
Towards UML Modelling Extra-Functional Properties
in Web Services and their Clients1

Guadalupe Ortiz, Juan Hernández

Quercus Software Engineering Group
University of Extremadura

Computer Science Department
Spain

{gobellot, juanher}@unex.es

Abstract. Web Services provide our systems with a platform independent and
loosely coupled implementation environment, being time to face how the
named systems can be modelled. Service Component Architecture (SCA)
allows us to define services independently of the final implementation
technology; however, it does not integrate the remaining development stages.
Model Driven Architecture provides a method to face all stages in development
from the platform independent model to final code, although it is not specific to
service technologies. Regarding web service extra-functional properties, WS-
Policy establishes how to describe them in a loosely coupled manner; however
the loosely coupled environment is not always maintained when modelling or
implementing these properties, which can be solved by using aspect-oriented
techniques. In this paper, we propose to use a model driven approach for extra-
functional properties in SCA service based models, where generated code will
consist of the policy description and an aspect-oriented implementation.

Keywords. Extra-Functional property, web service, UML modeling, aspect-
oriented techniques, WS-policy, service component architecture.

1 Introduction

Web Services provide a successful way to communicate distributed applications, in a
platform independent and loosely coupled manner, providing the systems with great
flexibility and easier maintenance. At present, academy and industry are focusing on
the modelling stage, where it is also pursued to keep the loosely coupled platform
independent notions [22]. Among the rising proposals, some focus on representing the
service as a component and others on basing the model on WSDL elements; two
representative approaches are described below:

1 This work has been developed thanks to the support of MEC under contract TIN2005-09405-

C02-02.

Dagstuhl Seminar Proceedings 06291
The Role of Business Processes in Service Oriented Architectures
http://drops.dagstuhl.de/opus/volltexte/2006/825

To start with, Service Component Architecture provides a way to define interfaces
and references independently of the final technology of implementation, which will
be bound subsequently [6]. Based on SCA, services are modelled initially as
components linked to a given interface, which can be later specified in a particular
type of interface. Besides, the components will show the references they need to
complete the behaviour successfully. Thus, based on this proposal, modules remain
decoupled as well as avoiding being linked to a specific platform. However, this
proposal does not face how to integrate this definition in all the stages of
development, as no way is provided to transform the named independent model into
the final selected implementation.

In addition, many proposals are emerging in the literature where Model Driven
Architecture approach (MDA) is being applied to Web Service development. MDA
has been proposed to facilitate the programming task for developers by allowing to
generate code automatically from the application model. Thus, MDA solves the
integration of the different stages of development, as mechanisms are provided to
model applications in a platform independent manner which may be later transformed
into the specific desired models and eventually into final code, but it does not provide
a specific way for service modelling.

Let us consider now that we want to provide our modelled services with extra-
functional properties. It is suggested by the SCA specification that this type of
property should be modelled at a different level; the way to do so has not been
approached as yet. Alternatively, the named MDA proposals do not consider how
extra-functional properties may be included in modelled services. Therefore, none of
the previous approaches face how to integrate extra-functional properties in service
models. In contrast, WS-Policy provides a way to describe them: WS-Policies have
emerged as a standardized way for describing extra-functional service capabilities by
using the XML standard [21]. This allows properties to remain completely decoupled
when described and there is no need to establish dependences from the service
description file (WSDL) to the policies ones; property description is not linked to a
specific implementation, either, maintaining the platform’s independent environment.
However, WS-Policy does not determine how the properties are to be modelled or
implemented, and an additional mechanism would be necessary so as to integrate
property modelling and implementation with their description. Properties are
currently modelled in UML as any other element in the system, despite their being
transversal elements which should be tackled at a different level. This originates
dependences from the main functionality service modules to the properties to be
added and therefore services’ main and extra functionality are tightly coupled.

