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Abstract

One approach to supporting program comprehension in-
volves binding concepts to source code. Previously pro-
posed approaches to concept binding have enforced non-
overlapping boundaries. However, real-world programs
may contain overlapping concepts. This paper presents
techniques to allow boundary overlap in the binding of
concepts to source code. In order to allow boundaries to
overlap, the concept binding problem is reformulated as a
search problem.

It is shown that the search space of overlapping concept
bindings is exponentially large, indicating the suitability of
sampling-based search algorithms. Hill climbing and ge-
netic algorithms are introduced for sampling the space. The
paper reports on experiments that apply these algorithms to
21 COBOL II programs taken from the commercial finan-
cial services sector. The results show that the genetic algo-
rithm produces significantly better solutions than both the
hill climber and random search.

1. Introduction

Program comprehension is one of the most expensive
activities in software maintenance and many tools and
techniques have been created to reduce the time and ex-
pense involved [1, 3, 12, 19, 26]. Concept assignment
techniques, such as Hypothesis-Based Concept Assignment
(HB-CA) have been successfully employed to assign de-
scriptive terms to source code as a means of supporting pro-
gram comprehension [5, 8]. The concepts resulting from
recent concept assignment techniques such as HB-CA are
distinct, non-overlapping segments of code, which relate to
computational intent.

However, complete, distinct localisation of concepts
within code may be reliance upon too rigid an assump-

MOVE  'EXAMPLE' TO PRINT-LL.
MOVE  POLICY-NUM TO OUT-PNUM.
MOVE  '13' TO PRINT-CC
MOVE  SCHEME-REF TO OUT-SERF.
CALL   'PRINT'  USING P-PRINTLINE
CALL   'WRITE' USING OUT-REC

Figure 1. Overlapping concepts example [6]

tion within real program applications [21]. Concepts bound
without this assumption may be a better representation of
computational intent in the code. However, allowing over-
lap, results in an exponentially large search space, suitable
for sampling based search algorithms. This paper uses hill
climbing and genetic algorithms to search for concept bind-
ings in code that are allowed to overlap.

Figure 1 contains an example of a concept overlap in a
code fragment of COBOL II [6]. In this example the first,
third and fifth lines indicate a Print concept and the sec-
ond, fourth and sixth lines indicate a Write concept. It is
impossible to determine where one concept ends and the
other starts. It could also be reasoned that the last two lines
indicate a Call concept.

HB-CA is a plausible reasoning technique with a linear
growth in computation cost that merits its application for
large program studies [2]. This made it a suitable candidate
for studying a large number of programs of varying size in
this experiment. In addition, the concept binding mecha-
nism (explained further in section 2) could be adapted eas-
ily as a means to drive the concept binding process for the
new search based techniques.

This paper contains the details of an investigation into
the use of search based approaches for concept assignment
that allow overlapping concept bindings. Genetic algo-
rithms (GA) and hill climbing (HC) search algorithms were
used. HC was selected to determine if solutions achieved by
using a “quick and simple” local search were able to com-
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pete with the more computationally intensive results from
the GA. The results demonstrate the more focused concepts
created due to the use of overlapping concept assignment
with the GA and HC over the original HB-CA algorithm.

The overall contributions of this paper can be sum-
marised as:

• The concept binding problem is reformulated as a
search problem to allow overlapping concept bound-
aries.

• Genetic and hill climbing algorithms are used to search
for solutions to this problem.

• The results of experiments with an implementation of
these algorithms on 21 commercial Cobol II programs
indicate that GA produces significantly better results
than either hill climbing or random search.

2. Hypothesis-Based Concept Assignment

This section contains a brief explanation of the HB-CA
algorithm [5, 8], upon which the results of this paper are
based.

HB-CA requires a library or knowledge base. This li-
brary is a semantic network, composed of concepts and in-
dicators. Indicators are evidence for concepts within the
implementation. Concepts are the terms nominated by the
user to describe items or activities in the domain. The li-
brary also includes relationships between concepts, used to
identify composite or specialised concept binding. A con-
cept may take the form of an Action or Object. Action con-
cepts carry out operations, for example Write is an Action
concept. Object concepts are concepts that can be acted
upon by Action concepts and their presence together may
suggest the existence of a composite concept, for instance
the Object concept File and Write can create the composite
Write File concept. The more general forms of object con-
cepts are regarded as primary while the more specialised
form are regarded as secondary. Composite concept may
be created by using identified relationships within the li-
brary between Action and Object/Specialised concepts. The
HB-CA algorithm is summarised in three stages, hypothesis
generation, segmentation and concept binding.

