
Presentation and Visualization of Redundant
Code: Working Session Summary

Andrew Walenstein1, Jim Cordy2, Will Evans3, Ahmed Hassan4,
Toshihiro Kamiya5, Cory Kapser6, and Ettore Merlo7

1 University of Louisiana at Lafayette, Center for Advanced Computer Studies,
P.O. Box 44330, Lafayette, LA 70504-4330, U.S.A.

walenste@ieee.org
2 Queen’s University, School of Computing,

Kingston, ON, Canada, K7L 3N6
cordy@queensu.ca

3 University of British Columbia, Department of Computer Science,
201-2366 Main Mall, Vancouver, BC, Canada V6T 1Z4

will@cs.ubc.ca
4 University of Victoria, Electrical and Computer Engineering,

Engineering Office Wing 315, P.O. Box 3055, Victoria, BC, Canada V8W 3P6
ahmed@ece.uvic.ca

5 National Institute of Advanced Industrial Science and Technology (AIST),
Information Technology Research Institute, Ubiquitous Software Group

6 University of Waterloo, David R. Cheriton School of Computer Science,
Waterloo, Ontario, N2L 3G1, Canada

cjkapser@uwaterloo.ca
7 École Polytechnique de Montréal, Départment de Génie Électrique (DGEGI),

C.P. 6079, Succ. Centre Ville, Montréal, Québec, Canada H3C 3A7
merlo@rgl.polymtl.ca

Abstract. This report summarizes the proceedings of a workshop dis-
cussion session presentation and visualization of aspects relating to dupli-
cated, copied, or cloned code. The main outcomes of the working session
were: (a) a realization that two researchers had independently generated
very similar methods for browsing and visualization clone “clusters”, and
(b) a list of questions for visualization, particularly in relation to how
the “proximity” of clones may relate to interest in the clone.

Keywords. code clone, clone visualization, presentation, software visu-
alization

1 Introduction

This report summarizes the proceedings of a working session from the DRASIS
Workshop [1]. The topic of the working session was the presentation and visual-
ization of aspects relating to duplicated, copied, or cloned code. Several members
of the medium-sized group (around 15) had extensive experiences in different vi-
sualization types, and were able to relay some of their experiences. The session

Dagstuhl Seminar Proceedings 06301
Duplication, Redundancy, and Similarity in Software
http://drops.dagstuhl.de/opus/volltexte/2007/966

2 A. Walenstein, J. Cordy, W. Evans, A. Hassan, C. Kapser, T. Kamiya, E.
Merlo

had three distinct phases of activity: (1) survey and recount of presentation or
visualization techniques, (2) discussions of tasks supported by visualizations,
and (3) a less structured session of asking questions and brainstorming about
filtering of clones, and classifying them. This report is structured into sections
along those lines.

2 Review of Presentation Techniques

The session started out with a recounting of well-known and some less-well-
known clone visualization techniques. The implicit purpose of the review ap-
peared to be to prime the discussion: to ensure all discussants present were aware
of well-known techniques, and to bring the different approaches together in hopes
that the juxtaposition would spark insight. Initial overview and discussion was
lead by Toshihiro Kamiya. The recount covered the following (inexhaustive) list
of different visualization techniques:

1. 2-D scatter plots in the style of “dotplot” [2] and “duploc” [3].
2. Phylogenetic trees [4] or genealogies [5].
3. Visual presentation of alignment or multiple alignment (diffing).
4. Treemaps and “duplication webs” [6].
5. “SeeSoft” [7]-style clone location views.
6. “Hasse” diagrams; used with clustered clone relationships.