In this paper we propose to make use of all the described technologies and to join
them in order to supply a model driven mechanism to integrate extra- functional
properties in a loosely coupled manner at modelling and implementation stage. In
this sense, the first aim of this paper is to model services in a versatile and simple
manner, according to a proposal based on SCA, which provides a UML environment
independent from the platform and from the implementation language in which to
integrate extra-functional properties at a later stage. The second goal of this paper is
to facilitate extra-functional property modelling and to include these properties in the
service model and their clients, maintaining the loosely coupled and platform
independent environment. Finally, code could be generated, straight from the model,

2

code description being the third aim of this paper. Regarding services, there are tools
already based on SCA which permit code generation, hence this will not be an issue
to be faced in this paper. However, as far as properties are concerned, there is no
specific tool for generating their code and description. We propose AspectJ to be used
for the implementation of the property functionality, thus maintaining properties well
modularized and decoupled from the services implemented as demonstrated in [16],
where Java classes are also necessary for the inclusion of optional properties. With
regard to description, it is proposed to generate the WS-Policy [2] and WS-
PolicyAttachment [3] documents for each property, which are now integrated with the
aspect-oriented generated properties. This allows properties to remain decoupled not
only in the description, but also in the implementation as explained in [17].

The rest of the paper is organized as follows: in Section 2, firstly the necessity of
an UML-oriented approach to model web services is motivated, then a profile is
proposed in order to solve this need. Section 3 outlines the need to agree on a specific
way to model extra-functional properties; the profile proposed in order to do so is
presented in Section 3.2 . Section 4 provides a case study where both proposed profiles
are applied. In Section 5, we show how the properties’ implementation and
description code is generated from the model and we motivate the reason for
generating aspect-oriented code and WS-Policy documents. Our proposal is discussed
in Section 6 , whereas other related approaches are examined in Section 7 and the main
conclusions are presented in Section 8 .

2 Service Modeling

In this section, first of all Section 2.1 will motivate the need to have a UML approach
to web service modelling and Section 2.2 will present the proposed profile to do so.

2.1 Motivation

There is no need to say how important it is to model systems before implementing
them. In the case of service-oriented architecture it is even more important, as there
are multiple solutions and technologies which provide us with a final service-oriented
system. Therefore, we consider it essential to model this type of system in a simple
way, whilst trying to maintain it as general as possible in order to specialize it at a
later stage.

As said in the Introduction, Service Component Architecture provides a way to
define interfaces and references independently of the final technology of
implementation [6]. According to SCA, services are modelled as components linked
to a given interface, which can be later specified in a particular one. The components
will show the needed references for their functionality to be completed, which may be
later linked to a required interface. This proposal allows developers to benefit from
the following advantages: First of all, a very high level and independent model is
defined, allowing the developer to bind it to a specific technology at a later stage. For
instance, the interface may be transformed into a Java one or in a WSDL file;
similarly, the references can be converted into a bind to a service interface, to an EJB

3

or to any other type of element, though the transformation mechanisms are not
provided by the time being. Secondly, the model can be implemented by using
different approaches, therefore allowing adaptability to the customer’s specific needs,
or to the most suitable option for its integration in a specific environment, as well as
providing the possibility of transforming it into a specific model. Thirdly, the model
can be converted into Service Component Definition Language code, thus providing
an intermediate language among different models, which may be used to integrate
different party models into a unique system.

 It is due to all these factors that we decided to implement a reduced profile in
UML based on SCA to avoid complex models and to maintain standardization as
much as possible. Besides, this proposal lets us maintain a platform independent
model, which may be later turned into any platform specific model already linked to a
particular technology and language as [7], [13], [18] or [20].

2.2 The Service Profile

As shown in Figure 1, the service profile is very simple, since we want to raise the
simplicity and versatility of the SCA proposal. First of all, we can see the
serviceComponent stereotype which extends component metaclass. Secondly, we can
see the reference stereotype which extends port metaclass and has the attribute uri to
refer to the URI of the element needed to complete the service funcionality. The
elements provided interface and required interface, also used in the service model,
are not defined in the profile as they already belong to the UML syntax.

Fig. 1. Service profile.

3 Extra-Functional Property Modelling for Web service Systems

Along this section, our profile proposed to model extra-functional properties for web
services and their clients is motivated in Section 3.1 , and explained in Section 3.2.

