables 1 and 2, o_{f}, t_{f}, l_{f} represent the order, the total degree and the number of terms of f respectively. From these results, we may conclude that our algorithm is efficient in handling differential polynomials with hundreds of terms.

$\left(o_{f}, t_{f}, l_{f}\right)$	time(s)	$\left(o_{f}, t_{f}, l_{f}\right)$	time (s)	$\left(o_{f}, t_{f}, l_{f}\right)$	time (s)	$\left(o_{f}, t_{f}, l_{f}\right)$	time (s)
$(2,10,32)$	0.237	$(2,20,116)$	1.174	$(2,30,254)$	4.200	$(2,40,414)$	12.938
$(2,50,624)$	35.021	$(3,10,102)$	2.365	$(3,12,322)$	14.078	$(3,15,368)$	11.167
$(4,8,415)$	19.786	$(4,10,555)$	32.171	$(5,8,1084)$	55.986	$(6,6,596)$	68.843
$(7,6,1308)$	164.44.	$(8,5,325)$	14.266	$(9,4,415)$	19.786	$(10,4,677)$	72.534

Table 1. Decomposing Randomly Generated Differential Polynomials

g, h	$\left(o_{g}, t_{g}\right)$	$\left(o_{h}, t_{h}\right)$	$\left(o_{f}, t_{f}, l_{f}\right)$	time (s)
g_{1}, h_{1}	$(0,8)$	$(1,8)$	$(1,64,639)$	10.079
g_{2}, h_{2}	$(1,6)$	$(1,8)$	$(2,48,1174)$	85.640
g_{3}, h_{3}	$(1,4)$	$(2,4)$	$(3,16,458)$	38.672
g_{4}, h_{4}	$(1,4)$	$(3,2)$	$(4,8,994)$	95.063
g_{5}, h_{5}	$(1,4)$	$(3,4)$	$(4,16,970)$	144,467
g_{6}, h_{6}	$(2,4)$	$(1,4)$	$(3,16,1229)$	189.109
g_{7}, h_{7}	$(2,3)$	$(2,4)$	$(4,12,1360)$	120.093
g_{8}, h_{8}	$(2,3)$	$(3,2)$	$(5,6,709)$	90.405
g_{9}, h_{9}	$(3,2)$	$(1,4)$	$(4,8,231)$	15.562
g_{10}, h_{10}	$(3,2)$	$(2,4)$	$(5,8,535)$	32.891

Table 2. Decompose $f=g \circ h$

References

1. X.S. Gao and M.B. Zhang, Decomposition of Differential Polynomials with Rational Function Coefficients, MM-Preprints, KLMM, Vol, 23, 92-112, 2004.
2. W.T. Wu, Basic Principles of Mechanical Theorem Proving in Geometries, Springer, Berlin, 1995
3. S.P. Tsarev, An Algorithm for Complete Enumeration of all Factorizations of a Linear Ordinary Differential Operator, ISSAC'96, 226-231, ACM Press, 1996.
4. J. von zue Gathen, Functional Decomposition of Polynomials: the Tame Case. Journal of Symbolic Computation, 9, 281-299, 1990.
5. M. Zhang, Theories and Algorithms for Ordinary Differential and Difference Polynomials Decomposition, thesis, KLMM, CAS, 2006.