2.1. Hypothesis Generation

The hypothesis generation stage draws on source code
as input. The library is used whilst scanning the source
code for indicators of various concepts. For each match-
ing concept, a hypothesis is generated and stored. The list
of hypotheses is ordered according to the position of the in-
dicators in the source code. The ordered list of hypotheses,
called the hypothesis list is then used for segmentation and

Segment Start

Write
APSMasterFile

Write
APSMasterFile

File
CAF

PaymentFile
Call

Segment End

Figure 2. Example of a generated hypothesis
list

concept binding. Figure 2 contains an example of a gener-
ated hypothesis list. The created hypothesis list forms the
input for the search based algorithms.

2.2. Segmentation

The segmentation stage attempts to create distinct, dis-
joint segments within a hard segment. Hard segments are
natural segment boundaries such as procedure divisions. A
Self Organising Map [17] creates segments of high concep-
tual focus according to the distribution of the Action con-
cepts within a hard segment.

2.3. Concept Binding

The concept binding stage is carried out by the Concept
Assigner. The Concept Assigner evaluates each segment in
term of concept occurrence. The library is used to deter-
mine the possible composite concepts within each segment.
The strength of evidence for a concept is equivalent to the
number of hypotheses that could indicate the presence of
that concept. The Concept Assigner also requires the pres-
ence of at least one action concept in addition to a user de-
fined minimum number of hypotheses (minimum evidence)
to create a concept binding. Assuming these conditions are
satisfied, the concept with the strongest evidence will be
selected as the winner. A set of disambiguation rules is ap-
plied to select a winner in case of ties [8]. The segments
are then bound to the winning concepts and highlighted in
code.

3. Defining the Search Problem

A search problem is the algorithmic identification of a
solution from a solution space. As discussed in Subsection
2.1, the input for this search algorithm is the hypothesis list
generated by the HB-CA algorithm. Therefore the problem
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can be defined as searching for segments of hypotheses in
each hypothesis list according to predetermined fitness cri-
teria such that each segment has the following attributes:

• Each segment contains 1 or more neighbouring hy-
potheses.

• There are no duplicate segments.

The search fitness criteria’s aims are twofold:

1. Guide the search to finding segments of strongest evi-
dence.

2. Binding as many of the hypotheses within the hypoth-
esis list without compromising the segments strength
of evidence.

3.1. Size of the Search Landscape

In this section the size of the search (number of possi-
ble solutions) and its growth according to the number of
hypotheses within the hypothesis list are analysed. The
number of possible segments which can be created within
a hypothesis list, according to the definition in Section 3, is
given explicitly by the following:

s =
h(h + 1)

2

Where s is the number of segments and h is the number
of hypotheses. The size of the search (the number of pos-
sible solutions) is the number of possible combinations of
these segments. That is, the number of subsets of the set of
all possible hypotheses, not including the empty set. This
search space size is:

c = 2s − 1

Therefore the size of the search space is exponential
in the number of hypotheses. The exponential increase in
the search space favours a sampling-based search approach
such as the GA and HC approaches considered in this paper.

3.2. Fitness Function

For the fitness function to effectively guide the search,
it must be able to evaluate each solution according to the
strength of evidence and hypothesis list coverage. The first
step involves the recognition of the strongest concept within
each segment of a particular solution. This is achieved by
following the same process as the HB-CA’s concept binding
method previously discussed in Section 2.3.

The overall fitness is then evaluated to find the segmen-
tation strength in addition to the hypothesis list coverage.