3.1 Motivation

When thinking about adding further functionality to services through extra-functional
properties, we have to consider how to do it whilst maintaining the loosely coupled
environment of web service systems. Unfortunately, there is no standard proposal for

4

modelling extra-functional properties in service development: as indicated in the
Introduction, SCA specification depicts a few suggestions in this respect, although
how to manage it is not established; on the other hand, service policies provide a
standardized way for XML describing extra-functional service capabilities; however,
it is not an appropriate description for a model stage, nor does it provide property
implementation; finally model driven approaches examined do not regard extra-
functional properties in their proposals.

Therefore, when adding extra-functional properties in a service model, they are
included as any other element in the model, thus causing different category elements
to be mixed in it, as shown in Figure 2, where generic services and properties have
been depicted. The figure shows the multiple dependences from the different services
to property classes, which fragment the desirable loosely coupled integration.
Regarding implementation, the need for an alternative to the current implementation
of extra-functional properties is motivated in [16], where it is also shown how these
methodologies originate intrusive code in services when adding extra-functional
properties. It is also demonstrated that aspect-oriented techniques are beneficial in
order to solve this problem. Due to space restrictions, we will not go into this matter
in depth here as it can be consulted in the named references.

Fig. 2. Extra-functional property dependences.

3.2 The Extra-Functional Property Profile

In order to maintain our system loosely coupled when adding extra-functional
properties to the model, we propose the profile in Figure 3, whose elements will be
explained as follows:
• First of all, we define the abstract stereotype extra-functional property , which will

extend operation metaclass or interface metaclass. This means that the stereotype
may be applied to an operation – then the specified property would be applied to
the stereotyped operation – or it may be applied to an interface –, in which case the
property will be applied to all the operations which form the stereotyped interface.
The extra-functional property provides five attributes, which will be defined as
DefinitionTags of the stereotype: the first one is actionType, which indicates
whether the property behaviour will be performed before, after or instead of the
stereotyped operation’s execution – or if no additional behaviour is needed it will
have the value none, only possible in the client side. Secondly, the attribute

5

optional will allow us to indicate whether the property is performed optionally –the
client may decide if it is to be applied or not– or compulsorily –it is applied
whenever the operation is invoked. Then, a third attribute, ack, is included: when
true it means that it is a well-known property and its functionality code is
generated at a later stage; it will have the value false when it is a domain-specific
property and so only the skeleton code can be generated. Finally, we have two
additional attributes, namely policyID and policyDoc. PolicyId will contain the
name of an existing policy or the name to be assigned to the new one; policyDoc
allows the developer to reuse an existing policy document. This attribute will
contain the URI where the policy document would be available; if its value is null
then the WS-Policy document could be generated at code generation stage. The
policy attachment document would be generated in every case.

Fig. 3. The extra-functional property profile.

• In order to define actionType, an enumeration is provided with four alternative
values: before, after, instead or none. These different values relate to the different
options available to perform the properties at implementation time, as they may
include new behaviour before, after the stereotyped operation execution or they can
even replace the operation’s functionality by a different one. In the case of client
side properties, actionType will have the value none for any property which does
not imply changes in the client code.

• It is also specified in the profile that if the property is applied in an offered
interface, then it will be implemented when the stereotyped operations are executed
(as the point from where it is invoked is out of scope). On the other hand, if the
property is applied in a required interface, it will be performed when the operations
are invoked, as the execution point is out of the service scope. Moreover, the fact
that the properties are applied on a required or provided interface will have an
additional implication: those which are applied to provided interfaces are the real
properties applied, whereas the ones applied to required interfaces are a
consequence of the former. For instance, a Login property may be applied in a
service offered interface; this implies that the client who requires to use this

6

operation will have to add the login data in his invocation, also represented in the
model by stereotyping the property in the required interface, as is explained in the
next section.

• The extra-functional property stereotype will be specialized into different
stereotypes related to well-known properties or to domain-specific ones in the
particular systems modelled. Each property may have additional attributes related
to their specific functionality.

4 Applying the Profile in the Case Study

A simple case study is presented in this section with a view to showing how services
will be represented and how the properties will be added to it.

Consider that we have a tourist information service, which offers three different
operations: the first one, String hotelInformation (String cityName), provides the
possibility of getting information about different hotels available in a given city; the
second one, String carRenting (String carType), allows us to rent a particular type of
car; finally, String weatherInformation (String cityName) returns weather information
in a destination city.