In addition to this review, two live demonstrations were made on laptops, in-
troducing techniques not as widely known. One visualization was demonstrated
by Cory Kapser. The system he demonstrated is known as “CLICS” [8]. The
visualization uses an ordinary “box and arrow” diagram of a system’s high level
component interconnection graph, in which the edges convey clone relationships
between the components, including the classification of the relationships. A sec-
ond visualization was demonstrated by Ahmed Hassan. It showed a graph using
labeled edges. Rectangles depicted subsystems or modules. Edges depicted ag-
gregated clone relationships between subsystems. Diamonds were shown on edges
which indicated the size of the clones. The volume of and shape of the diamonds
conveyed additional information about the clone relationships: their width, for
example, showed the number of clones between the subsystems. Colour was used
for redundant coding of the clone information. The effect was to quickly convey
the location of possible maintenance issues.

One of the most intense discussions regarded an exemplar-based method
of viewing and navigating entire clusters of clones. Interest was generated, in
part, by the realization that two participants—Jim Cordy and Will Evans—had
independently generated similar visualizations. Some of the details are availble
in published form [9,10], but from the discussions the key common features of
the visualization process are:

– algorithms are used to collect related clone pairs into clusters,
– scoring criteria are used to rank the closeness of the clone instances,

Presentation and Visualization 3

– entire clusters are abstracted to a schema level by using identifiers in the
places where variations occur,

– users are able to drill-down from clone instances to their locations and con-
text.

2.1 Discussion of Tasks Supported by Visualization

The group was sensitive to the fact that the value of a visualization is related to
the tasks for which they are used. The group chose to ask which types of tasks are
supported by the reviewed visualizations. It was agreed that the visualizations
presented by Ahmed Hassan seem especially appropriate for system assessment
and estimation of effort during software evolution. An interesting point was made
by three of the members: that the task of producing correct tools was itself helped
greatly by visualizations. All of Jim Cordy, Ettore Merlo, and Will Evans were
able to recount experiences where the visualizations helped the tool-builders
themselves rather than the tools’ end users.

3 Filtration and Classification Brainstorming

The remainder of the session consisted of divergent discussion; it took form by
asking questions and then discussing possible answers.

Question: can we visualize cloning to understand intent?

Clones may exist because the developer had a particular intention for the clones.
An extended discussion was started regarding whether one may differentiate be-
tween divergent and convergent clones. The terms “divergent” and “convergent”
refer the to evolutionary directions taken cloned pairs. In divergent evolution,
the pairs evolve independently and differences will tend to increase over time;
equivalently, the clones are loosely coupled. In many cases, the developer may
intend for pairs to be allowed to diverge.

In discussing these properties of clone relationships, participants agreed that
all clone management tools will need to have functionality to allow users to drop
clone relationships. Some simply are not of interest to the user, even though
they might well be considered as clones by someone. The underlying idea is
that the user’s context alters “relevance” [11]. Two contexts, in particular, were
discussed:

– When clones cross subsystem ownership boundaries. In such cases, these are
“don’t care clones” because the subsystems will evolve separately. Moreover,
there is no desire to refactor the code to remove the clones because it would
create an artificial coupling where none is desired (Conway’s law).

– When there is a business case to keep or ignore the clone. This was noted
by Ettore Merlo to occur in genuine industrial contexts.

4 A. Walenstein, J. Cordy, W. Evans, A. Hassan, C. Kapser, T. Kamiya, E.
Merlo

Question: What is the Relation between Original Author and
Clones?

This question was precipitated by Cory Kapser recounting a case study on log
files that showed that a single maintainer took responsibility of a full clone set.
The maintainer performed “parallel” updates to all instances to make them
consistent.

Question: Is there a Correlation between Proximity and
“Interestingness” of Clones?

The question was more-or-less directly prompted by the previous two questions.
In particular, a chain of reasoning was performed, as follows:

– One important aspect of “interestingness” is whether the clones in a clone
pair are maintained by different organizational or business units or concerns,

– Conway’s law will tend to ensure the code structure reflects organizational
structure,

– Modularity ensure concerns are localized,
– ... so does clone proximity indicate commonality of concern, and therefore

indicate degree of interest?

The group also asked a corollary question: is there a (negative) correlation
between proximity and clone divergence rates?

Question: Can we Combine Some Metrics to Use As an Estimator
for Deciding Whether Clone Pairs are Convergent or Divergent?