The segmentation strength is the combination of inner fit-
ness and the potential fitness of each segment. The inner
fitness of each segment is assessed as:

fiti = signali − noisei

Where fiti signifies the inner segment fitness, signali
represents the signal level i.e. number of hypotheses within
the segment that contribute to the winner and noisei repre-
sents the noise level i.e. the number of hypotheses within
the segment that do not contribute to the winner. The inner
segment fitness results in recognition of higher fitness for
segments with more evidence indicating their winning con-
cept. In addition each segment is evaluated with respect to
the entire segment hypothesis list:

fitp = signali − signalp

The potential segment fitness, fitp is evaluated by tak-
ing account of signalp, the number of hypotheses outside
of the segment that could have contributed to the segment’s
winning concept if they were included in the segment. This
facet of the segment fitness effectively guides the search
towards the creation of larger segments, incorporating as
much of the signal as possible. The overall segment fitness
is evaluated by combining the inner and potential segment
fitness into an overall segment fitness:

segfit = fiti + fitp

The overall segment fitness (segfit) attempts to guide
the search towards larger segments of high signal and low
noise level. Finally the total segment fitness is calculated
as:

totsegfit =
n∑

s=1

segfit(s)

where n is the number of segments within the solution.
Hypothesis list coverage is the second facet of the fit-

ness calculation. Increased coverage of the hypothesis list
results in further coverage of the original program code,
which could potentially improve program comprehension.
Hypothesis list Coverage is defined as:

hc = h − hn

where h is the number of hypotheses within the hypothe-
sis list and hn the number of hypotheses not covered by any
segments within the solution. For a fair comparison of so-
lutions, given that solutions may have a varying number of
segments and coverage, a normalised version of the fitness
is evaluated:

Fitness =
totsegfit + hc

2totseglength + h

3



where

totseglength =
n∑

s=1

seglength(s)

and seglength(s) is the number of hypotheses in segment
s.

3.3. Genetic Algorithms

GAs are a collection of heuristic population-based evo-
lutionary search techniques. Traditionally individual solu-
tions with a GA population are also referred to as chromo-
somes and their constituent parts as genes [14]. The genes
represent a coding of the search parameters rather than di-
rectly used parameters. GA search starts with a random
population of potential solutions. It then employs evolution-
ary inspired operators whilst guided by a fitness function
to evolve fitter solutions. Amongst the many subtly varied
definitions of a GA the following mechanisms are generally
agreed upon [10, 18, 23]:

• Selection: The probability based sampling of the cur-
rent population of solutions, guided by a fitness func-
tion. The selected solutions participate in the creation
of the next generation of solutions using GA search
operators.

• Crossover: The primary search operator. Involves the
recombination of pairs of selected solutions to create
offspring for the next generation of solutions.

• Mutation: The secondary search operator. Involves the
random selection and change of genes in a newly cre-
ated population with the aim of reducing population
stagnation.

Selection, crossover and mutation are used to create sub-
sequent generations of populations until a Stopping Con-
dition is satisfied. The Stopping Condition maybe defined
in a variety of ways. Example Stopping Condition could
be based on the number of generated new populations or
the level of increase in the population fitness over generated
populations.

Population size, selection, crossover and mutation are
governed by a set of heuristics. Crossover rate deter-
mines the probability of recombination for a pair of selected
individuals. Selected individuals not recombined due to
crossover rate are copied directly into the new population.

Tournament selection is explained in this section as it is
used as the crossover operator for the proposed GA. Initially
a random pair of chromosomes are selected for tournament
selection. The chromosome with the higher fitness may then
be selected to participate in crossover and mutation accord-
ing to the tournament coefficient heuristic. The tournament

coefficient is the probability of the fitter chromosome be-
ing selected and is usually set strongly in favour of the fit-
ter chromosome. Mutation rate determines the probability
of a mutation per gene(bit) of a solution of the new popu-
lation. This probability is normally set to be very low to
avoid the search from deteriorating into a random search.
The crossover and mutation mechanisms are also dependent
on the structure of the chromosome. The proposed structure
used in this paper and its implications for these operations
are discussed further in Section 3.5.