Let us consider now that we want to include some extra-functional properties,
which our system needs, in the touristInformation service model. When describing
and implementing policies, we will have three types of them: policies which could be
considered as informative, as they are always applied and do not imply changes or
additional information in the client code; those which could be optional, so they have
to be somehow chosen by the client but do no require any extra information; and
those which, optional or mandatory, if applied imply changes to client code or need
additional information to be supplied. In this sense three examples are provided, one
for each of the options:

First of all, as an informative property example, consider a Log property, which
will be applied to all the operations offered by the service in order to record all the
invocation-related information.

Secondly, as an optional property instance, let us consider a RealTime property,
which will be required discretionarily by the client when invoking
weatherInformation: subject to a different pricing, the real time weather in a city may
be obtained; under the regular price the average weather for the selected date will be
obtained.

Finally, one capability which implies additional information to be supplied could
be a Login property, to be used in order to control access to the RentingCar operation,
since only those who have a username and password will be able to rent a car. If they
are not used during the invocation, the operation will return an error message.

In order to model the describes properties, first of all, we will have to extend the
extra-functional property stereotype with the specific properties to be applied, as
shown in package EFProperties in Figure , where we can see Log, Login and
RealTime properties, each of them with the additional attributes necessary for their
functionality.

7

Fig. 4. Model with extra-functional properties.

Regarding the service side, it can be seen in Figure 4 that properties are added to
touristServiceInterface. In order to provide all the operations with Log in the model,
we only have to stereotype the provided interface with the <<log>> stereotype.
Generally, stereotype attributes are included as tagged values in the model, but in
order to visualize them in the printed figures we have also included them as
comments. The attributes for log in the figure indicate that the property will be
performed when any operation in the interface is executed, as it is a non-optional
property; log will be performed after the execution of the named operations, since
actionType is after; the information will be recorded in logFile; it is a well-known
property since ack is true; policyID is Log and policyDoc is null2, as it is not specified
in the model.

WeatherInformation , as previously explained, offers clients the possibility of
receiving weather information at real or delayed time, thus it will be stereotyped with
<<Real Time>>, also depicted in Figure 4. The attribute optional will have the true
value, as this property is not always applied; actionType will be instead, since the
property functionality will replace the original operation behaviour if it is selected;
ack will be false as it is not a well-known property, and finally, realTimeURL has the
CNNWeather value, which will be used to obtain real time weather; policyId is
RealTime and policyDoc is null.

Finally, carRenting will be performed when a username and a password are
provided by the client. This condition will be controlled by the login property, also
included in Figure 4 which therefore will be non-optional as the client needs to login
for access to this service, and whose actionType will be instead as it will not allow the
operation to be executed unless login is successful and ack will be true. Lastly,

2 Null values have not been depicted for simplicity.

8

username and password are uName and pw, respectively. In this case policyID is
securityToken and policyDoc contains an URI from an already existing policy
document.

Fig. 5. Property addition in the client side

Regarding the client side, Figure 5 shows the case study system model, where a
client of the TouristService required interface has been included. The extra-functional
properties RealTime and Login have been added, this time in the client side. In the
next paragraphs, properties included in the client side are going to be discussed. It is
important to note that these properties do not have to always appear both in service
and client side within the same model, as it may not include both sides; therefore, it is
not redundant information, but necessary.

First of all, WeatherInformation, as previously explained, offers the client the
possibility of receiving weather information at real or delayed time, thus this
operation will be stereotyped with <<RealTime>>, as depicted in Figure 6. As it is
an optional property in our case study service, the client has to indicate his interest in
the property for it to be applied. This is the reason why the operation
weatherInformation in the client required interface is also stereotyped with
<<RealTime>>, as can be seen in the named figure. In our case study, the attribute
optional will have the true value, as this property is not always applied; actionType
will be none and ack false, since no additional behaviour will be necessary in the
client, only the RealTime selection has to be executed; policyId is RealTime and
policyDoc is null. policyId is necessary to reference the property to be included,
whereas policyDoc may even be useful to show how to add the information in the
message header.