This, once more, was a follow-on question that was precipitated by prior ques-
tions. The idea was that management structure in place could either force con-
vergence, or allow for divergence. The thought occurred that a measure of code
locality might then be used as a heuristic for the likelihood that a given clone
pair would be convergent or divergent. That is, if one measures the distance of
clone pairs (in terms of distance within the system structure graph, presumably),
can one reasonably use the distance as a heuristic for the likelihood that they
are divergent?

References

1. Walenstein, A., Koschke, R., Merlo, E.: Duplication, redundancy, and similarity
in software: Summary of Dagstuhl seminar 06301, Dagstuhl, Germany, Dagstuhl
(2006) ISSN 1682–4405.

2. Church, K.W., Helfman, J.I.: Dotplot: A program for exploring self-similarity
in millions of lines of text and code. Journal of Computational and Graphical
Statistics 2 (1993) 153–174

Presentation and Visualization 5

3. Rieger, M., Ducasse, S.: Visual detection of duplicated code. In: ECOOP ’98:
Workshop ion on Object-Oriented Technology, London, UK, Springer-Verlag (1998)
75–76

4. Yamamoto, T., Matsushita, M., Kamiya, T., Inoue, K.: Measuring similarity of
large software systems based on source code correspondence. In: Product Focused
Software Process Improvement. Volume 3547 of Lecture Notes in Computer Stud-
ies. Springer Berlin / Heidelberg (2005) 530–544 http://www.springerlink.com/content/

h6m2vg5c3ejk38l4.
5. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone

genealogies. In: ESEC/FSE-13: Proceedings of the 10th European software engi-
neering conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, New York, NY, USA, ACM Press (2005)
187–196 http://doi.acm.org/10.1145/1081706.1081737.

6. Rieger, M., Ducasse, S., Lanza, M.: Insights into system-wide code duplication. In:
WCRE ’04: Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE’04), Washington, DC, USA, IEEE Computer Society (2004) 100–109 http:

//doi.ieeecomputersociety.org/10.1109/WCRE.2004.25.
7. Eick, S.G., Steffen, J.L., Eric E. Sumner, J.: Seesoft-a tool for visualizing line

oriented software statistics. IEEE Transacctions on Software Engineering 18 (1992)
957–968 http://dx.doi.org/10.1109/32.177365.

8. Kapser, C., Godfrey, M.W.: Improved tool support for the investigation of du-
plication in software. In: ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), Washington, DC, USA, IEEE
Computer Society (2005) 305–314 http://dx.doi.org/10.1109/ICSM.2005.52.

9. Cordy, J.R., Dean, T.R., Synytskyy, N.: Practical language-independent detection
of near-miss clones. In: Proceedings of the 15h IBM Center for Advanced Studies
Conference (CASCON’04), Toronto, ON, Canada (2004) 29–40

10. Evans, W.S., Fraser, C.W.: Clone detection via structural abstraction. Technical
Report MSR-TR-2005-104, Microsoft Research (2005)

11. Walenstein, A., Jyoti, N., Li, J., Yang, Y., Lakhotia, A.: Problems creating task-
relevant clone detection reference data. In van Deursen, A., Stroulia, E., Storey,
M.A.D., eds.: WCRE, IEEE Computer Society (2003) 285–295

http://www.springerlink.com/content/h6m2vg5c3ejk38l4
http://www.springerlink.com/content/h6m2vg5c3ejk38l4
http://doi.acm.org/10.1145/1081706.1081737
http://doi.ieeecomputersociety.org/10.1109/WCRE.2004.25
http://doi.ieeecomputersociety.org/10.1109/WCRE.2004.25
http://dx.doi.org/10.1109/32.177365
http://dx.doi.org/10.1109/ICSM.2005.52

	 Presentation and Visualization of Redundant Code: Working Session Summary
	Andrew Walenstein, Jim Cordy, Will Evans, Ahmed Hassan, Toshihiro Kamiya, Cory Kapser, and Ettore Merlo