3.4. Hill Climbing Algorithms

Hill climbing is a local search technique. It starts from
a single randomly-created solution. A set of mutations are
then used to define a set of potentially fitter solutions. The
set of solutions created by the mutation operator are re-
ferred to as the neighbouring solutions. The search at each
stage selects a fitter neighbouring solution and examines
further neighbouring solutions from the newly discovered
solution. The number of considered neighbouring solutions
is a heuristic that determines the minimum number of ex-
amined before a selection decision is made. Due to the lo-
cal nature of the search, it is possible for the starting solu-
tion to terminate at a locally optimal solution of relatively
low fitness. The search attempts to reduce this possibility
by repeatedly restarting from a new random solution or by
using the characteristics of the current solution to create a
new solution. The search ends when no fitter neighbours
can be found and the Sopping Condition has been reached.
The Stopping Condition search may be determined heuris-
tically by limiting the number of allowed restarts or algo-
rithmically when no fitter solution for a restart can be found
by using the restart mechanism. The proposed HC for this
experiment uses characteristics of the final solution for the
restart operation and stops when it cannot create better so-
lutions using restart. The restart operation and permitted
mutations are dependent on the defined structure of the so-
lution.

3.5. Solution Structure

The scope of resulting solutions are affected by what
constitutes a solution in the HC and chromosomes in the GA
population. In this case, each solution needs to represent all
possible overlapping and not-overlapping segment alloca-
tions. The proposed solution defines a segment as a pair of
values where each value represents the location of start and
end hypothesis within the ordered hypothesis list. Since the
number of segments within a hypothesis list in not prede-
termined, the length of a potential solution can also vary. A
messy GA chromosome structure was chosen as a suitable
representation [11] since it allows the chromosome to have
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(4,7) (12,16)(8,10)

(6,9) (14,18) (17,21)

Parent A

Parent B

+ + +

Offspring (4,9) (6,7) (6,10) (8,9) (12,18) (14,16) (17,21)

Figure 3. Example crossover operation on GA
chromosomes

variable length. In the proposed solution, a chromosome is
made up of a set of one or more segment representations,
referred to as segment pairs.

A difficulty that was detected during implementation of
this representation is the potential for an unmanageable in-
crease in the size of solutions. Although the problem def-
inition as explained in Section 3 results in the elimination
of all duplicates segment pairs, this never the less leaves a
potentially large number of segment pairs. The fitness func-
tion was exploited in this case to reduce this size even fur-
ther. In the proposed solution all segments with the same
winning concept that overlap are compared and all but the
fittest segment are removed from the solution.

The crossover implemented utilises the location of the
segment pairs, where only segment pairs of overlapping lo-
cations are recombined and the remaining are copied to the
new chromosome. Figure 3 contains an example of the re-
combination process on two chromosomes and the resulting
offspring.

The GA mutation operation on the proposed solution
structure is different from HC mutation. The GA muta-
tion operator is a secondary search operator, primarily con-
cerned with population stagnation. Therefore the muta-
tion operator can randomly replace any hypothesis location
within any segment pair with any other valid hypothesis lo-
cation with the concern for causing the search to become
overly randomised. As a result this mutation model is used
for the GA, where a mutation can occur on each hypothesis
location according to the mutation rate, where a mutation
results in the replacement of a hypothesis location value in
a segment pair with a random and valid hypothesis loca-
tion value. Conversely such mutations would cause a local
search technique such as hill climbing to become akin to a
random search. To reduce this effect, the proposed HC mu-
tation operator generates new solutions by selecting a seg-
ment pair and increasing or decreasing one of the location
values by a single increment. The resulting mutations are
a set of similar neighbouring solutions that can be used to
describe the local search landscape of the hill climbing al-

Name Purpose LoC
GD95 Reformat master file 89
GB92/6 Print covering letters 190
GD25 Print payments due list 238
GD12 Print payment file 285
GD30 Print cheques and statements 337
GD60 Products/vestings total 387
GD91 Print entire CAF 441
GD96 File verification 491
GD83 Extract school fees payments 547
GB64 Letter print 596
GD26 Print annuity statement 650
GD81 Validate school fees data entry 701
GB73 Create payment file 728
GD28 Produce payment schedule 807
GD67 Update annuity file 879
GB01 Record update/reporting 1013
GD02 CICS enquiry screen 1117
GB07 File totals 1162
GB03 Policy file update 1237
GBCM0133 Compute control totals 1310
GB08 Identify outstanding payments 1374

Table 1. List of used programs, their purpose
and size.

gorithm. Finally the proposed HC takes advantage of the
proposed GA crossover operation GA for the Restart mech-
anism as discussed in Section 3.4. This entails recombina-
tion of all segment pairs in order to create new segments
pairs, which are then added to the current Solution if their
inclusion results in an improvement to the fitness value.