Secondly, the carRenting operation will be performed when a username and a
password are provided. This condition will be controlled by the login property in the
service side. In Figure 6 we can see how the client side operation carRenting has been
stereotyped in the required interface, thus indicating the need to include the username
and password on invocation. This property will be non-optional as the client needs to
login for access to this service, and its actionType will be none and ack false as it will
not include a new behaviour in the client side, but only new information – username

9

and password – will be added to the invocation data; finally policyID is Login and
policyDoc is null. policyDoc, for instance, may be known at later stages and then
included in the model, as an informative value.

We could have additional policies, as Encryption, for instance, where aspects
would also be necessary in the client side. Although we have not included any
properties of this type in our case study, its inclusion would be analogous to those
previously examined.

5 Implementing the Extra-Functional Property Model

Once our system is modelled, we may desire to generate code from it. As was
mentioned earlier, different types of implementation could be generated from the
service profile. It is not the aim of this paper to provide a methodology to convert the
service model into a specific one or particular code, as justified in Section 6 .

Regarding extra-functional properties we can choose among various alternatives; if
we are going to use a platform which deals with this type of property we only have to
generate the policy documents; on the contrary, if the platform does not deal with
these properties or we want to tackle them ourselves, we could generate some code
which performs the property behaviour plus policy documents. In this paper, we
choose the second approach, where we have opted for an aspect-oriented
implementation of the properties.

AspectJ has been chosen among the different aspect-oriented languages to illustrate
our examples, but any other aspect-oriented language could have been used. To
generate an aspect code we have to determine the point in the original system where
we want to introduce the new behaviour and the named new behaviour to be included,
which are called pointcut and advice respectively in AspectJ (further information on
aspect-oriented programming (AOP) can be found at [10] [14]). In the case of our
properties, the pointcut is the execution of the stereotyped operation in offered
interfaces and the invocation of the stereotyped operations in required interfaces.
Regarding the advice, depending on the actionType attribute value, before, after,
instead or none, the advice type will be before, after or around, respectively, or they
will be no aspect at all. The functionality is determined by the well-known property if
ack is true, otherwise only the advice skeleton will be generated. Regarding property
description, we have opted for implementing it by using the WS-Policy standard and
attaching it by using the WS-PolicyAttachment standard. To do so we generate the
policy model using the specification data related to the known property if ack is true;
if false then only the skeleton is generated. The policy attachment is done by using the
stereotyped element.

Therefore, for each property stereotype in the service side an aspect, a policy, and
SOAP header-related information may be generated. Figure 6 depicts the skeleton of
a general property in order to show the obtained code for the referred elements. As
shown in the figure the aspect name is obtained by linking property name and the
stereotyped operation name. Pointcut name is obtained in the same way, but adding a
‘P’ at the end; parameters from the operation will be generated when the action is
around; as explained in Section 3.2 all pointcuts in service side are execution ones,

10

followed by the name of the stereotyped operation. Regarding the advice, the type is
obtained from actionType; then the pointcut name and necessary parameters are used.
Concerning the policy, it can also be seen how the name of the property and
stereotyped element are used for its construction, also including whether or not it is
optional. Finally, the tag to be checked in the SOAP Header is the property name.

Fig. 6. Code generation from model

Let us now examine the code generated for the case study properties. The aspect
for the Log property, shown in Figure 7.1, contains a pointcut corresponding to any
execution of the interface operations, the actionType is after and the method is
determined by the well-known property functionality, using the log file provided.
since it is a mandatory property, there is no need to check whether the client has
chosen it. The case study policy document for the Log property would be the one in
Figure 7.2, where we can see the policy description (in a fictitious specification).
Finally, the corresponding policy attachment would be the one shown in the same
figure. The same would apply to the remaining properties. We remark, for instance,
the optional attribute included in the RealTime policy (Figure 7.4) and how the new
behaviour may be included in the RealTime aspect code depending on the client’s
choice (if-else structure in Figure 7.3), although only the skeleton is generated for
RealTime as ack was false. Regarding Login aspect (Figure 7.5) and policy (Figure
7.6) we can mark that the latter may be described by using a standard specification
(WS-Security). In this case, the policy code would have been recovered from the URI
provided in policyDoc in the corresponding stereotype, rather than generated.