4. Empirical Study

An empirical study was carried out to identify the best of
the proposed algorithms for concept assignment that allow
overlapping concept boundaries based on the proposed fit-
ness discussed in Section 3.2. 21 COBOL II programs from
the commercial financial services sector were included in
the study. A list of these programs, their purpose and size
in lines of code (LoC) is in Table 1. A set of hypothesis lists
were generated using the HB-CA hypothesis generator dis-
cussed in Section 2.1. The generated hypothesis lists have a
size ranging from 1 to 191 hypotheses. Due to the probabil-
ities involved in the generation of the initial population for
the GA and initial solution for the HC and the inherent ran-
domness involved in the search operators, it is possible that
a single execution of the algorithm may produce uncharac-
teristic results. In order to better evaluate characteristic so-
lutions, 10 GA and HC runs were carried out per hypothesis
list.
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Figure 4. Scatter graphs of fitness against hard segment size.

The set of heuristic values for the GA and HC were de-
rived by trials and experimentation on some of the smaller
hypothesis list. The GA population consists of 100 chro-
mosomes, which are created randomly for the initial pop-
ulation. This involves the creation of a random number of
genes or segment pairs. The number of genes is set between
a minimum of 5 to a maximum based on the number of hy-
potheses in the hypothesis list. The tournament selection’s
coefficient was set to 0.99 and crossover and mutation rates
were set to 0.8 and 0.001 respectively. The GA search ter-
minates when the average fitness of the population does not
change over a sequence of 50 generations. The initial so-
lutions used for the HC algorithm are produced by follow-
ing the GA initial chromosome creation mechanism. The
HC moves to a new solution every time a fitter solution is
discovered. The HC stopping condition is met when no fit-
ter neighbouring solutions are present and no fitter solution
can be achieved by using the restart mechanism explained
in Section 3.5.

The GA and HC results were also compared to sets
of randomly generated solutions for each hypothesis list.
These solutions were created according to the solution
structure described in Section 3.5. The number of gener-
ated random solutions for each hypothesis list was equal to
the number of evaluated solutions by the GA and HC algo-
rithms for each hypothesis list. Comparison of the GA, HC

and random results are discussed in Section 4.1.
Traditional non search-based HB-CA was also used for

concept assignment on the 21 COBOL II programs to gen-
erate a set of solutions without overlapping concept bound-
aries. The minimum evidence level for concept binding was
set at 3 hypotheses (details of HB-CA concept binding and
evidence level have been discussed in Section 2.3). Anal-
ysis was carried out on the results from the proposed GA
and HC algorithms and the HB-CA results to find the best
algorithm. Due to the different HB-CA search criteria, the
comparison was based on a different measure. This mea-
sure along with the results of the HB-CA comparison are
discussed in Section 4.2.

The results are presented as scatter graphs and boxplots.
The scatter graph’s vertical axis represents the fitness value
and its horizontal axis represents increasing hypothesis list
size. Similarly the boxplot’s vertical axis represents fit-
ness values. However to reduce clutter in the presentation
of boxplots, caused by the large variety in hypothesis list
sizes, it was necessary for the boxplots to be drawn against
increasing ranges of hypothesis list size. The 5 increasing
ranges used are 1 to 38, 39 to 76, 77 to 114, 115 to 152
and 153 to 191. For example the range 1 to 38 represents
all the fitness values resulting from hypothesis list sizes of
between 1 to 38 (inclusive) hypotheses. Each boxplot rep-
resents the distribution of fitness values for a particular hy-
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Figure 5. Boxplots of GA, HC and Random fitness results compared across increasing hypothesis
List size range.

pothesis list size range. The length of the box corresponds
to the interquartile range and contains 50% of the cases. The
line across the inside of the box indicates the median value.
The protruding lines (whiskers) represent the smallest and
largest fitness values that are not outliers, where outliers are
values which are 1.5 box-lengths away from the edge of the
box.