GENERATED CODE

Model
interface

<<property>> operation (params): returntype

<<property>>
actionType
optional
policyID
[…]

Public aspect property_operation{
pointcut property_operation_P (params.):
execution (public interface.operation
(paramTypes) && args (paramNames)

returnType actionType (params):
property_operation_P(paramNames) {[…] }}

<wsp policy name “policyID”
[…] wsp:Optional:optional>

<wsp policyAttacmente>
<wsp: AppliesTo>…[]
<wsp: Operation Name=
operation>
<wsp:Policyreference Ref=””

<<property>> Aspect

SOAP Header-related code
Policy and Policy Attachment

11

Fig. 7. Properties implementation and description.

As far as property selection is concerned, we have mentioned we are going to include
new information in the SOAP message header. In this sense Figure 8 shows the
information added to the headers for the three properties in our case study. No
information has to be added to the SOAP Header for Log, as it is not an optional
property and it does not require any additional information from the client. For
RealTime , we only need to indicate that we want the operation to be applied, which
will be done by including the tags in Figure 8.1. This has to be done because the
stereotype attribute optional had the true value. For Login, we need to include the
username and password, shown in Figure 8.2. We have to bear in mind that when
talking about well-known properties, associated tags are known beforehand, thus
facilitating reusability; if we had properties without known associated functionalities,
only skeletons would be generated.

public aspect log_touristServiceInterface {

pointcut log_touristServiceInterface_P ():

execution (public * touristInformation.*(..));

after ():log_touristServiceInterface_P (){
[...]

LogFL.println(thisJoinPoint.toLongString());
[...]}

Fig. 7.1 Log aspect

public aspect realtime_weatherInformation {

pointcut realtime_weatherInformation_P

 (String cityName): execution (public *
 .weatherInformation(String) &&

 args(cityName);

String around (String cityName):
 realtime_weatherInformation (cityName){

[..]
if (realTime).compareTo("True")==0)

 //functionality to be completed
else //functionality to be completed
return result;}

Fig. 7.3.RealTime aspect

<wsp:Policy name= ="...">
 <wsl:IncludeLog />
</wsp:Policy>

<wsp:PolicyAttachment >

<wsp: AppliesTo>[…]
 <wsp:PortType

Name= touristServiceInterface />
[…] </wsp:AppliesTo[…]
</wsp:PolicyAttachment>

<wsp:Policy name=”…”
 xmlns:wsrt="..." >
 <wsq:[to be complted]
wsp:Optional=”true” /></

wsp:Policy>

<wsp:PolicyAttachment >
<wsp: AppliesTo> […]

 <wsp:Operation Name=
weatherInformation./>

[…] </wsp:AppliesTo> […]
</wsp:PolicyAttachment>

Fig. 7.2 Log policy documents

Fig. 7.4. RealTime policy documents

public aspect login_carRenting {

pointcut login_carRenting_P ():

 execution(public * *.carRenting(..);

String around ():login_carRenting_P (){
[...]
 if (lpw.compareTo(rpw)==0)
 result=proceed ();
 else
 result=”Invalid login”;

return result;
}

<wsp:Policy name=”…n” xmlns:wsp="..."
 <wsse:SecurityToken

 wsp:Optional=”False” ">
<wsse:TokenType>

 wsse:UsernameToken
 </wsse:TokenType>

 </wsse:SecurityToken>
</wsp:Policy>

<wsp:PolicyAttachment ><
wsp: AppliesTo> [..]
 <wsp:Operation Name=carRenting/>

[…]</wsp:AppliesTo> […]
</wsp:PolicyAttachment>

Fig. 7.5.Login aspect Fig. 7.6. Login policy documents

12

Fig. 8. Generated code in the client side.

6 Discussion

Concerning the extra-functional property profile, our starting point is the idea that
these types of property are getting more and more specific and defined every day, an
unequivocal sign being how some frameworks are already including these properties
in their management layer. The profile defines the different properties by using
individual stereotypes, which is also comparable to the emerging OMG Quality of
Service profile. Finally, it is also clear that many implementation and modelling
approaches are using a large number of annotations as a very good way to include or
mark new behaviours in a system; we use stereotypes to do so.

With respect to code generation, as said in the previous section, it is not the aim of
this paper to provide a methodology for converting the service model into a specific
model or particular code. This is because this generation is already supposed to have
been achieved by some other approaches or tools available in the market. Besides,
despite not generating service code, the code obtained for extra-functional property
can be used together to the service one as we are going to explain: services are black
boxes which show an interface with a set of operations, therefore, regardless of the
final implementation, interface and operation names will remain. Aspects and policies
generated only make references to these names, as shown in Figure 7, thus providing
compatibility between property and service code. Besides, aspect-oriented techniques
inherently avoid the use of intrusive code in the main functionality code, thus
preserving service code.

Finally, it has been shown that the aspect code or skeleton for property
implementation can be generated by using the stereotype information. Thanks to
AOP, traceability remains for all the development stages: if we want to delete an
aspect in the implementation we only have to delete the stereotype mark for one
operation in the model and vice versa. In regard to the policy description, established
standards, as WS-Security, may be used for the policy document generation; it may
also be necessary to use custom policies, which may be included in the code
generator.

7 Related Work

As regards Web Service modelling proposals, such as [13] [20], it can be noted that
most of the literature in this area tries to find an appropriate way to model service

Figure 8.1. RealTime SOAP Header Data.

<RealTime> True </RealTime>

<Login>
 <username> myUsername

</username>
 <password> myPasswprd </password>

</Login>
Figure 8.2. Login SOAP Header Data.

13

compositions with UML and most of them use the WSDL structure for service
modelling. The research presented by J. Bezivin et al [7] is worth a special mention;
in it web service modelling is covered in different ways, using Java and JWSDP
implementations in the end. It is also worth mentioning the paper from M. Smith et al
[18], where a model driven development is proposed for Grid Applications based on
the use of web services. Our work differs from these in two respects: first of all, our
service modelling proposal is platform independent, while theirs is oriented to a
specific implementation; secondly, ours provides the possibility of adding extra-
functional properties to the services. In this sense both proposals could be considered
complementary approaches, since platform specific proposed models could be
generated from our general one, where properties could also be included.

Concerning extra-functional properties, we can especially mention two more
proposals. To begin with, WSMF from D. Fensel et al. [11], where extra-functional
properties could be considered goals, which implies pre and post conditions in an
ontology description. Finally, L. Baresi et al. extend WS-Policy by using a domain-
independent assertion language, WSCoL, in order to embed monitoring directives into
policies [5]. Both are interesting and thorough proposals, however they do not follow
the UML standard, which we consider essential for integrating properties in the
different service models.

As far as aspect-oriented modelling is concerned, we can find undoubtedly
reference proposals for general aspect modelling, such as [1], [19] and [4]. However
we aim to focus modelling within the specific scope of web services, removing
unnecessary elements and considering additional requirements, such as policy
descriptions.

Among policy and quality-related contributions we can specially remark the
contribution from T. Gleason et al., which provides very interesting discussion on
policy management [21]. H. Ludwig’s work in [15] is also worth a special mention,
where he comments on Quality of Service representation status. Representations are
mainly by semantic expressions or standard ones (such as WS-Policy or WSLA),
which was argued at the beginning of this paper to be complementary with a
necessary UML design to consider these properties at the modelling stage. We can
also mention a paper that concentrates on a new language, AO4BPPEL, an aspect-
oriented extension for BPEL [8]. A. Charfi et al. use it for implementing policies in
BPEL compositions. Along the same line, we can mention the paper from C. Courbis
et al. [24], where a way to weave new capabilities in BPEL compositions is explained.
These proposals only centre on service compositions based on BPEL, and are
therefore platform specific proposals, whereas we consider that properties should be
added to single or composed services, regardless of the final execution or
implementation platform.

8 Conclusions

This paper has shown how services and extra-functional behaviours can be modelled
in a loosely coupled and platform independent manner by extending UML with
profiles. Additionally, the code which may be generated from the model for property

14

implementation and description has been designed and explained. For this purpose, an
aspect-oriented approach has been selected for the implementation and a WS-Policy
based one for its description.

9 References

[1] Aldawud, O., Elrad, T., Bader, A. A UML Profile for Aspect Oriented Modeling. OOPSLA
2001 Workshop on Aspect Oriented Programming.

[2] Bajaj, S., Box, D., Chappeli, D., et al.. Web Services Policy Framework (WS-Policy),
ftp://www6.software.ibm.com/ software/developer/library/ws-policy.pdf, September 2004.