4.1. GA, HC and Random Results

The results from the GA, HC and random experiment
were compared based on their fitness values, which were
calculated by the fitness function described in Section 3.2.
Scatter graphs labeled GA, HC, random based on GA and
random based on HC in Figure 4 contain the fitness distri-
bution ordered by hypothesis list size for GA, HC and GA
and HC random search respectively. The distribution of GA
fitness results according to Figure 4 is similar to the ran-
dom and HC distributions but with a shift towards higher
fitness values. On the other hand, the HC results are clearly
of inferior fitness to all other results presented by the scatter
graphs in Figure 4. The boxplot of fitness values for paired
algorithms against increasing hypothesis list size are over-
laid in Figure 5. The superior GA results compared to HC
and random is also conveyed by this Figure. The GA-HC
and HC-random graphs in this Figure once again highlight
the inferior HC fitness results compared to the other results.
Not surprisingly the results also demonstrate the increas-
ing difficulty for all search algorithms as the hypothesis list
size increases. This observation corresponds to the rapid in-
crease in the search space discussed in Section 3.1. The HC
also has the smallest distribution of results compared to the
GA and random results. The implications of this observa-
tion are further discussed in Section 6.

Pair-wise comparison of the GA, HC and random by the
Wilcoxen Signed Rank Test was used to ascertain the sta-

tistical significance in the observed strength of GA and the
weakness of the HC results in terms of fitness values. The
Wilcoxen Signed Rank Test reported the level of significance
to be less that 0.0005 when comparing GA results against
HC and GA results against randomly created results. This
level of significance represents a statistically significant im-
provement to the fitness for the GA compared to the HC
and randomly generated solutions. The Wilcoxen Signed
Rank Test reported a level of significance of below 0.0005
meaning a statistically significant worsening of HC results
compared to the randomly generated solutions.

4.2. GA, HC and HB-CA Results

As described in Section 2, The HB-CA algorithm car-
ries out segmentation based on a different set of criteria to
GA and HC algorithms. For a more impartial comparison
between these algorithms, the results are evaluated based
on the signal to size ratio, where the signal represents the
number of hypotheses within a segment that contribute to
the winning concept and Size represents the number of hy-
potheses within that segment.

The scatter graphs in Figure 6 display the distribution of
signal to size ratios of created segments across increasing
hypothesis list size for the GA, HC and HB-CA algorithms.
Most noticeable from these graphs is the lack of solutions
with low signal to size ratios for the scatter graphs of GA
and HC when compared to HB-CA. The GA-HBCA box-
plots in Figure 7 further illustrate characteristically better
signal to size ratios achieved by the GA algorithm compared
to HB-CA across the range of of hypothesis lists. The HC
results in the HC-HBCA boxplots in Figure 7, although not
as clearly improved as the GA results, are generally better
when compared to HB-CA. The graphs in Figure 7 also dis-
play consistently higher GA results in comparison to HC,
identifying the GA as the best overall algorithm based on
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Figure 6. Scatter graphs of signal to size ratio against hard segment size.

the signal to size ratio.
Pair-wise comparison of the GA, HC and HB-CA was

carried out by using the Wilcoxen Signed Rank Test to de-
termine if the strength of GA and HC results against HB-
CA were significant in terms of signal to size ratio. The
test reported a significant difference of less than 0.0005 for
all of these comparisons. This implies the GA and HC sig-
nal to size ratios were significantly better than HB-CA. Fur-
ther Wilcoxen Signed Rank Test between GA and HC also
yielded a significance difference of below 0.0005, meaning
in terms of signal to size ratio, the GA results were also
significantly better than the HC.

5. Related Work

Concept assignment has been defined by Biggerstaff as
“...a process of recognising concepts within a computer pro-
gram and building an ‘understanding’ of the program by re-
lating recognised concepts to portions of the program, its
operational context and to one other [2].”

The two major research issues of concept assignment
have been identifies by Tilly as segmentation and concept
binding [25]. Segmentation is the process of grouping
pieces of conceptual information generated from the source
code. Concept binding involves the analysis of segments in
order to determine the most plausible concept assignment
for each segment [7]. The segmentation and concept bind-
ing process are intricately and naturally linked. The location
and size of the segment determines the assigned concept.
The strength of the assigned concept on the other hand de-
termines the quality of segmentation.

Concept assignment techniques are carried out by intelli-
gent agent tools. They traditionally fall within the following
categories [2].

1. Domain specific, rule based, model driven systems that
answer specific questions. These depend on manually
created databases which describe the software system.

This approach is exemplified by the LaSSIE System
[4].

2. Plan driven, algorithmic and based on a precise set
of understanding and recognition rules. Examples of
this method are Programmer’s Apprentice [24] and
GRASPR [28].

3. Model driven systems which use plausible reasoning.
Examples of this technique are DM-TAO [2], IRENE
[16] and HB-CA [5, 8].

The tools that employ approaches in first and second cat-
egory are capable of completely deriving concepts within
small scale programs but due to their overwhelming com-
putational cost are not suitable for larger-scale programs
[2, 8]. Conversely, the third approach has a linear computa-
tional growth in program size, but suffers from imprecision
in results [2, 8].

HB-CA plausible reasoning technique has recently been
proposed as a means for more complex reveres engineering
and software testing [9, 13]. This involves the use of pro-
gram slicing [27] in conjunction with HB-CA derived con-
cepts to create executable concept slices (ECS) [9, 13]. ECS
involves the slicing of concept bindings from the HB-CA
according to the system dependence graph approach of Hor-
witz et al [15]. The resulting ECS are proposed to posses
the higher level abstraction of concepts alongside the useful
executability of a program slice [9, 13].

Another recent related technique involves the use of La-
tent Semantic Analysis(LSA) for concept location [22]. Ac-
cording to Landauer et al. “LSA is a fully automatic mathe-
matical/statistical technique for extracting and inferring re-
lations of expected contextual usage of words in passages of
discourse” [20]. The technique involves the analysis of user
queries alongside the parsing and analysis of code as text
to identify concepts. One of the strength of this technique
is its independence from the programming language being
analysed. Current comparison with related methods shows
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Figure 7. Boxplots of HB-CA, GA and HC signal to size ratio compared across increasing hypothesis
list size range.

this technique to be easy and flexible whilst able to provide
good results [22].

6. Conclusions and Future Work

An approach to permit overlapping concept boundaries
for concept assignment was presented in this paper. The
problem was defined, analysed and formulated as a search
problem in terms of search space, fitness function, GA and
HC algorithms and solution structure in Section 3. An em-
pirical study was carried out in two parts to determine the
best algorithm in Section 4. First study compared the pro-
posed GA, HC and randomly generated solutions based on
the proposed fitness function. The second study compared
the GA and HC results with HB-CA, based on signal to size
ratio. The results of these studies were discussed in Sections
4.1 and 4.2 respectively.

The GA results produced significantly stronger fitness
values according to the proposed fitness function. In ad-
dition, the GA results were significantly better than HC and
HB-CA results according to the signal to size ratios, as dis-
cussed in Section 4.2. This identified the GA as the best
of the proposed algorithms for concept assignment which
allow overlapping concept boundaries. On the other hand
the HC results were somewhat disappointing as they were
found to be significantly worst than GA and randomly gen-
erated solutions based on the proposed fitness function.

However HC produced stronger results when compared
to the HB-CA on the signal to size measure. One possible
explanation for this behaviour may be the increase in com-
plexity of the search due to the inclusion of hypothesis list
Coverage as part of the fitness criteria, where a local search
algorithm such as hill climbing is simply not adequate. An-
other explanation could be the inadequacy of the current
neighbourhood definition and the need for examining alter-
native neighbourhood definitions.

Another observation made was on the comparatively
small range of HC fitness values in Section 4.1 compared
to other search algorithms. The smaller fitness distribution
implies that a set of similar fitness values were achieved by
the HC from random starting points, which in turn may in-
dicate a large number of similar locally optimum solutions
within the search space. Since the shape of the landscape is
directly effected by the neighbourhood definition, this ob-
servation also strengthens the need for more suitable neigh-
bourhood definitions for the HC algorithm.

Further research is required to analyse the resulting con-
cept bindings as reflected in code. Useful future investiga-
tions may take the form of measuring the level of agreement
for the location of concept bindings, analysis of the size
and distributions of created segments in the hypothesis list
and the size and distribution of the resulting concept bind-
ings in program code. These investigation may also help to
demonstrate the potential offered in program comprehen-
sion by the proposed techniques and whether the inclusion,
extent and frequency of overlap could help or hinder pro-
gram comprehension.
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