[3] Bajaj, S., Box, D., Chappeli, et al. Web Services Policy Attachment (WS-
PolicyAttachment), ftp://www6. software.ibm. com/software/developer/library/ws-polat.pdf,
September 2004.

[4] Baniassad, E. Clarke, S. Theme: An Approach for Aspect-Oriented Analysis and Design.
26th Int. Conference on Software Engineer, Edinburgh, Scotland, UK, 2004

[5] Baresi, L., Guinea, S., Plebani, P. WS-Policy for Servi7e Monitoring. VLDB Workshop on
Technologies for E-Services, Trondheim, Norway, September 2005.

[6] Beisiegel, M., Blohm, H., Booz, D.,et al. Service Component Architecture. Building Systems
using a Service Oriented Architecture. http://download.boulder.ibm.com/
ibmdl/pub/software/dw/specs/ws-sca/SCA_White_Paper1_0 9.pdf, November 2005

[7] Bézivin, J., Hammoudi, S., Lopes, D. et al. An Experiment in Mapping Web Services to
Implementation Platforms. N. R. I. o. Computers: 26, 2004

[8] Charfi, A., Mezini, M., Using Aspects for Security Engin4ering of Web Service
Compositions, Proc. Int. Conf. on Web Services, Orlando, Florida, USA, July 2005.

[9] Courbis, C., Finkelstein, A. Towards Aspect Weaving Applications, Proc. at Int. Conf. on
Software engineering, St. Louis, Missouri (USA), May 2005.

[10] Elrad, T., Aksit, M., Kitzales, G., Lieberherr, K., Ossher, H.: Discussing Aspects of AOP.
Communications of the ACM, Vol.44, No. 10, October 2001.

[11] Fensel, D., Bussler, C. The Web Service Modeling Framework WSMF.
http://informatik.uibk.ac.at/users/c70385/ wese/wsmf.bis2002.pdf

[12] Gleason, T., Minder, K., Pavlik, G. Policy Management and Web Services, Proc. Policy
Management for the Web Workshop at IWWW Conf., Chiba, Japan, May 2005

[13] Grønmo, R, Solheim, I Towards Modeling Web Service Composition in UML. Int.
Workshop Web Services: Modeling, Architecture and Infrastructure, Porto, Portugal, 2004.

[14] Kiczales, G. Aspect-Oriented Programming, ECOOP’97 Conference proceedings,
Jyväskylä, Finland, June 1997.

[15] Ludwig, H., Web Service QoS: External SLAs and Internal Policies Or: How do we
deliver what we promise?, proc. at IEEE International Conference on Web Information
Systems Engineering, Brisbane, Australia, November 2004

[16] Ortiz G., Hernández J., Clemente, P.J.How to Deal with Non-functional Properties in Web
Service Development, Proc. Int. Conf. on Web Engineering, Sydney, Australia, July 2005.

[17] Ortiz, G., Leymann, F. Combining WS-Policy and Aspect-Oriented Programming. Proc. of
the Int. Conference on Internet and Web Applications and Services, Guadeloupe, French
Caribbean, February 2006

[18] Smith, M., Friese, T. Freisbelen, B. Model Driven Development of Service-Oriented Grid
Applications. Proceedings Advanced Int. Conference on Telecommunications and
International Conference on Internet and Web Applications and Services, Guadeloupe,
French Caribbean, February 2006.

[19] Stein, D., Hanenberg, S. and Rainer, U.: A UML-based Aspect-Oriented Design Notation
for AspectJ. Proc. 1st Int. Conf. on AOSD, Enschede, The Netherlands, 2002

15

[20] Thöne, S. Depke, R, Engels, G.. Process-Oriented, Flexible Composition of Web Services
with UML. Int. Workshop on Conceptual Modeling Approaches for e-business: A Web
Service Perspective, Tampere, Finland, 2002

[21] Weerawarana, S. Curbera, F. Leymann, F., et al. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and
More, Ed. Prentice Hall, ISBN 0-13-148874-0, March 2005.

[22] Zimmermann, O., Krogdahl, P, Gee, C. Elements of Service-Oriented Analysis and
Design, http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/, May
2004

16

